Parkinson Disease Detection from Speech Articulation Neuromechanics

. 2017 ; 11 () : 56. [epub] 20170825

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28970792

Aim: The research described is intended to give a description of articulation dynamics as a correlate of the kinematic behavior of the jaw-tongue biomechanical system, encoded as a probability distribution of an absolute joint velocity. This distribution may be used in detecting and grading speech from patients affected by neurodegenerative illnesses, as Parkinson Disease. Hypothesis: The work hypothesis is that the probability density function of the absolute joint velocity includes information on the stability of phonation when applied to sustained vowels, as well as on fluency if applied to connected speech. Methods: A dataset of sustained vowels recorded from Parkinson Disease patients is contrasted with similar recordings from normative subjects. The probability distribution of the absolute kinematic velocity of the jaw-tongue system is extracted from each utterance. A Random Least Squares Feed-Forward Network (RLSFN) has been used as a binary classifier working on the pathological and normative datasets in a leave-one-out strategy. Monte Carlo simulations have been conducted to estimate the influence of the stochastic nature of the classifier. Two datasets for each gender were tested (males and females) including 26 normative and 53 pathological subjects in the male set, and 25 normative and 38 pathological in the female set. Results: Male and female data subsets were tested in single runs, yielding equal error rates under 0.6% (Accuracy over 99.4%). Due to the stochastic nature of each experiment, Monte Carlo runs were conducted to test the reliability of the methodology. The average detection results after 200 Montecarlo runs of a 200 hyperplane hidden layer RLSFN are given in terms of Sensitivity (males: 0.9946, females: 0.9942), Specificity (males: 0.9944, females: 0.9941) and Accuracy (males: 0.9945, females: 0.9942). The area under the ROC curve is 0.9947 (males) and 0.9945 (females). The equal error rate is 0.0054 (males) and 0.0057 (females). Conclusions: The proposed methodology avails that the use of highly normalized descriptors as the probability distribution of kinematic variables of vowel articulation stability, which has some interesting properties in terms of information theory, boosts the potential of simple yet powerful classifiers in producing quite acceptable detection results in Parkinson Disease.

Zobrazit více v PubMed

Barata J. C. A., Hussein M. S. (2012). The Moore-Penrose Pseudoinverse. A Tutorial Review of the Theory. Braz. J. Phys. 42:146 10.1007/s13538-011-0052-z DOI

Bouchard K. E., Conant D. F., Anumanchipalli G. K., Dichter B., Chaisanguanthum K. S., Johnson K., et al. . (2016). High-resolution, non-invasive imaging of upper vocal tract articulators compatible with human brain recordings. PLoS ONE 11:e0151327. 10.1371/journal.pone.0151327 PubMed DOI PMC

Brabenec L., Mekyska J., Galaz Z., Rektorova I. (2017). Speech Disorders in Parkinson's disease: early diagnostics and effects on medication in brain stimulation. J. Neural Transm. 124, 303–334. 10.1007/s00702-017-1676-0 PubMed DOI

Broomhead D. S., Lowe D. (1988). Multivariable functional interpolation and adaptive networks. Complex Sys. 2 321–355.

Carmona C., Plamondon R., Gómez P., Ferrer M. A., Alonso J. B., Londral A. R. (2016). Application of the lognormal model to the vocal tract movement to detect neurological diseases in voice, in Innovation in Medicine and Healthcare, Smart Innovation, Systems and Technologies, Vol. 60, eds Chen Y. W., Tanaka S., Howlett R. J., Jain L. C. (Cham: Springer International Publishing AG; ), 25–35.

Cecchi G. (2017). With AI, Our Words Will be a Window into Our Mental Health. Available online at: https://www.ibm.com/blogs/research/2017/1/ibm-5-in-5-our-words-will-be-the-windows-to-our-mental-health/ (Accessed Dec 02, 2017)

Cover T. M., Thomas J. A. (2006). Elements of Information Theory, New York, NY: Wiley.

CSL (2017). Computerized Speech Lab. Available online at: https://www.pentaxmedical.com/pentax/en/94/1/Visi-Pitch-IV-Model-3950B-Computerized-Speech-Lab-CSL-Model-4500-and-4150B (Accesed Sep 05, 2017)

Demonet J. F., Thierry G., Cardebat D. (2005). Renewal of the neurophysiology of language: functional neuroimaging. Physiol. Rev. 85, 49–95. 10.1152/physrev.00049.2003 PubMed DOI

Dromey C., Jang G. O., Hollis K. (2013). Assessing correlations between lingual movements and formants. Speech Commun. 55, 315–328. 10.1016/j.specom.2012.09.001 DOI

Gamboa J., Jiménez-Jiménez F. J., Nieto A., Montojo J., Ortí-Pareja M., Molina J. A., et al. . (1997). Acoustic voice analysis in patients with Parkinson's disease treated with dopaminergic drugs. J. Voice 11, 314–320. 10.1016/S0892-1997(97)80010-0 PubMed DOI

Gerard J. M., Perrier P., Payan Y. (2006). 3D biomechanical tongue modeling to study speech production, in Speech Production: Models, Phonetic Processes, and Techniques, eds Harrington J., Tabain M. (New York, NY: Psychology Press; ), 85–102.

Goberman A. M., Coelho C. (2002). Acoustic analysis of Parkinsonian speech I: speech characteristics and L-Dopa therapy. Neurorehabilitation 17, 237–246. PubMed

Goetz C. G., Fahn S., Martinez-Martin P., Poewe W., Sampaio C., Stebbins G. T., et al. . (2007). Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov. Disord. 22, 41–47. 10.1002/mds.21198 PubMed DOI

Gómez P., Fernández R., Rodellar V., Nieto V., Álvarez A., Mazaira L. M., et al. (2009). Glottal source biometrical signature for voice pathology detection. Speech Commun. 51, 759–781. 10.1016/j.specom.2008.09.005 DOI

Gómez P., Palacios D., Rodellar V., Álvarez A., Nieto V., Martínez R. (2017). Parkinson's disease monitoring by biomechanical instability of phonation. Neurocomputing 255, 3–16. 10.1016/j.neucom.2016.06.092 DOI

Green J. R. (2015). Mouth matters: scientific and clinical applications of speech movement analysis. SIG 5 Persp. Speech Sci. Orof. Disord. 25, 6–16. 10.1044/ssod25.1.6 DOI

Harel B. T., Cannizzaro M. S., Cohen H., Reilly N., Snyder P. J. (2004). Acoustic characteristics of Parkinsonian speech: a potential biomarker of early disease progression and treatment. J. Neuroling. 17, 439–453. 10.1016/j.jneuroling.2004.06.001 DOI

Haykin S. (2013). Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall.

Hoehn M. M., Yahr M. D. (1967). Parkinsonism: onset, progression, and mortality. Neurology 17, 427–442. PubMed

Huang G.-B., Siew C.-K. (2004). Extreme Learning Machine: RBF Network Case, in Proceedings of the ICARCV 2004 (Kunming: ), 1029–1036.

IPA (2015). International Phonetic Alphabet. Available online at: http://www.internationalphoneticassociation.org/content/ipa-chart (Accessed Sept 04, 2017)

Martin A., Doddington G., Kamm T., Ordowski M., Przybocki M. (1997). The DET Curve in Assessment of Detection Task Performance. Gaithersburg, MD: NIST.

Mekyska J., Janousova E., Gómez P., Smekal Z., Rektorova I., Eliasova I., et al. (2015). Robust and complex approach of pathological speech signal analysis. Neurocomputing 167, 94–111. 10.1016/j.neucom.2015.02.085 DOI

Mertens C., Schoentgen J., Grenez F., Skodda S. (2013). Acoustical analysis of vocal tremor in parkinson speakers, in Proceedings of MAVEBA13, ed Manfredi C. (Florence: Florence University Press; ), 19–22.

NIST (2015). NIST/SEMATECH e-Handbook of Statistical Methods. Gaithersburg, MD: NIST.

Pao Y. H., Park G. H., Sobajic D J. (1994). Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6, 163–180.

Parkinson J. (2002). An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci. 14, 223–236. 10.1176/jnp.14.2.223 PubMed DOI

Sanguinetti V., Laboissière R., Payan Y. (1997). A control model of human tongue movements in speech. Biol. Cybern. 77 11–22. 10.1007/s004220050362 PubMed DOI

Sapir S., Ramig L. O., Spielman J. L., Fox C. (2010). Formant centralization ratio: a proposal for a new acoustic measure of dysarthric speech. J. Speech Lang. Hear. Res. 53 114–125. 10.1044/1092-4388(2009/08-0184) PubMed DOI PMC

Savariaux C., Badin P., Samson A., Gerber S. (2017). A comparative study of the precision of carstens and northern digital instruments electromagnetic articulographs. J. Speech Lang. Hear. Res. 60, 322–340. 10.1044/2016_JSLHR-S-15-0223 PubMed DOI

Taroni F., Aitken C., Garbolino P., Biedermann A. (2006). Bayesian Networks and Probabilistic Inference in Forensic Science. (Chichester, UK: John Wiley & Sons, Ltd.).

Tsanas A. (2012). Accurate Telemonitoring of Parkinson's Disease Symptom Severity Using Nonlinear Speech Signal Processing and Statistical Machine Leaning. PhD. Thesis, University of Oxford.

Yunusova Y., Weismer G. G., Lindstrom M. J. (2011). Classifications of vocalic segments from articulatory kinematics: healthy controls and speakers with dysarthria. J. Speech Lang. Hear. Res. 54, 1302–1311. 10.1044/1092-4388(2011/09-0193) PubMed DOI

Yunusova Y., Weismer G. G., Westbury J. R., Lindstrom M. J. (2008). Articulatory movements during vowels in speakers with dysarthria and healthy controls. J. Speech Lang. Hear. Res. 51, 596–611. 10.1044/1092-4388(2008/043) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...