Computerized analysis of hypomimia and hypokinetic dysarthria for improved diagnosis of Parkinson's disease

. 2023 Nov ; 9 (11) : e21175. [epub] 20231023

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37908703
Odkazy

PubMed 37908703
PubMed Central PMC10613914
DOI 10.1016/j.heliyon.2023.e21175
PII: S2405-8440(23)08383-4
Knihovny.cz E-zdroje

BACKGROUND AND OBJECTIVE: An aging society requires easy-to-use approaches for diagnosis and monitoring of neurodegenerative disorders, such as Parkinson's disease (PD), so that clinicians can effectively adjust a treatment policy and improve patients' quality of life. Current methods of PD diagnosis and monitoring usually require the patients to come to a hospital, where they undergo several neurological and neuropsychological examinations. These examinations are usually time-consuming, expensive, and performed just a few times per year. Hence, this study explores the possibility of fusing computerized analysis of hypomimia and hypokinetic dysarthria (two motor symptoms manifested in the majority of PD patients) with the goal of proposing a new methodology of PD diagnosis that could be easily integrated into mHealth systems. METHODS: We enrolled 73 PD patients and 46 age- and gender-matched healthy controls, who performed several speech/voice tasks while recorded by a microphone and a camera. Acoustic signals were parametrized in the fields of phonation, articulation and prosody. Video recordings of a face were analyzed in terms of facial landmarks movement. Both modalities were consequently modeled by the XGBoost algorithm. RESULTS: The acoustic analysis enabled diagnosis of PD with 77% balanced accuracy, while in the case of the facial analysis, we observed 81% balanced accuracy. The fusion of both modalities increased the balanced accuracy to 83% (88% sensitivity and 78% specificity). The most informative speech exercise in the multimodality system turned out to be a tongue twister. Additionally, we identified muscle movements that are characteristic of hypomimia. CONCLUSIONS: The introduced methodology, which is based on the myriad of speech exercises likewise audio and video modality, allows for the detection of PD with an accuracy of up to 83%. The speech exercise - tongue twisters occurred to be the most valuable from the clinical point of view. Additionally, the clinical interpretation of the created models is illustrated. The presented computer-supported methodology could serve as an extra tool for neurologists in PD detection and the proposed potential solution of mHealth will facilitate the patient's and doctor's life.

Zobrazit více v PubMed

Heinzel Sebastian, Berg Daniela, Gasser Thomas, Chen Honglei, Yao Chun, Postuma Ronald B., Task M.D.S. Force on the definition of Parkinson's disease. Update of the MDS research criteria for prodromal Parkinson's disease. Mov. Disord. 2019;34(10):1464–1470. PubMed

Poewe Werner, Seppi Klaus, Tanner Caroline M., Halliday Glenda M., Brundin Patrik, Volkmann Jens, Schrag Anette-Eleonore, Lang Anthony E. Parkinson disease. Nat. Rev. Dis. Primers. 2017;3(1):1–21. PubMed

Stochl Jan, Boomsma Anne, Ruzicka Evzen, Brozova Hana, Blahus Petr. On the structure of motor symptoms of Parkinson's disease. Mov. Disord. 2008;23(9):1307–1312. PubMed

Papadopoulos Alexandros, Kyritsis Konstantinos, Klingelhoefer Lisa, Bostanjopoulou Sevasti, Chaudhuri K. Ray, Delopoulos Anastasios. Detecting parkinsonian tremor from imu data collected in-the-wild using deep multiple-instance learning. IEEE J. Biomed. Health Inform. 2019;24(9):2559–2569. PubMed

Duffy Joseph R. Elsevier Health Sciences; 2019. Motor Speech Disorders E-Book: Substrates, Differential Diagnosis, and Management.

Ricciardi L., De Angelis A., Marsili L., Faiman I., Pradhan P., Pereira E.A., Edwards M.J., Morgante F., Bologna M. Hypomimia in Parkinson's disease: an axial sign responsive to levodopa. Eur. J. Neurol. 2020 PubMed

Mucha Jan, Mekyska Jiri, Galaz Zoltan, Faundez-Zanuy Marcos, Lopez-de Ipina Karmele, Zvoncak Vojtech, Kiska Tomas, Smekal Zdenek, Brabenec Lubos, Rektorova Irena. Identification and monitoring of Parkinson's disease dysgraphia based on fractional-order derivatives of online handwriting. Appl. Sci. 2018;8(12):2566.

De Stefano Claudio, Fontanella Francesco, Impedovo Donato, Pirlo Giuseppe, di Freca Alessandra Scotto. Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recognit. Lett. 2019;121:37–45.

Zhi Naiqian, Jaeger Beverly Kris, Gouldstone Andrew, Sipahi Rifat, Frank Samuel. Toward monitoring Parkinson's through analysis of static handwriting samples: a quantitative analytical framework. IEEE J. Biomed. Health Inform. 2016;21(2):488–495. PubMed

Jankovic Joseph. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79(4):368–376. PubMed

Bandini Andrea, Orlandi Silvia, Escalante Hugo Jair, Giovannelli Fabio, Cincotta Massimo, Reyes-Garcia Carlos A., Vanni Paola, Zaccara Gaetano, Manfredi Claudia. Analysis of facial expressions in Parkinson's disease through video-based automatic methods. J. Neurosci. Methods. 2017;281:7–20. PubMed

Gómez-Vilda Pedro, Mekyska Jiri, Ferrández José M., Palacios-Alonso Daniel, Gómez-Rodellar Andrés, Rodellar-Biarge Victoria, Galaz Zoltan, Smekal Zdenek, Eliasova Ilona, Kostalova Milena, et al. Parkinson disease detection from speech articulation neuromechanics. Front. Neuroinform. 2017;11:56. PubMed PMC

Fereshtehnejad Seyed-Mohammad, Skogar Örjan, Lökk Johan. Evolution of orofacial symptoms and disease progression in idiopathic Parkinson's disease: longitudinal data from the Jönköping Parkinson registry. Parkinsons Dis. 2017:2017. PubMed PMC

Simons Gwenda, Smith Pasqualini Marcia C., Reddy Vasudevi, Wood Julia. Emotional and nonemotional facial expressions in people with Parkinson's disease. J. Int. Neuropsychol. Soc. 2004;10(4):521–535. PubMed

Bhatia Kailash P., Bain Peter, Bajaj Nin, Elble Rodger J., Hallett Mark, Louis Elan D., Raethjen Jan, Stamelou Maria, Testa Claudia M., Deuschl Guenther, et al. Consensus statement on the classification of tremors. from the task force on tremor of the international Parkinson and movement disorder society. Mov. Disord. 2018;33(1):75–87. PubMed PMC

Marsili Luca, Agostino Rocco, Bologna Matteo, Belvisi Daniele, Palma Adalgisa, Fabbrini Giovanni, Berardelli Alfredo. Bradykinesia of posed smiling and voluntary movement of the lower face in Parkinson's disease. Parkinsonism Relat. Disord. 2014;20(4):370–375. PubMed

Shinde Akshada, Atre Rashmi, Singh Guleria Anchal, Nibandhe Radhika, Shriram Revati. 2018 3rd International Conference for Convergence in Technology (I2CT) IEEE; 2018. Facial features based prediction of Parkinson's disease; pp. 1–5.

Fitzpatrick Emily, Hohl Norman, Silburn Peter, O'Gorman Cullen, Broadley Simon A. Case–control study of blink rate in Parkinson's disease under different conditions. J. Neurol. 2012;259:739–744. PubMed

Grammatikopoulou Athina, Grammalidis Nikos, Bostantjopoulou Sevasti, Katsarou Zoe. Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments. 2019. Detecting hypomimia symptoms by selfie photo analysis: for early Parkinson disease detection; pp. 517–522.

Bowers Dawn, Miller Kimberly, Bosch Wendelyn, Gokcay Didem, Pedraza Otto, Springer Utaka, Okun Michael. Faces of emotion in Parkinson's disease: micro-expressivity and bradykinesia during voluntary facial expressions. J. Int. Neuropsychol. Soc. 2006;12(6):765–773. PubMed

Bologna Matteo, Fabbrini Giovanni, Marsili Luca, Defazio Giovanni, Thompson Philip D., Berardelli Alfredo. Facial bradykinesia. J. Neurol. Neurosurg. Psychiatry. 2013;84(6):681–685. PubMed

Ricciardi Lucia, Bologna Matteo, Morgante Francesca, Ricciardi Diego, Morabito Bruno, Volpe Daniele, Martino Davide, Tessitore Alessandro, Pomponi Massimiliano, Rita Bentivoglio Anna, et al. Reduced facial expressiveness in Parkinson's disease: a pure motor disorder? J. Neurol. Sci. 2015;358(1–2):125–130. PubMed

Rusz Jan, Hlavnička Jan, Tykalová Tereza, Bušková Jitka, Ulmanová Olga, Růžička Evžen, Šonka Karel. Quantitative assessment of motor speech abnormalities in idiopathic rapid eye movement sleep behaviour disorder. Sleep Med. 2016;19:141–147. PubMed

Ho Aileen K., Iansek Robert, Marigliani Caterina, Bradshaw John L., Gates Sandra. Speech impairment in a large sample of patients with Parkinson's disease. Behav. Neurol. 1998;11(3):131–137. PubMed

Brabenec JiříMekyska Luboš, Galaz Z., Rektorova Irena. Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation. J. Neural Transm. 2017;124(3):303–334. PubMed

Moreau Caroline, Pinto Serge. Misconceptions about speech impairment in Parkinson's disease. Mov. Disord. 2019;34(10):1471–1475. PubMed

Moro-Velazquez Laureano, Dehak Najim. Automatic Assessment of Parkinsonian Speech Workshop. 2020. A review of the use of prosodic aspects of speech for the automatic detection and assessment of Parkinson's disease; pp. 42–59.

Moro-Velazquez Laureano, Gomez-Garcia Jorge A., Arias-Londoño Julian D., Dehak Najim, Godino-Llorente Juan I. Advances in Parkinson's disease detection and assessment using voice and speech: a review of the articulatory and phonatory aspects. Biomed. Signal Process. Control. 2021;66

Cuong Ngo Quoc, Abdul Motin Mohammod, Daniel Pah Nemuel, Drotár Peter, Kempster Peter, Kumar Dinesh. Computerized analysis of speech and voice for Parkinson's disease: a systematic review. Comput. Methods Programs Biomed. 2022 PubMed

Connolly Barbara S., Lang Anthony E. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311(16):1670–1683. PubMed

Mohr Morberg Bo, Malling Bente Rona Jensen Anne Sofie, Gredal Ole, Wermuth Lene, Bech Per. The Hawthorne effect as a pre-placebo expectation in Parkinsons disease patients participating in a randomized placebo-controlled clinical study. Nord. J. Psychiatr. 2018;72(6):442–446. PubMed

Pandey Sanjay, Srivanitchapoom Prachaya. Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann. Indian Acad. Neurol. 2017;20(3):190. PubMed PMC

Mileva Boshkoska Biljana, Miljković Dragana, Valmarska Anita, Gatsios Dimitrios, Rigas George, Konitsiotis Spyridon, Tsiouris Kostas M., Fotiadis Dimitrios, Bohanec Marko. Decision support for medication change of Parkinson's disease patients. Comput. Methods Programs Biomed. 2020;196 PubMed

Zhan Andong, Mohan Srihari, Tarolli Christopher, Schneider Ruth B., Adams Jamie L., Sharma Saloni, Elson Molly J., Spear Kelsey L., Glidden Alistair M., Little Max A., et al. Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol. 2018;75(7):876–880. PubMed PMC

Ancona Stefania, Faraci Francesca D., Khatab Elina, Fiorillo Luigi, Gnarra Oriella, Nef Tobias, Bassetti Claudio L.A., Bargiotas Panagiotis. Wearables in the home-based assessment of abnormal movements in Parkinson's disease: a systematic review of the literature. J. Neurol. 2021:1–11. PubMed

Artusi Carlo Alberto, Imbalzano Gabriele, Sturchio Andrea, Pilotto Andrea, Montanaro Elisa, Padovani Alessandro, Lopiano Leonardo, Maetzler Walter, Espay Alberto J. Implementation of mobile health technologies in clinical trials of movement disorders: underutilized potential. Neurotherapeutics. 2020:1–11. PubMed PMC

Malwade Shwetambara, Syed Abdul Shabbir, Uddin Mohy, Achmad Nursetyo Aldilas, Fernandez-Luque Luis, Katie Zhu Xinxin, Cilliers Liezel, Wong Chun-Por, Bamidis Panagiotis, Li Yu-Chuan Jack. Mobile and wearable technologies in healthcare for the ageing population. Comput. Methods Programs Biomed. 2018;161:233–237. PubMed

Poorjam Amir Hossein, Kavalekalam Mathew Shaji, Shi Liming, Raykov Jordan P., Jensen Jesper Rindom, Little Max A., Christensen Mads Græsbøll. Automatic quality control and enhancement for voice-based remote Parkinson's disease detection. Speech Commun. 2021;127:1–16.

Rusz Jan, Hlavnička Jan, Tykalová Tereza, Novotnỳ Michal, Dušek Petr, Šonka Karel, Růžička Evžen. Smartphone allows capture of speech abnormalities associated with high risk of developing Parkinson's disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26(8):1495–1507. PubMed

Tsanas Athanasios, Little Max A., Ramig Lorraine O. Remote assessment of Parkinson's disease symptom severity using the simulated cellular mobile telephone network. IEEE Access. 2021 PubMed PMC

Chén Oliver Y., Lipsmeier Florian, Phan Huy, Prince John, Taylor Kirsten I., Gossens Christian, Lindemann Michael, De Vos Maarten. Building a machine-learning framework to remotely assess Parkinson's disease using smartphones. IEEE Trans. Biomed. Eng. 2020;67(12):3491–3500. PubMed

Arora Siddharth, Baig Fahd, Lo Christine, Barber Thomas R., Lawton Michael A., Zhan Andong, Rolinski Michal, Ruffmann Claudio, Klein Johannes C., Rumbold Jane, et al. Smartphone motor testing to distinguish idiopathic rem sleep behavior disorder, controls, and pd. Neurology. 2018;91(16):e1528–e1538. PubMed PMC

Noel Victorino John, Shibata Yuko, Inoue Sozo, Shibata Tomohiro. Predicting wearing-off of Parkinson's disease patients using a wrist-worn fitness tracker and a smartphone: a case study. Appl. Sci. 2021;11(16):7354.

Asma Channa, Cramariuc Oana, Memon Madeha, Popescu Nirvana, Mammone Nadia, Ruggeri Giuseppe. Parkinson's disease resting tremor severity classification using machine learning with resampling techniques. Front. Neurosci. 2022;16 PubMed PMC

Skibinska Justyna, Burget Radim. International Conference on Localization and GNSS. 2021. The transferable methodologies of detection sleep disorders thanks to the actigraphy device for Parkinson's disease detection.

Lim Wee Shin, Chiu Shu-I., Wu Meng-Ciao, Tsai Shu-Fen, Wang Pu-He, Lin Kun-Pei, Chen Yung-Ming, Peng Pei-Ling, Chen Yung-Yaw, Jang Jyh-Shing Roger, et al. An integrated biometric voice and facial features for early detection of Parkinson's disease. npj Parkinsons Dis. 2022;8(1):145. PubMed PMC

Sonawane Bhakti, Sharma Priyanka. Review of automated emotion-based quantification of facial expression in Parkinson's patients. Environment. 2021;7(8)

Kolodziej Marcin, Majkowski Andrzej, Rak Remigiusz J., Tarnowski Pawel, Pielaszkiewicz Tomasz. 19th International Conference Computational Problems of Electrical Engineering. IEEE; 2018. Analysis of facial features for the use of emotion recognition; pp. 1–4.

Payal Parekh, Goyani Mahesh M. A comprehensive study on face recognition: methods and challenges. Imaging Sci. J. 2020;68(2):114–127.

Wu Peng, Gonzalez Isabel, Patsis Georgios, Jiang Dongmei, Sahli Hichem, Kerckhofs Eric, Vandekerckhove Marie. Objectifying facial expressivity assessment of Parkinson's patients: preliminary study. Computational and Mathematical Methods in Medicine; 2014; 2014. PubMed PMC

Novotny Michal, Tykalova Tereza, Ruzickova Hana, Ruzicka Evzen, Dusek Petr, Rusz Jan. Automated video-based assessment of facial bradykinesia in de-novo Parkinson's disease. npj Digit. Med. 2022;5(1):1–8. PubMed PMC

Bandini Andrea, Orlandi Silvia, Escalante Hugo Jair, Giovannelli Fabio, Cincotta Massimo, Reyes-Garcia Carlos A., Vanni Paola, Zaccara Gaetano, Manfredi Claudia. Analysis of facial expressions in Parkinson's disease through video-based automatic methods. J. Neurosci. Methods. 2017;281:7–20. PubMed

Vinokurov Nomi, Arkadir David, Linetsky Eduard, Bergman Hagai, Weinshall Daphna. International Symposium on Pervasive Computing Paradigms for Mental Health. Springer; 2015. Quantifying hypomimia in Parkinson patients using a depth camera; pp. 63–71.

Ali Mohammad Rafayet, Myers Taylor, Wagner Ellen, Ratnu Harshil, Dorsey E., Hoque Ehsan. Facial expressions can detect Parkinson's disease: preliminary evidence from videos collected online. npj Digit. Med. 2021;4(1):1–4. PubMed PMC

Su Ge, Lin Bo, Yin Wei Luo Jianwei, Xu Renjun, Xu Jie, Dong Kexiong. Detection of hypomimia in patients with Parkinson's disease via smile videos. Ann. Transl. Med. 2021;9(16) PubMed PMC

Su Ge, Lin Wei Luo Bo, Yin Jianwei, Deng Shuiguang, Gao Honghao, Xu Renjun. Hypomimia recognition in Parkinson's disease with semantic features. ACM Trans. Multimed. Comput. Commun. Appl. 2021;17(3s):1–20.

Bowers Dawn, Miller Kimberly, Bosch Wendelyn, Gokcay Didem, Pedraza Otto, Springer Utaka, Okun Michael. Faces of emotion in Parkinsons disease: micro-expressivity and bradykinesia during voluntary facial expressions. J. Int. Neuropsychol. Soc. 2006;12(6):765. PubMed

Maremmani Carlo, Monastero Roberto, Orlandi Giovanni, Salvadori Stefano, Pieroni Aldo, Baschi Roberta, Pecori Alessandro, Dolciotti Cristina, Berchina Giulia, Rovini Erika, et al. Objective assessment of blinking and facial expressions in Parkinson's disease using a vertical electro-oculogram and facial surface electromyography. Physiol. Meas. 2019;40(6) PubMed

Joshi Ajjen, Tickle-Degnen Linda, Gunnery Sarah, Ellis Terry, Betke Margrit. Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments. 2016. Predicting active facial expressivity in people with Parkinson's disease; pp. 1–4.

Rajnoha Martin, Mekyska Jiri, Burget Radim, Eliasova Ilona, Kostalova Milena, Rektorova Irena. 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) IEEE; 2018. Towards identification of hypomimia in Parkinson's disease based on face recognition methods; pp. 1–4.

Katsikitis Mary, Pilowsky I. A study of facial expression in Parkinson's disease using a novel microcomputer-based method. J. Neurol. Neurosurg. Psychiatry. 1988;51(3):362–366. PubMed PMC

Joshi Ajjen, Ghosh Soumya, Gunnery Sarah, Tickle-Degnen Linda, Sclaroff Stan, Betke Margrit. 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) IEEE; 2018. Context-sensitive prediction of facial expressivity using multimodal hierarchical Bayesian neural networks; pp. 278–285.

Abrami Avner, Gunzler Steven, Kilbane Camilla, Ostrand Rachel, Ho Bryan, Cecchi Guillermo. Automated computer vision assessment of hypomimia in Parkinson disease: proof-of-principle pilot study. J. Med. Internet Res. 2021;23(2) PubMed PMC

Archila John, Manzanera Antoine, Martínez Fabio. A multimodal Parkinson quantification by fusing eye and gait motion patterns, using covariance descriptors, from non-invasive computer vision. Comput. Methods Programs Biomed. 2022;215 PubMed

Gitchel George T., Wetzel Paul A., Baron Mark S. Pervasive ocular tremor in patients with Parkinson disease. Arch. Neurol. 2012;69(8):1011–1017. PubMed

Rusz Jan, Tykalova Tereza, Ramig Lorraine O., Tripoliti Elina. Guidelines for speech recording and acoustic analyses in dysarthrias of movement disorders. Mov. Disord. 2020 PubMed

Suppa Antonio, Asci Francesco, Saggio Giovanni, Di Leo Pietro, Zarezadeh Zakarya, Ferrazzano Gina, Ruoppolo Giovanni, Berardelli Alfredo, Costantini Giovanni. Voice analysis with machine learning: one step closer to an objective diagnosis of essential tremor. Mov. Disord. 2021;36(6):1401–1410. PubMed

Suppa Antonio, Costantini Giovanni, Asci Francesco, Di Leo Pietro, Sami Al-Wardat Mohammad, Di Lazzaro Giulia, Scalise Simona, Pisani Antonio, Saggio Giovanni. Voice in Parkinson's disease: a machine learning study. Front. Neurol. 2022;13 PubMed PMC

Costantini Giovanni, Cesarini Valerio, Di Leo Pietro, Amato Federica, Suppa Antonio, Asci Francesco, Pisani Antonio, Calculli Alessandra, Saggio Giovanni. Artificial intelligence-based voice assessment of patients with Parkinson's disease off and on treatment: machine vs. deep-learning comparison. Sensors. 2023;23(4):2293. PubMed PMC

Godino-Llorente J.I., Shattuck-Hufnagel S., Choi J.Y., Moro-Velázquez L., Gómez-García J.A. Towards the identification of idiopathic Parkinson's disease from the speech. new articulatory kinetic biomarkers. PLoS ONE. 2017;12(12) PubMed PMC

Kodrasi Ina, Bourlard Hervé. Spectro-temporal sparsity characterization for dysarthric speech detection. IEEE/ACM Trans. Audio Speech Lang. Process. 2020;28:1210–1222.

Orozco-Arroyave Juan Rafael, David Arias-Londoño Julián, Vargas-Bonilla Jesús Francisco, Gonzalez-Rátiva María Claudia, Nöth Elmar. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14) 2014. New Spanish speech corpus database for the analysis of people suffering from Parkinson's disease; pp. 342–347.

Gómez JiríMekyska Pedro, Gómez Andrés, Palacios D., Rodellar Victoria, Álvarez A. Characterization of Parkinson's disease dysarthria in terms of speech articulation kinematics. Biomed. Signal Process. Control. 2019;52:312–320.

Camilo Vásquez-Correa Juan, Orozco-Arroyave Juan Rafael, Nöth Elmar. Interspeech. 2017. Convolutional neural network to model articulation impairments in patients with Parkinson's disease; pp. 314–318.

Camilo Vásquez-Correa Juan, Arias-Vergara Tomas, Rios-Urrego Cristian D., Schuster Maria, Rusz Jan, Orozco-Arroyave Juan Rafael, Nöth Elmar. Iberoamerican Congress on Pattern Recognition. Springer; 2019. Convolutional neural networks and a transfer learning strategy to classify Parkinson's disease from speech in three different languages; pp. 697–706.

Moro-Velazquez Laureano, Gomez-Garcia Jorge Andres, Ignacio Godino-Llorente Juan, Villalba Jesús, Rusz Jan, Shattuck-Hufnagel Stephanie, Dehak Najim. A forced Gaussians based methodology for the differential evaluation of Parkinson's disease by means of speech processing. Biomed. Signal Process. Control. 2019;48:205–220.

Solana-Lavalle Gabriel, Rosas-Romero Roberto. Analysis of voice as an assisting tool for detection of Parkinson's disease and its subsequent clinical interpretation. Biomed. Signal Process. Control. 2021;66

Rusz Jan, Tykalová Tereza, Novotnỳ Michal, Zogala David, Růžička Evžen, Dušek Petr. Automated speech analysis in early untreated Parkinson's disease: relation to gender and dopaminergic transporter imaging. Eur. J. Neurol. 2022;29(1):81–90. PubMed

https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/20796_Comtan_UPDRS.pdf Unified Parkinson's disease rating scale.

https://www.movementdisorders.org/MDS-Files1/PDFs/Rating-Scales/MDS-UPDRS_English_FINAL.pdf The movement disorder society-sponsored revision of the unified Parkinson's disease rating scale.

Fahn S.E.R.L. MacMillan Healthcare Information; 1987. Unified Parkinson's Disease Rating Scale. Recent Developments in Parkinson's Disease Volume ii; p. 153.

Giladi Nir, Shabtai H., Simon E.S., Biran S., Tal J., Korczyn A.D. Construction of freezing of gait questionnaire for patients with parkinsonism. Parkinsonism Relat. Disord. 2000;6(3):165–170. PubMed

Chaudhuri K. Ray, Odin Per, Antonini Angelo, Martinez-Martin Pablo. Parkinson's disease: the non-motor issues. Parkinsonism Relat. Disord. 2011;17(10):717–723. PubMed

Stiasny-Kolster Karin, Mayer Geert, Schäfer Sylvia, Carsten Möller Jens, Heinzel-Gutenbrunner Monika, Oertel Wolfgang H. The rem sleep behavior disorder screening questionnaire—a new diagnostic instrument. Mov. Disord. 2007;22(16):2386–2393. PubMed

Berankova Dagmar, Janousova Eva, Mrackova Martina, Eliasova Ilona, Kostalova Milena, Skutilova Svetlana, Rektorova Irena. Addenbrooke's cognitive examination and individual domain cut-off scores for discriminating between different cognitive subtypes of Parkinson's disease. Parkinsons Dis. 2015:2015. PubMed PMC

Folstein Marshal F., Folstein Susan E., McHugh Paul R. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12(3):189–198. PubMed

Leentjens Albert F.G., Verhey Frans R.J., Luijckx Gert-Jan, Troost Jaap. The validity of the Beck depression inventory as a screening and diagnostic instrument for depression in patients with Parkinson's disease. Mov. Disord. 2000;15(6):1221–1224. PubMed

Kostalova M., Mrackova M., Marecek R., Berankova D., Eliasova I., Janousova E., Roubickova J., Bednarik J., Rektorova I. The 3f test dysarthric profile-normative speach values in Czech. Čes. Slov. Neurol. Neurochir. 2013;76(5):614–618.

http://www.fon.hum.uva.nl/praat/ Praat: doing phonetics by computer.

Mekyska Jiri, Janousova Eva, Gomez-Vilda Pedro, Smekal Zdenek, Rektorova Irena, Eliasova Ilona, Kostalova Milena, Mrackova Martina, Alonso-Hernandez Jesus B., Faundez-Zanuy Marcos, et al. Robust and complex approach of pathological speech signal analysis. Neurocomputing. 2015;167:94–111.

Lin Jianhua. Divergence measures based on the Shannon entropy. IEEE Transactions on Information theory. 1991;37(1):145–151.

Conforte Alessandra J., Tuszynski Jack Adam, Barbosa da Silva Fabricio Alves, Carels Nicolas. Signaling complexity measured by Shannon entropy and its application in personalized medicine. Front. Genet. 2019;10:930. PubMed PMC

Pincus Steve. Approximate entropy (apen) as a complexity measure. Chaos, Interdiscip. J. Nonlinear Sci. 1995;5(1):110–117. PubMed

Richman Joshua S., Moorman J. Randall. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol., Heart Circ. Physiol. 2000 PubMed

Rios-Urrego Cristian D., Camilo Vásquez-Correa Juan, Vargas-Bonilla Jesús Francisco, Nöth Elmar, Lopera Francisco, Orozco-Arroyave Juan Rafael. Analysis and evaluation of handwriting in patients with Parkinson's disease using kinematic, geometrical, and non-linear features. Comput. Methods Programs Biomed. 2019;173:43–52. PubMed

Delgado-Bonal Alfonso, Marshak Alexander. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy. 2019;21(6):541. PubMed PMC

Hassin-Baer Sharon, Molchadski Irena, Cohen Oren S., Nitzan Zeev, Efrati Lilach, Tunkel Olga, Kozlova Evgenia, Korczyn Amos D. Gender effect on time to levodopa-induced dyskinesias. J. Neurol. 2011;258:2048–2053. PubMed

Heller Julia, Mirzazade Shahram, Romanzetti Sandro, Habel Ute, Derntl Birgit, Freitag Nils M., Schulz Jörg B., Dogan Imis, Reetz Kathrin. Impact of gender and genetics on emotion processing in Parkinson's disease-a multimodal study. NeuroImage Clin. 2018;18:305–314. PubMed PMC

Snoek Lukas, Miletić Steven, Scholte H. Steven. How to control for confounds in decoding analyses of neuroimaging data. NeuroImage. 2019;184:741–760. PubMed

Pourhoseingholi Mohamad Amin, Baghestani Ahmad Reza, Vahedi Mohsen. How to control confounding effects by statistical analysis. Gastroenterology Hepatology Bed Bench. 2012;5(2):79. PubMed PMC

Alonso-Martinez Carlos, Faundez-Zanuy Marcos, Mekyska Jiri. A comparative study of in-air trajectories at short and long distances in online handwriting. Cogn. Comput. 2017;9:712–720. PubMed PMC

Tsanas Athanasios, Little Max A., McSharry Patrick E., Spielman Jennifer, Ramig Lorraine O. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease. IEEE Trans. Biomed. Eng. 2012;59(5):1264–1271. PubMed

https://towardsdatascience.com/what-is-stratified-cross-validation-in-machine-learning-8844f3e7ae8e Stratified cross-validation.

Chen Tianqi, Xgboost Carlos Guestrin. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. 2016. A scalable tree boosting system; pp. 785–794.

Lundberg Scott M., Lee Su-In. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017;30

https://shap.readthedocs.io/en/latest/ Shap library.

Mekyska Jiri, Galaz Zoltan, Kiska Tomas, Zvoncak Vojtech, Mucha Jan, Smekal Zdenek, Eliasova Ilona, Kostalova Milena, Mrackova Martina, Fiedorova Dagmar, et al. Quantitative analysis of relationship between hypokinetic dysarthria and the freezing of gait in Parkinson's disease. Cogn. Comput. 2018;10(6):1006–1018. PubMed PMC

https://pypi.org/project/face-recognition/ Facial landmark extraction.

Skibińska Justyna, Burget Radim. 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) IEEE; 2020. Parkinson's disease detection based on changes of emotions during speech; pp. 124–130.

Rusz Jan, Megrelishvili Marika, Bonnet Cecilia, Okujava Michael, Brožová Hana, Khatiashvili Irine, Sekhniashvili Madona, Janelidze Marina, Tolosa Eduardo, Růžička Evžen. A distinct variant of mixed dysarthria reflects parkinsonism and dystonia due to ephedrone abuse. J. Neural Transm. 2014;121(6):655–664. PubMed

Fernández Martínez Andrea. Proceedings of the 25th Conference STUDENT EEICT 2019. 2019. Identification of patients at the risk of Lewy body diseases based on acoustic analysis of speech; pp. 50–53. [online]

Skodda Sabine, Rinsche Heiko, Schlegel Uwe. Progression of dysprosody in Parkinson's disease over time—a longitudinal study. Mov. Dis. 2009;24(5):716–722. PubMed

Kovac Daniel, Mekyska Jiri, Aharonson Vered, Harar Pavol, Galaz Zoltan, Rapcsak Steve, Orozco-Arroyave Juan Rafael, Brabenec Lubos, Rektorova Irena. Exploring language-independent digital speech biomarkers of hypokinetic dysarthria. medRxiv. 2022 2022–10.

Azadi Hamid, Akbarzadeh-T Mohammad-R., Shoeibi Ali, Reza Kobravi Hamid. Evaluating the effect of Parkinson's disease on jitter and shimmer speech features. Adv. Biomed. Res. 2021;10 PubMed PMC

Skodda Sabine, Schlegel Uwe. Speech rate and rhythm in Parkinson's disease. Mov. Dis. 2008;23(7):985–992. PubMed

Kacha Abdellah, Mertens Christophe, Grenez Francis, Skodda Sabine, Schoentgen Jean. On the harmonic-to-noise ratio as an acoustic cue of vocal timbre of Parkinson speakers. Biomed. Signal Process. Control. 2017;37:32–38.

Mekyska Jiri, Galaz Zoltan, Mzourek Zdenek, Smekal Zdenek, Rektorova Irena, Eliasova Ilona, Kostalova Milena, Mrackova Martina, Berankova Dagmar, Faundez-Zanuy Marcos, et al. 2015 4th International Work Conference on Bioinspired Intelligence (IWOBI) IEEE; 2015. Assessing progress of Parkinson's disease using acoustic analysis of phonation; pp. 111–118.

Christensen Julie A.E., Koch Henriette, Frandsen Rune, Kempfner Jacob, Arvastson Lars, Christensen Soren R., Sorensen Helge B.D., Jennum Poul. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE; 2013. Classification of irbd and Parkinson's disease patients based on eye movements during sleep; pp. 441–444. PubMed

Barone Daniel A., Henchcliffe Claire. Rapid eye movement sleep behavior disorder and the link to alpha-synucleinopathies. Clin. Neurophysiol. 2018;129(8):1551–1564. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...