Automatic analysis of eyelid movement in de-novo Parkinson's disease
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article
Grant support
NU23J-04-00042
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU23J-04-00042
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU23J-04-00042
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
40480972
PubMed Central
PMC12144097
DOI
10.1038/s41531-025-01021-z
PII: 10.1038/s41531-025-01021-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
This study presents an automated, objective method for eyelid movement assessment in de-novo Parkinson's disease(PD) using a one-dimensional camera setup during monologue. These measurements were related to Dopamine Transporter Single Photon Emission Tomography and clinical scores. State-of-the-art computer-vision technologies and deep-learning neural networks were utilized to measure fourteen eyelid movement markers describing blinking and eyelid kinematics. Video-recordings were collected from a total of 120 de-novo patients with PD and 55 healthy controls. Abnormal blinking was present in 38% of PD, indicated by a reduced blink rate (p < 0.001), an increased inter-blink interval (p < 0.001), and an increased rigidity of the palpebral aperture (p < 0.001). The classification experiment reached an area under the curve of 0.81 on a blinded test set. The blink rate correlated with the loss of nigral dopaminergic neurons (r = 0.35, p < 0.001). These findings suggest eyelid movement markers as strong reflections of striatal dopaminergic activity levels, underscoring the method's potential as a reliable early PD biomarker.
See more in PubMed
Bologna, M., Paparella, G., Valls-Solé, J., Hallett, M. & Berardelli, A. Neural control of blinking. Clin. Neurophysiol.161, 59–68 (2024). PubMed
Kaneko, K. & Sakamoto, K. Spontaneous blinks of Parkinson’s disease patients evaluated by EMG and EOG. Electromyogr. Clin. Neurophysiol.41, 87–96 (2001). PubMed
Korošec, M., Zidar, I., Reits, D., Evinger, C. & VanderWerf, F. Eyelid movements during blinking in patients with Parkinson’s disease. Mov. Disord.21, 1248–1251 (2006). PubMed
Agostino, R. et al. Voluntary, spontaneous, and reflex blinking in Parkinson’s disease. Mov. Disord.23, 669–675 (2008). PubMed
Bologna, M. et al. Facial bradykinesia. J. Neurol. Neurosurg. Psychiatry84, 681–685 (2013). PubMed
Karson, C. N. Spontaneos Eye-Blink Rates and Dopaminergic Systems. Brain106, 643–653 (1983). PubMed
Bologna, M., Fasano, A., Modugno, N., Fabbrini, G. & Berardelli, A. Effects of subthalamic nucleus deep brain stimulation and l-dopa on blinking in Parkinson’s disease. Exp. Neurol.235, 265–272 (2012). PubMed
Fitzpatrick, E., Hohl, N., Silburn, P., O’Gorman, C. & Broadley, S. A. Case–control study of blink rate in Parkinson’s disease under different conditions. J. Neurol.259, 739–744 (2012). PubMed
Rajnoha, M. et al. Towards Identification of Hypomimia in Parkinson’s Disease Based on Face Recognition Methods. 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) 1–4, 10.1109/ICUMT.2018.8631249 (IEEE, Moscow, Russia, 2018).
Abrami, A. et al. Automated Computer Vision Assessment of Hypomimia in Parkinson Disease: Proof-of-Principle Pilot Study. J. Med. Internet Res.23, e21037 (2021). PubMed PMC
Novotny, M. et al. Automated video-based assessment of facial bradykinesia in de-novo Parkinson’s disease. npj Digit. Med.5, 1–8 (2022). PubMed PMC
Peshori, K. R., Schicatano, E. J., Gopalaswamy, R., Sahay, E. & Evinger, C. Aging of the trigeminal blink system. Exp. Brain Res.136, 351–363 (2001). PubMed
Karson, C. N., Lewitt, P. A., Calne, D. B. & Wyatt, R. J. Blink rates in parkinsonism. Ann. Neurol.12, 580–583 (1982). PubMed
Deuschl, G. & Goddemeier, C. Spontaneous and reflex activity of facial muscles in dystonia, Parkinson’s disease, and in normal subjects. J. Neurol. Neurosurg. Psychiatry64, 320–324 (1998). PubMed PMC
Kimber, T. E. & Thompson, P. D. Increased blink rate in advanced Parkinson’s disease: A form of ‘off’-period dystonia?. Mov. Disord.15, 982–985 (2000). PubMed
Maycas-Cepeda, T. et al. Hypomimia in Parkinson’s Disease: What Is It Telling Us?. Front. Neurol.11, 603582 (2021). PubMed PMC
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry79, 368–376 (2008). PubMed
Bologna, M. et al. Neuroimaging correlates of blinking abnormalities in patients with progressive supranuclear palsy. Mov. Disord.31, 138–143 (2016). PubMed
Pirker, W. et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: A longitudinal β-CIT SPECT study. Mov. Disord.17, 45–53 (2002). PubMed
Kägi, G., Bhatia, K. P. & Tolosa, E. The role of DAT-SPECT in movement disorders. J. Neurol. Neurosurg. Psychiatry81, 5–12 (2010). PubMed
Matesan, M. et al. I-123 DaTscan SPECT Brain Imaging in Parkinsonian Syndromes: Utility of the Putamen-to-Caudate Ratio. J. Neuroimaging28, 629–634 (2018). PubMed
Özekmekçi, S., Benbir, G., Özdogan, F. Y., Ertan, S. & Kiziltan, M. E. Hemihypomimia, a rare persistent sign in Parkinson’s disease. J. Neurol.254, 347–350 (2007). PubMed
Guerra-Hiraldo, J. D. et al. Hemihypomimia in Parkinson’s disease: an under-recognized clinical sign?. J. Neurol.270, 548–551 (2023). PubMed
Kartynnik, Y., Ablavatski, A., Grishchenko, I. & Grundmann, M. Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs. arXiv preprint, 10.48550/arXiv.1907.06724 (2019).
Bologna, M. et al. Blinking in patients with clinically probable multiple system atrophy. Mov. Disord.29, 415–420 (2014). PubMed
Fekete, R. & Jankovic, J. Upper facial chorea in Huntington disease. J. Clin. Mov. Disord.1, 7 (2014). PubMed PMC
Dušek, P. et al. Clinical characteristics of newly diagnosed Parkinson’s disease patients included in the longitudinal BIO-PD study. Cesk. Slov. Neurol. Neurochir.83, 633–639 (2020).
Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria. Mov. Disord.30, 1591–1601 (2015). PubMed
Berg, D. et al. Movement disorder society criteria for clinically established early Parkinson’s disease. Mov. Disord.33, 1643–1646 (2018). PubMed
Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord.23, 2129–2170 (2008). PubMed
Kopecek, M. et al. Montreal cognitive assessment (MoCA): Normative data for old and very old Czech adults. Appl. Neuropsychology: Adult24, 23–29 (2017). PubMed
Darcourt, J. et al. EANM procedure guidelines for brain neurotransmission SPECT using 123 I-labelled dopamine transporter ligands, version 2. Eur. J. Nucl. Med. Mol. Imaging37, 443–450 (2010). PubMed
Dušek, P. et al. Relations of non-motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci. Rep.9, 15463 (2019). PubMed PMC
Google. Face landmark detection guide for Python | Google AI Edge https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker/python. (2024)