Arthropod Food Webs in the Foreland of a Retreating Greenland Glacier: Integrating Molecular Gut Content Analysis With Structural Equation Modelling

. 2024 Dec ; 14 (12) : e70687. [epub] 20241217

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39697976

The Arctic has warmed nearly four times faster than the global average since 1979, resulting in rapid glacier retreat and exposing new glacier forelands. These forelands offer unique experimental settings to explore how global warming impacts ecosystems, particularly for highly climate-sensitive arthropods. Understanding these impacts can help anticipate future biodiversity and ecosystem changes under ongoing warming scenarios. In this study, we integrate data on arthropod diversity from DNA gut content analysis-offering insight into predator diets-with quantitative measures of arthropod activity-density at a Greenland glacier foreland using Structural Equation Modelling (SEM). Our SEM analysis reveals both bottom-up and top-down controlled food chains. Bottom-up control, linked to sit-and-wait predator behavior, was prominent for spider and harvestman populations, while top-down control, associated with active search behavior, was key for ground beetle populations. Bottom-up controlled dynamics predominated during the early stages of vegetation succession, while top-down mechanisms dominated in later successional stages further from the glacier, driven largely by increasing temperatures. In advanced successional stages, top-down cascades intensify intraguild predation (IGP) among arthropod predators. This is especially evident in the linyphiid spider Collinsia holmgreni, whose diet included other linyphiid and lycosid spiders, reflecting high IGP. The IGP ratio in C. holmgreni negatively correlated with the activity-density of ground-dwelling prey, likely contributing to the local decline and possible extinction of this cold-adapted species in warmer, late-succession habitats where lycosid spiders dominate. These findings suggest that sustained warming and associated shifts in food web dynamics could lead to the loss of cold-adapted species, while brief warm events may temporarily impact populations without lasting extinction effects.

Zobrazit více v PubMed

Abrams, P. A. 2010. “Implications of Flexible Foraging for Interspecific Interactions: Lessons From Simple Models.” Functional Ecology 24: 7–17.

Agustí, N. , Shayler S. P., Harwood J. D., Vaughan I. P., Sunderland K. D., and Symondson W. O. C.. 2003. “Collembola as Alternative Prey Sustaining Spiders in Arable Ecosystems: Prey Detection Within Predators Using Molecular Markers.” Molecular Ecology 12: 3467–3475. PubMed

Ahmed, M. , Else B., Eklundh L., Ardö J., and Seaquist J.. 2017. “Dynamic Response of NDVI to Soil Moisture Variations During Different Hydrological Regimes in the Sahel Region.” International Journal of Remote Sensing 38: 5408–5429.

Allen, D. C. , McCluney K. E., Elser S. R., and Sabo J. L.. 2014. “Water as a Trophic Currency in Dryland Food Webs.” Frontiers in Ecology and the Environment 12: 156–160.

Arbuckle, J. L. 2022. “IBM® SPSS® Amos™ 29 User's Guide.”

ASIAQ Greenland Survey . 2023. “Mapping & Geographic Information.” ftp service ftp.asiaq.gl.

Athey, K. J. , Dreyer J., Kowles K. A., Penn H. J., Sitvarin M. I., and Harwood J. D.. 2016. “Spring Forward: Molecular Detection of Early Season Predation in Agroecosystems.” Food Webs 9: 25–31.

Basedow, T. , Tóth F., and Kiss J.. 2000. “The Species Composition and Frequency of Spiders (Araneae) in Fields of Winter Wheat in Hungary (Northwest of Budapest) and in Germany (North of Frankfurt/M.). An Attempt of Comparison.” Mitteilungen der Deutschen Gesellschaft für Allgemeine Und Angewandte Entomologie 12: 263–266.

Bauer, T. 1982. “Prey‐Capture in a Ground‐Beetle Larva.” Animal Behaviour 30: 203–208.

Bayram, A. , and Luff M. L.. 1993. “Cold‐Hardiness of Wolf‐Spiders (lycosidae, araneae) With Particular Reference to Pardosa pullata (Clerck).” Journal of Thermal Biology 18: 263–268.

Bilde, T. , Axelsen J. A., and Toft S.. 2000. “The Value of Collembola From Agricultural Soils as Food for a Generalist Predator.” Journal of Applied Ecology 37: 672–683.

Birkhofer, K. , Fevrier V., Heinrich A., Rink K., and Smith H.. 2018. “The Contribution of CAP Greening Measures to Conservation Biological Control at Two Spatial Nscales.” Agriculture, Ecosystems and Environment 255: 84–94.

Böcher, J. , Kristensen N. P., Pape T., and Vilhelmsen L.. 2015. The Greenland Entomofauna: An Identification Manual of Insects, Spiders and Their Allies. Leiden, the Netherlands: Brill.

Boetzl, F. A. , Ries E., Schneider G., and Krauss J.. 2018. “It's a Matter of Design—How Pitfall Trap Design Affects Trap Samples and Possible Predictions.” PeerJ 6: e5078. PubMed PMC

Bowden, J. J. , Hansen O. L. P., Olsen K., Schmidt N. M., and Høye T. T.. 2018. “Drivers of Inter‐Annual Variation and Long‐Term Change in High‐Arctic Spider Species Abundances.” Polar Biology 41: 1635–1649.

Bowden, J. J. , Hansen R., Olsen K., and Høye T.. 2015. “Habitat‐Specific Effects of Climate Change in a Low‐Mobility Arctic Spider Species.” Polar Biology 38: 559–568.

Bowyer, R. T. , Kie J. G., Person D. K., and Monteith K. L.. 2013. “Metrics of Predation: Perils of Predator‐Prey Ratios.” Acta Theriologica 58: 329–340.

Branco Leote, P. N. , Rennstam Rubbmark O. R., and Traugott M.. 2024. “High Resolution Temporal Data Shows How Increasing Prey Availability Reduces Early Season Intraguild Predation and Pest Spread in Cereal Crops.” Biological Control 194: 105549.

Bråten, A. T. , Flø D., Hågvar S., Hanssen O., Mong C. E., and Aakra K.. 2012. “Primary Succession of Surface Active Beetles and Spiders in an Alpine Glacier Foreland, Central South Norway.” Arctic, Antarctic, and Alpine Research 44: 2–15.

Brown, G. R. , and Matthews I. M.. 2016. “A Review of Extensive Variation in the Design of Pitfall Traps and a Proposal for a Standard Pitfall Trap Design for Monitoring Ground‐Active Arthropod Biodiversity.” Ecology and Evolution 6: 3953–3964. PubMed PMC

Buchs, W. , Harenberg A., and Zimmermann J.. 1997. “The Invertebrate Ecology of Farmland as a Mirror of the Intensity of the Impact of Man? An Approach to Interpreting Results of Field Experiments Carried out in Different Crop Management Intensities of a Sugar Beet and an Oil Seed Rape Rotation Including Set‐Aside.” Biological Agriculture and Horticulture 15: 83–107.

Buse, A. , Hadley D., and Sparks T.. 2001. “Arthropod Distribution on an Alpine Elevational Gradient: The Relationship With Preferred Temperature and Cold Tolerance.” European Journal of Entomology 98: 301–309.

Cameron, E. R. , and Buddle C. M.. 2017. “Seasonal Change and Microhabitat Association of Arctic Spider Assemblages (Arachnida: Araneae) on Victoria Island (Nunavut, Canada).” Canadian Entomologist 149: 357–371.

Chapman, E. G. , Schmidt J. M., Welch K. D., and Harwood J. D.. 2013. “Molecular Evidence for Dietary Selectivity and Pest Suppression Potential in an Epigeal Spider Community in Winter Wheat.” Biological Control 65: 72–86.

Chelini, M.‐C. , Willemart R. H., and Hebets E. A.. 2009. “Costs and Benefits of Freezing Behavior in the Harvestman Eumesosoma roeweri (Arachnida, Opiliones).” Behavioural Processes 82: 153–159. PubMed

Ciccazzo, S. , A. Esposito, Borruso L., and Brusetti L.. 2016. “Microbial Communities and Primary Succession in High Altitude Mountain Environments.” Annals of Microbiology 66: 43–60.

Cohen, A. C. 1995. “Extra‐Oral Digestion in Predaceous Terrestrial Arthropoda.” Annual Review of Entomology 40: 85–103.

Coulson, S. F. , Convey P., Schuuring S., and Lang S.. 2023. “Interactions Between Winter Temperatures and Duration of Exposure May Structure Arctic Microarthropod Communities.” Journal of Thermal Biology 114: 103499. PubMed

Coulson, S. I. , Hodkinson I. D., and Webb N. R.. 2003a. “Microscale Distribution Patterns in High Arctic Soil Microarthropod Communities: The Influence of Plant Species Within the Vegetation Mosaic.” Ecography 26: 801–809.

Coulson, S. J. , Hodkinson I. D., and Webb N. R.. 2003b. “Aerial Dispersal of Invertebrates Over a High‐Arctic Glacier Foreland: Midtre Lovénbreen, Svalbard.” Polar Biology 26: 530–537.

Coulson, S. J. , Leinaas H. P., Ims R. A., and Søvik G.. 2000. “Experimental Manipulation of the Winter Surface Ice Layer: The Effects on a High Arctic Soil Microarthropod Community.” Ecography 23: 299–306.

Cuff, J. P. , Drake L. E., Tercel M. P. T. G., et al. 2021. “Money Spider Dietary Choice in Pre‐ and Post‐Harvest Cereal Crops Using Metabarcoding.” Ecological Entomology 46: 249–261.

Dawey, J. S. , Vaughan I. P., King R. A., et al. 2013. “Intraguild Predation in Winter Wheat: Prey Choice by a Common Epigeal Carabid Consuming Spiders.” Journal of Applied Ecology 50: 271–279.

de Groot, G. A. , Laros I., and Geisen S.. 2016. “Molecular Identification of Soil Eukaryotes and Focused Approaches Targeting Protist and Faunal Groups Using High‐Throughput Metabarcoding.” In Microbial Environmental Genomics (MEG), edited by Martin F. and Uroz S., 125–140. New York, NY: Springer. PubMed

Denys, C. , and Tscharntke T.. 2002. “Plant‐Insect Communities and Predator‐Prey Ratios in Field Margin Strips, Adjacent Crop Fields, and Fallows.” Oecologia 130: 315–324. PubMed

Dias, B. C. , and Willemart R. H.. 2013. “The Effectiveness of Post‐Contact Defenses in a Prey With no Pre‐Contact Detection.” Zoology 116: 168–174. PubMed

Diehl, E. , Mader V. L., Wolters V., and Birkhofer K.. 2013. “Management Intensity and Vegetation Complexity Affect Web‐Building Spiders and Their Prey.” Oecologia 173: 579–589. PubMed

Einarsdóttir, S. G. 2010. “Grasbítar á gróðri á hopunarsvæði Skaftafellsjökuls (English Summary: Insect Grazers in Areas Appearing From the Receding Skaftafellsjökull Glacier, SE‐Iceland).” Bachelor thesis, University of Iceland, Reykjavik.

Eitzinger, B. , Micic A., Körner M., Traugott M., and Scheu S.. 2013. “Unveiling Soil Food Web Links: New PCR Assays for Detection of Prey DNA in the Gut of Soil Arthropod Predators.” Soil Biology and Biochemistry 57: 943–945.

Eitzinger, B. , and Traugott M.. 2011. “Which Prey Sustains Cold‐Adapted Invertebrate Generalist Predators in Arable Land? Examining Prey Choices by Molecular Gut‐Content Analysis.” Applied Ecology 48: 591–599.

El‐Nabawy, E.‐S. , Tsuda K., Sakamaki Y., Oda A., and Ushijima Y.. 2016. “The Effect of Organic Fertilizers and Flowering Plants on Sheet‐Web and Wolf Spider Populations (Araneae: Lycosidae and Linyphiidae) and Its Importance for Pest Control.” Journal of Insect Science 16: 1–8. PubMed PMC

Ficetola, G. , Marta S., Guerrieri A., et al. 2021. “Dynamics of Ecological Communities Following Current Retreat of Glaciers.” Annual Review of Ecology, Evolution, and Systematics 52: 405–426.

Finch, O.‐D. 2005. “The Parasitoid Complex and Parasitoid‐Induced Mortality of Spiders (Araneae) in Central European Woodland.” Journal of Natural History 39: 2339–2354.

Finke, L. , and Denno R.. 2006. “Spatial Refuge From Intraguild Predation: Implication for Prey Suppresion and Trophic Cascades.” Oecologia 149: 265–275. PubMed

Folmer, O. , Black M., Hoeh W., Lutz R., and Vrijenhoek R.. 1994. “DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I From Diverse Metazoan Invertebrates.” Molecular Marine Biology and Biotechnology 3: 294–299. PubMed

Forman, S. , Marín L., Van Der Veen C., Tremper C., and Csatho B.. 2007. “Little Ice Age and Neoglacial Landforms at the Inland Ice Margin, Isunguata Sermia, Kangerlussuaq, West Greenland.” Boreas 36: 341–351.

Freiberg, J. A. , de Sales Dambros C., Rodrigues E. N. L., et al. 2020. “Increased Grazing Intensity in Pastures Reduces the Abundance and Richness of Ground Spiders in an Integrated Crop‐Livestock System.” Agronomy for Sustainable Development 40: 1.

Garcia‐Hernández, S. , and Machado G.. 2017. “Effectiveness of Maternal Egg Attendance in an Exclusively Cave‐Dwelling Harvestman (Arachnida: Opiliones).” Journal of Zoology 302: 12452.

Gereben, B.‐A. 1995. “Co‐Occurrence and Microhabitat Distribution of Six Nebria Species (Coleoptera: Carabidae) in an Alpine Glacier Retreat Zone in the Alps, Austria.” Arctic and Alpine Research 27: 371–379.

Gómez, J. , Lohmiller J., and Joern A.. 2016. “Importance of Vegetation Structure to the Assembly of an Aerial Web‐Building Spider Community in North American Open Grassland.” Journal of Arachnology 44: 28–35.

Gratton, C. , and Denno R. F.. 2003. “Seasonal Shift From Bottom‐Up to Top‐Down Impact in Phytophagous Insect Populations.” Oecologia 134: 487–495. PubMed

Gratton, C. , Donaldson J., and Vander Zanden M. J.. 2008. “Ecosystem Linkages Between Lakes and the Surrounding Terrestrial Landscape in Northeast Iceland.” Ecosystems 11: 764–774.

Gravesen, E. 2008. “Linyphiid Spider Populations in Sustainable Wheat‐Clover Bi‐Cropping Compared to Conventional Wheat‐Growing Practice.” Journal of Applied Entomology 132: 545–556.

Greenland Ecosystem Monitoring . 2020a. “BioBasis Nuuk – Arthropods – Arthropod Emergence.” Greenland Ecosystem Monitoring. 10.17897/KBN7-WP73. DOI

Greenland Ecosystem Monitoring . 2020b. “BioBasis Nuuk – Vegetation – Plot NDVI.” Greenland Ecosystem Monitoring. 10.17897/R522-CA15. DOI

Greenland Ecosystem Monitoring . 2020c. “ClimateBasis Nuuk – Temperature – Air temperature @ 200 cm – 30min average (°C).” Greenland Ecosystem Monitoring. 10.17897/PGN3-7597. DOI

Greenland Ecosystem Monitoring . 2024. “GeoBasis Nuuk – Snow Properties – InteractHeath SnowProperties.” Greenland Ecosystem Monitoring. 10.17897/W8Y3-MK55. DOI

Hågvar, S. 2010. “A Review of Fennoscandian Arthropods Living on and in Snow.” European Journal of Entomology 107: 281–298.

Hågvar, S. , and Gobbi M.. 2022. “The Role of Arthropods in Early Colonization Near Melting Glaciers: Contradictions Between Ecological Assumptions and Recent Study Results.” Acta Oecologica 114: 103820.

Hågvar, S. , and Klanderud K.. 2009. “Effect of Simulated Environmental Change on Alpine Soil Arthropods.” Global Change Biology 15: 2972–2980.

Hågvar, S. , and Ohlson M.. 2013. “Ancient Carbon From a Melting Glacier Gives High 14 C Age in Living Pioneer Invertebrates.” Scientific Reports 3: 1–4. PubMed PMC

Hågvar, S. , Ohlson M., and Flø D.. 2017. Animal Successional Pathways for About 200 Years Near a Melting Glacier: A Norwegian Case Study. Rijeka, Croatia: InTech.

Hågvar, S. , and Pedersen A.. 2015. “Food Choice of Invertebrates During Early Glacier Foreland Succession Arctic.” Antarctic and Alpine Research 47: 561–572.

Halaj, J. , and Cady A. B.. 2000. “Diet Composition and Significance of Earthworms as Food of Harvestmen (Arachnida: Opiliones).” American Midland Naturalist 143: 487–491.

Hambäck, P. , Weingartner E., Dalén L., and Wirta H.. 2016. “Spatial Subsidies in Spider Diets Vary With Shoreline Structure: Complementary Evidence From Molecular Diet Analysis and Stable Isotopes.” Ecology and Evolution 6: 8431–8439. PubMed PMC

Hambäck, P. A. , Cirtwill A. R., García D., et al. 2021. “More Intraguild Prey Than Pest Species in Arachnid Diets May Compromise Biological Control in Apple Orchards.” Basic and Applied Ecology 57: 1–13.

Harper, G. L. , King R. A., Dodd C. S., et al. 2005. “Rapid Screening of Invertebrate Predators for Multiple Prey DNA Targets.” Molecular Ecology 14: 819–827. PubMed

Harwood, J. , Sunderland K., and Symondson W.. 2003. “Web Location by Linyphiid Spiders: Prey Specific Aggregation and Foraging Strategies.” Journal of Animal Ecology 72: 745–756.

Hein, N. , Feilhauer H., Finch O.‐D., Schmidtlein S., and Löffler J.. 2014. “Snow Cover Determines the Ecology and Biogeography of Spiders (Araneae) in Alpine Tundra Ecosystems.” Erdkunde 68: 157–172.

Hodge, M. A. , and Marshall S. D.. 1996. “An Experimental Analysis of Intraguild Predation Among Three Genera of Web‐Building Spiders: Hypochilus, Coras and Achaearanea (Araneae: Hypochilidae, Amaurobiidae and Theridiidae).” Journal of Arachnology 24: 101–110.

Hoekman, D. 2010. “Turning Up the Heat: Temperature Influences the Relative Importance of Top‐Down and Bottom‐Up Effects.” Ecology 91: 2819–2825. PubMed

Høye, T. T. 2020. “Arthropods and Climate Change – Arctic Challenges and Opportunities.” Current Opinion in Insect Science 41: 40–45. PubMed

Høye, T. T. , and Forchhammer M. C.. 2008a. “The Influence of Weather Conditions on the Activity of High‐Arctic Arthropods Inferred From Long‐Term Observations.” BMC Ecology 8: 8. PubMed PMC

Høye, T. T. , and Forchhammer M. C.. 2008b. “Phenology of High‐Arctic Arthropods: Effects of Climate on Spatial, Seasonal, and Inter‐Annual Variation.” In Advances in Ecological Research, 299–324. Cambridge, MA: Academic Press.

Huey, R. B. , and Pianka E. R.. 1981. “Ecological Consequences of Foraging Mode.” Ecology 62: 991–999.

Hvam, A. , and Toft S.. 2005. “Effects of Prey Quality on the Life History of a Harvestman.” Journal of Arachnology 33: 582–590.

Ivanova, N. , and Grainger C.. 2009. “CCDB Protocols.” Canadian Centre for DNA Barcoding. COI Amplification. http://boldsystems.org/index.php/Resources.

Jensen, K. , Kristensen T. N., Overgaard J., Toft S., Sørensen J. G., and Holmstrup M.. 2017. “Cold Acclimation Reduces Predation Rate and Reproduction but Increases Cold‐and Starvation Tolerance in the Predatory Mite Gaeolaelaps aculeifer Canestrini.” Biological Control 114: 150–157.

Jensen, K. , Michaelsen J. V., Larsen M. T., Kristensen T. N., Holmstrup M., and Overgaard J.. 2018. “Increased Lipid Accumulation but Not Reduced Metabolism Explains Improved Starvation Tolerance in Cold‐Acclimated Arthropod Predators.” Science of Nature 105: 65. PubMed

Jensen, K. , Toft S., Sigsgaard L., Sørensen J. G., and Holmstrup M.. 2019. “Prey‐Specific Impact of Cold Pre‐Exposure on Kill Rate and Reproduction.” Journal of Animal Ecology 88: 258–268. PubMed

Kalendar, R. , Khassenov B., Ramankulov Y., Samuilova O., and Ivanov K. I.. 2017. “FastPCR: An In Silico Tool for Fast Primer and Probe Design and Advanced Sequence Analysis.” Genomics 109: 312–319. PubMed

Khedim, N. , Cécillon L., Poulenard J., et al. 2021. “Topsoil Organic Matter Build‐Up in Glacier Forelands Around the World.” Global Change Biology 27: 1662–1677. PubMed PMC

Koltz, A. M. , Classen A. T., and Wright J. P.. 2018. “Warming Reverses Top‐Down Effects of Predators on Belowground Ecosystem Function in Arctic Tundra.” Proceedings of the National Academy of Sciences of the United States of America 115: E7541–E7549. PubMed PMC

König, T. , Kaufmann R., and Scheu S.. 2011. “The Formation of Terrestrial Food Webs in Glacier Foreland: Evidence for the Pivotal Role of Decomposer Prey and Intraguild Predation.” Pedobiologia 54: 147–152.

Kruse, P. D. , Toft S., and Sunderland K. D.. 2008. “Temperature and Prey Capture: Opposite Relationships in Two Predator Taxa.” Ecological Entomology 33: 305–312.

Kuusk, A. , and Agustí N.. 2008. “Group‐Specific Primers for DNA‐Based Detection of Springtails (Hexapoda: Collembola) Within Predator Gut Contents.” Molecular Ecology Resources 8: 678–681. PubMed

Lang, A. , and Gsödl S.. 2001. “Prey Vulnerability and Active Predator Choice as Determinants of Prey Selection: A Carabid Beetle and Its Aphid Prey.” Journal of Applied Entomology 125: 53–61.

Lawrence, K. L. , and Wise D. H.. 2000. “Spider Predation on Forest‐Floor Collembola and Evidence for Indirect Effects on Decomposition.” Pedobiologia 44: 33–39.

Lawrence, K. L. , and Wise D. H.. 2003. “Unexpected Indirect Effect of Spiders on the Rate of Litter Disappearance in a Deciduous Forest.” Pedobiologia 48: 149–157.

Legault, G. , and Weiss A. E.. 2013. “The Impact of Snow Accumulation on a Heath Spider Community in a Sub‐Arctic Landscape.” Polar Biology 36: 885–894.

Leirikh, A. N. , Meshcheryakova E. N., Kuzminykh G. V., and Kurenshchikov D. K.. 2009. “Cold Hardiness and Ontogenesis Rate as Elements of Adaptive Strategies of Phalangiid Harvestman (Opiliones, Phalangiidae) in Northeastern Asia.” Zoologichesky Zhurnal 88: 419–428.

Liao, S. , Ni X., Yang W., et al. 2016. “Water, Rather Than Temperature, Dominantly Impacts How Soil Fauna Affect Dissolved Carbon and Nitrogen Release From Fresh Litter During Early Litter Decomposition.” Forests 7: 249.

Liu, S. , Chen J., Gan W., Schaefer D., Gan J., and Yang X.. 2015. “Spider Foraging Strategy Affects Trophic Cascades Under Natural and Drought Conditions.” Scientific Reports 5: 12396. PubMed PMC

Liu, S. , Roberts D. A., Chadwick O. A., and Still C. J.. 2012. “Spectral Responses to Plant Available Soil Moisture in a Californian Grassland.” International Journal of Applied Earth Observation and Geoinformation 19: 31–44.

Loboda, S. , Savage J., Buddle C. M., Schmidt N. M., and Høye T. T.. 2018. “Declining Diversity and Abundance of High Arctic Fly Assemblages Over Two Decades of Rapid Climate Warming.” Ecography 41: 265–277.

Lucas, E. , and Maisonhaute J.‐É.. 2019. Encyclopedia of Animal Behaviour 2nd Edition – Intraguild Predation. Amsterdam, The Netherlands: Elsevier.

Lucas, E. , and Rosenheim J. A.. 2011. “Influence of Extra‐Guild Prey Density on Intraguild Predation by Heteropteran Predators: A Review of the Evidence and a Case Study.” Biological Control 591: 61–67.

Macías‐Hernández, N. , Athey K., Tonzo V., Wangensteen O. S., Arnedo M., and Harwood J. D.. 2018. “Molecular Gut Content Analysis of Different Spider Body Parts.” PLoS One 13: e0196589. PubMed PMC

Madsen, M. , Terkildsen S., and Toft S.. 2004. “Microcosm Studies on Control of Aphids by Generalist Arthropod Predators: Effects of Alternative Prey.” BioControl 49: 483–504.

Mankasingh, U. , and Gisladóttir G.. 2019. “Early Indicators of Soil Formation in the Icelandic Sub‐Arctic Highlands.” Geoderma 337: 152–163.

Marcussen, B. , Axelsen J. A., and Toft S.. 2003. “The Value of Two Collembola Species as Food for a Linyphiid Spider.” Entomologia Experimentalis et Applicata 92: 29–36.

Marques, R. , Sarmento R., Oliveira A., et al. 2018. “Reciprocal Intraguild Predation and Predator Coexistence.” Ecology and Evolution 8: 6952–6964. PubMed PMC

Marusik, Y. 2015. “Araneae.” In The Greenland Entomofauna: An Identification Manual of Insects, Spiders and Their Allies. Leiden, The Netherlands: Brill.

Meijer, J. 2008. “Immigration of Spiders (Araneida) Into a New Polder.” Ecological Entomology 2: 81–90.

Michalko, R. , Uhrinec M., Warbota K., and Setenska L.. 2021. “The Benefits of Intraguild Predation for a Top Predator Spider.” Ecological Entomology 46: 283–291.

Miliczky, E. , and Calkins C.. 2001. “Prey of the Spider, Dictyna coloradensis , on Apple, Pear, and Weeds in Central Washington (Araneae, Dictynidae).” Pan‐Pacific Entomologist 77: 19–27.

Montserrat, M. , Magalhães S., Sabelis M. W., de Roos A. M., and Janssen A.. 2012. “Invasion Success in Communities With Reciprocal Intraguild Predation Depends on the Stage Structure of the Resident Population.” Oikos 121: 67–76.

Nentwig, W. , Ansorg J., Bolzern A., et al. 2022. “Just Sit and Wait? Far From It! Catching Techniques of Spiders.” In All You Need to Know About Spiders, edited by Nentwig W., Ansorg J., Bolzern A., et al., 85–100. Cham, Switzerland: Springer International Publishing.

Noel, N. M. , and Finch O.‐D.. 2010. “Effects of the Abandonment of Alpine Summer Farms in Spider Assemblages (Araneae).” Journal of Insect Conservation 14: 427–438.

Nyffeler, M. , and Sunderland K. D.. 2003. “Composition, Abundance and Pest Control Potential of Spider Communities in Agroecosystems: A Comparisons of European and US Studies.” Agriculture, Ecosystems and Environment 95: 579–612.

Overland, J. E. , Hanna E., Hanssen‐Bauer I., et al. 2019. “Surface Air Temperature.” In Arctic Report Card 2019, edited by Richter‐Menge J., Druckenmiller M. L., and Jeffries M., 5–11. Washington, DC: NOAA.

Panagiotakopulu, E. , and Buchan A. L.. 2015. “Present and Norse Greenlandic Hayfields–Insect Assemblages and Human Impact in Southern Greenland.” Holocene 25: 921–931.

Patrick, L. B. , Kershner M. W., and Fraser L. H.. 2012. “Epigeal Spider Responses to Fertilization and Plant Litter: Testing Biodiversity Theory at the Ground Level.” Journal of Arachnology 40: 309–324.

Pérez, F. L. 2001. “Geoecological Alteration of Surface Soils by the Hawaiian Silversword ( Argyroxiphium sandwicense DC.) in Haleakala's Crater, Maui.” Plant Ecology 157: 215–233.

Pétillon, J. , Courtial C., and Vernon P.. 2014. “Population and Assemblage‐Based Study of Arctic Spiders (Araneae): First Results From Kobbefjord.” In Nuuk Ecological Research Operations, edited by Jensen L. M. and Christensen T. R., 75–77. Aarhus, Denmark: Danish Centre for Environment and Energy, Aarhus University.

Pettorelli, N. , Ryan S., Mueller T., et al. 2011. “The Normalized Difference Vegetation Index (NDVI): Unforeseen Successes in Animal Ecology.” Climate Research 46: 15–27.

Piovia‐Scott, J. , Yang L. H., and Wright A. N.. 2017. “Temporal Variation in Trophic Cascades.” Annual Review of Ecology, Evolution, and Systematics 48: 281–300.

Polis, G. A. , Myers C. A., and Holt R. D.. 1989. “The Ecology and Evolution of Intraguild Predation: Potential Competitors That Eat Each Other.” Annual Review of Ecology, Evolution, and Systematics 20: 297–330.

Punzo, F. 2006. “Female Spider Wasps, Anoplius splendens Driesbach (Hymenoptera: Pompilidae), Learn to Associate the Odor of Host Feces With the Presence of the Host.” Journal of Entomological Science 41: 202–210.

Punzo, F. , and Ludwig L.. 2005. “Behavioral Responses of Pepsis thisbe (Hymenoptera: Pompilidae) to Chemosensory Cues Associated With Host Spiders.” Journal of Insect Behavior 18: 757–766.

Rall, B. , Vucic‐Pestic O., Ehnes R., Emmerson M., and Brose U.. 2010. “Temperature, Predator‐Prey Interaction Strenght and Population Stability.” Global Change Biology 16: 2145–2157.

Rantanen, M. , Karpechko A. Y., Lipponen A., et al. 2022. “The Arctic Has Warmed Nearly Four Times Faster Than the Globe Since 1979.” Communications Earth & Environment 3: 168.

Raso, L. , Sint D., Mayer R., et al. 2014. “Intraguild Predation in Pioneer Predator Communities of Alpine Glacier Forelands.” Molecular Ecology 23: 3744–3754. PubMed PMC

Raundrup, K. , Olsen M., Jacobsen I. B. D., et al. 2019. BioBasis Manual. Conceptual Design and Sampling Procedures of the Biological Monitoring Programme Within NuukBasic. Nuuk Ecological Research Operations, 1–69. Nuuk: Greenland Institute of Natural Resources.

Roslin, T. , Hardwick B., Novotny V., et al. 2017. “Higher Predation Risk for Insect Prey at Low Latitudes and Elevations.” Science 356: 742–744. PubMed

Sanchez‐Ruiz, J. , Phillips J., Ives A., and Gratton C.. 2018. “Responses of Orb‐Weaving Spider Aggregations to Spatiotemporal Variation in Lake‐To‐Land Subsidies at Lake Mývatn, Iceland.” Polar Biology 41: 1547–1554.

SAS Institute Inc . 2018. SAS/STAT® 15.1 User's Guide. Cary, NC: SAS Institute Inc.

Schmitz, O. J. , Raymond P. A., Estes J. A., et al. 2014. “Animating the Carbon Cycle.” Ecosystems 17: 344–359.

Schütte, U. , Abdo Z., Bent S., et al. 2009. “Bacterial Succession in a Glacier Foreland of the High Arctic.” ISME Journal 3: 1258–1268. PubMed PMC

Sergeeva, T. K. 1999. “Opiliones Guild: Structure and Trophic Relations.” Zoologichesky Zhurnal 78: 1172–1178.

Shao, Y. , Bao W., Chen D., et al. 2015. “Using Structural Equation Modeling to Test Established Theory and Develop Novel Hypotheses for Structuring Forces in Soil Food Webs.” Pedobiologia 58: 137–145.

Shaver, T. M. , Khosla R., and Westfall D. G.. 2011. “Evaluation of Two Crop Canopy Sensors for Nitrogen Variability Determination in Irrigated Maize.” Precision Agriculture 12, no. 6: 892–904. 10.1007/s11119-011-9229-2. DOI

Shokralla, G. A. , Singer C., and Hajibabaei M.. 2010. “Direct PCR Amplification and Sequencing of specimens' DNA From Preservative Ethanol.” BioTechniques 48: 233–234. PubMed

Sinergise Ltd . 2023. Sentinel Playground; Sinergise Ltd. EO Browser; Sinergise Ltd. Sentinel Hub; Modified Copernicus Sentinel data 2023/Sentinel Hub. https://apps.sentinel‐hub.com/sentinel‐playground; https://apps.sentinel‐hub.com/eo‐browser/; https://www.sentinel‐hub.com.

Sint, D. , Kaufmann R., Mayer R., and Traugott M.. 2019. “Resolving the Predator First Paradox: Arthropod Predator Food Webs in Pioneer Sites of Glacier Forelands.” Molecular Ecology 28: 336–347. PubMed PMC

Sohlström, E. , Brose U. R. V. K., Rall B., Rosenbaum B., Schädler M., and Barnes A.. 2022. “Future Climate and Land‐Use Intensification Modify Arthropod Community Structure.” Agriculture, Ecosystems and Environment 327: 107830.

Sørensen, J. G. , and Holmstrup M.. 2011. “Cryoprotective Dehydration Is Widespread in Arctic Springtails.” Journal of Insect Physiology 57: 1147–1153. PubMed

Spiller, D. A. , Schoener T. W., and Piovia‐Scott J.. 2018. “Recovery of Food Webs Following Natural Physical Disturbances.” Annals of the New York Academy of Sciences 1429: 100–117. PubMed

Staudacher, K. , Jonsson M., and Traugott M.. 2016. “Diagnostic PCR Assays to Unravel Food Web Interactions in Cereal Crops With Focus on Biological Control of Aphids.” Journal of Pest Science 89: 281–293. PubMed PMC

Turner, J. , Barrand N. E., Bracegirdle T. J., et al. 2014. “Antarctic Climate Change and the Environment: An Update.” Polar Record 50: 237–259.

Uma, D. B. , and Weiss M. R.. 2010. “Chemical Mediation of Prey Recognition by Spider‐Hunting Wasps.” Ethology 116: 85–95.

Van Baarlen, P. , Sunderland K. D., and Topping C. J.. 1994. “Eggsac Parasitism of Money Spiders (Araneae, Linyphiidae) in Cereals, With a Simple Method for Estimating Percentage Parasitism of Erigone spp. Eggsacs by Hymenoptera.” Journal of Applied Entomology 118: 217–223.

Vaughan, I. P. , Gotelli N. J., Memmott J., Pearson C. E., Woodward G., and Symondson W. O. C.. 2018. “Econullnetr: An R Package Using Null Models to Analyse the Structure of Ecological Networks and Identify Resource Selection.” Methods in Ecology and Evolution 9: 728–733.

Védère, C. , Lebrun M., Honvault N., et al. 2022. “How Does Soil Water Status Influence the Fate of Soil Organic Matter? A Review of Processes Across Scales.” Earth‐Science Reviews 234: 104214.

Viel, N. , Mielec C., Pétillon J., and Høye T. T.. 2022. “Variation in Abundance and Life‐History Traits of Two Congeneric Arctic Wolf Spider Species, Pardosa hyperborea and Pardosa furcifera , Along Local Environmental Gradients.” Polar Biology 45: 937–950.

Vilmundardóttir, O. K. , Sigurmundsson F. S., M. Pedersen G. B., et al. 2018. “Of Mosses and Men: Plant Succession, Soil Development and Soil Carbon Accretion in the Sub‐Arctic Volcanic Landscape of Hekla, Iceland.” Progress in Physical Geography: Earth and Environment 42: 765–791.

Voigt, W. , Perner J., Davis A. J., et al. 2003. “Trophic Levels Are Differentially Sensitive to Climate.” Ecology 84: 2444–2453.

Walker, R. , Wilder S. M., and González A. L.. 2020. “Temperature Dependency of Predation: Increased Killing Rates and Prey Mass Consumption by Predators With Warming.” Ecology and Evolution 10: 9696–9706. PubMed PMC

Walzer, A. , Paulus H. F., and Schausberger P.. 2006. “Oviposition Behaviour of Interacting Predatory Mites: Response to the Presence of Con‐ and Heterospecific Eggs.” Journal of Insect Behaviour 19: 305–320.

Walzer, A. , and Schausberger P.. 2011. “Threat‐Sensitive Anti‐Intraguild Predation Behaviour: Maternal Strategies to Reduce Offspring Predation Risk in Mites.” Animal Behaviour 81: 177–184. PubMed PMC

Walzer, A. , and Schausberger P.. 2012. “Integration of Multiple Intraguild Predator Cues for Oviposition Decisions by a Predatory Mite.” Animal Behaviour 84: 1411–1417. PubMed PMC

Wehner, A. , Hein N., Beckers N., Dobbert S., Pape R., and Löfler J.. 2023. “Early Snow Melt and Diverging Thermal Constraints Control Body Size in Arctic–Alpine Spiders.” Biological Journal of the Linnean Society 138: 1–13.

Whitney, T. D. , Sitvarin M. I., Roualdes E. A., Bonner S. J., and Harwood J. D.. 2018. “Selectivity Underlies the Dissociation Between Seasonal Prey Availability and Prey Consumption in a Generalist Predator.” Molecular Ecology 27: 1739–1748. PubMed

Wise, D. H. 1993. Spiders in Ecological Webs. New York, NY: Cambridge University Press.

Wise, D. H. 2006. “Cannibalism, Food Limitation, Intraspecific Competition, and the Regulation of Spider Populations.” Annual Review of Entomology 51: 441–465. PubMed

Wojcik, R. , Donhauser J., Frey B., and Benning L. G.. 2020. “Time Since Deglaciation and Geomorphological Disturbances Determine the Patterns of Geochemical, Mineralogical and Microbial Successions in an Icelandic Foreland.” Geoderma 379: 114578.

Zobrazit více v PubMed

Dryad
10.5061/dryad.qfttdz0qt

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace