Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26628723
PubMed Central
PMC4669381
DOI
10.1128/mbio.01498-15
PII: mBio.01498-15
Knihovny.cz E-zdroje
- MeSH
- Amoebozoa parazitologie MeSH
- delece genu * MeSH
- editace RNA * MeSH
- Kinetoplastida genetika růst a vývoj MeSH
- mitochondriální DNA chemie genetika MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
UNLABELLED: Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. IMPORTANCE: Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.
Department of Biochemistry and Molecular Biology Dalhousie University Halifax Canada
Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University Moscow Russia
Faculty of Biology Lomonosov Moscow State University Moscow Russia
Zobrazit více v PubMed
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. 2015. Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol 315:73–152. doi:10.1016/bs.ircmb.2014.11.001. PubMed DOI
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29:43–52. doi:10.1016/j.pt.2012.11.001. PubMed DOI
De Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E. 2015. Eukaryotic plankton diversity in the sunlit global ocean. Science 348:1261605. doi:10.1126/science.1261605. PubMed DOI
Benne R, van den Burg J, Brakenhoff JPJ, Sloof P, van Boom JH, Tromp MC. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826. doi:10.1016/0092-8674(86)90063-2. PubMed DOI
Maas S. 2012. Posttranscriptional recoding by RNA editing. Adv Protein Chem Struct Biol 86:193–224. doi:10.1016/B978-0-12-386497-0.00006-2. PubMed DOI
Gott JM, Emeson RB. 2000. Functions mechanisms of RNA editing. Annu Rev Genet 34:499–531. doi:10.1146/annurev.genet.34.1.499. PubMed DOI
Gray M. 2003. Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55:227–233. doi:10.1080/1521654031000119425. PubMed DOI
Li JB, Church GM. 2013. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 16:1518–1522. doi:10.1038/nn.3539. PubMed DOI PMC
Avesson L, Barry G. 2014. The emerging role of RNA DNA editing in cancer. Biochim Biophys Acta 1845:308–316. doi:10.1016/j.bbcan.2014.03.001. PubMed DOI
Dang Y, Green BR. 2009. Substitutional editing of Heterocapsa triquetra chloroplast transcripts and a folding model for its divergent chloroplast 16S rRNA. Gene 442:73–80. doi:10.1016/j.gene.2009.04.006. PubMed DOI
Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A. 2013. RNA editing in plants and its evolution. Annu Rev Genet 47:335–352. doi:10.1146/annurev-genet-111212-133519. PubMed DOI
Hashimi H, Zimmer SL, Ammerman ML, Read LK, Lukeš J. 2013. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol 29:91–99. doi:10.1016/j.pt.2012.11.005. PubMed DOI PMC
Aphasizhev R, Aphasizheva I. 2014. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie 100:125–131. doi:10.1016/j.biochi.2014.01.003. PubMed DOI PMC
Marande W, Burger G. 2007. Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415. doi:10.1126/science.1148033. PubMed DOI
Kiethega GN, Yan Y, Turcotte M, Burger G. 2013. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol 10:301–313. doi:10.4161/rna.23340. PubMed DOI PMC
Valach M, Moreira S, Kiethega GN, Burger G. 2014. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res 42:2660–2672. doi:10.1093/nar/gkt1152. PubMed DOI PMC
Koslowsky D, Sun Y, Hindenach J, Theisen T, Lucas J. 2014. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res 42:1873–1886. doi:10.1093/nar/gkt973. PubMed DOI PMC
Zíková A, Panigrahi AK, Dalley RA, Acestor N, Anupama A, Ogata Y, Myler PJ, Stuart K. 2008. Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteom 7:1286–1296. doi:10.1074/mcp.M700490-MCP200. PubMed DOI PMC
Aphasizheva I, Maslov DA, Aphasizhev R. 2013. Kinetoplast DNA-encoded ribosomal protein S12: a possible functional link between mitochondrial RNA editing and translation in Trypanosoma brucei. RNA Biol 10:1679–1688. doi:10.4161/rna.26733. PubMed DOI PMC
Sloof P, van den Burg J, Voogd A, Benne R, Agostinelli M, Borst P, Gutell R, Noller H. 1985. Further characterization of the extremely small mitochondrial ribosomal RNAs from trypanosomes: a detailed comparison of the 9S 12S RNAs from Crithidia fasciculata and Trypanosoma brucei with rRNAs from other organisms. Nucleic Acids Res 3:4171–4190. PubMed PMC
Adler BK, Harris ME, Bertrand KI, Hajduk SL. 1991. Modification of Trypanosoma brucei mitochondrial rRNA by posttranscriptional 3′ polyuridine tail formation. Mol Cell Biol 11:5878–5884. doi:10.1128/MCB.11.12.5878. PubMed DOI PMC
Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK. 2009. Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci U S A 106:9637–9642. doi:10.1073/pnas.0901631106. PubMed DOI PMC
Dyková I, Figueras A, Peric Z. 2000. Neoparamoeba Page, 1987: light electron microscopic observations on six strains of different origin. Dis Aquat Org 43:217–223. doi:10.3354/dao043217. PubMed DOI
Young ND, Dyková I, Crosbie PBB, Wolf M, Morrison RN, Bridle AR, Nowak BF. 2014. Support for the coevolution of Neoparamoeba and their endosymbionts, Perkinsela amoebae-like organisms. Eur J Protistol 50:509–523. doi:10.1016/j.ejop.2014.07.004. PubMed DOI
Moreira D, López-García P, Vickerman K. 2004. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol 54:1861–1875. doi:10.1099/ijs.0.63081-0. PubMed DOI
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195:115–122. doi:10.1016/j.molbiopara.2014.05.007. PubMed DOI
Dyková I, Fiala I, Pecková H. 2008. Neoparamoeba spp. and their eukaryotic endosymbionts similar to Perkinsela amoebae (Hollande) 1980: coevolution demonstrated by SSU rRNA gene phylogenies. Eur J Protistol 44:269–277. doi:10.1016/j.ejop.2008.01.004. PubMed DOI
Kudryavtsev A, Pawlowski J, Hausmann K. 2011. Description of Paramoeba atlantica n. sp. Amoebozoa, Dactylopodida: a marine amoeba from the eastern Atlantic, with emendation of the dactylopodid families. Acta Protozool 50:239–253.
Feehan C, Johnson-Mackinnon J, Scheibling R, Lauzon-Guay J, Simpson A. 2013. Validating the identity of Paramoeba invadens, the causative agent of recurrent mass mortality of sea urchins in Nova Scotia, Canada. Dis Aquat Org 103:209–227. doi:10.3354/dao02577. PubMed DOI
Young ND, Dyková I, Nowak BF, Morrison RN. 2008. Development of a diagnostic PCR to detect Neoparamoeba perurans, agent of amoebic gill disease. J Fish Dis 30:285–295. doi:10.1111/j.1365-2761.2008.00903.x. PubMed DOI
Mitchell SO, Rodger HD. 2011. A review of infectious gill disease in marine salmonid fish. J Fish Dis 34:411–432. doi:10.1111/j.1365-2761.2011.01251.x. PubMed DOI
Blum B, Bakalara N, Simpson L. 1990. A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60:189–198. doi:10.1016/0092-8674(90)90735-W. PubMed DOI
Maslov DA, Simpson L. 1992. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell 70:459–467. doi:10.1016/0092-8674(92)90170-H. PubMed DOI
Landweber LF, Fiks AG, Gilbert W. 1993. The boundaries of partially edited transcripts are not conserved in kinetoplastids: implications for the guide RNA model of editing. Proc Natl Acad Sci U S A 90:9242–9246. doi:10.1073/pnas.90.20.9242. PubMed DOI PMC
Madina BR, Kumarumar V, Metz R, Mooers BHM, Bundschuh R, Cruz-Reyes J. 2014. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition. RNA 20:1142–1152. doi:10.1261/rna.044495.114. PubMed DOI PMC
Sturm NR, Maslov DA, Blum B, Simpson L. 1992. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell 70:469–476. doi:10.1016/0092-8674(92)90171-8. PubMed DOI
Arts GJ, van der Spek H, Speijer D, van den Burg J, van Steeg H, Sloof P, Benne R. 1993. Implications of novel guide RNA features for the mechanism of RNA editing in Crithidia fasciculata. EMBO J 12:1523–1532. PubMed PMC
Maslov DA, Thiemann O, Simpson L. 1994. Editing and misediting of transcripts of the kinetoplast maxicircle G5 ND3 cryptogene in an old laboratory strain of Leishmania tarentolae. Mol Biochem Parasitol 68:155–159. doi:10.1016/0166-6851(94)00160-X. PubMed DOI
Tanifuji G, Kim E, Onodera NT, Gibeault R, Dlutek M, Cawthorn RJ, Fiala I, Lukeš J, Greenwood SJ, Archibald JM. 2011. Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryot Cell 10:1143–1146. doi:10.1128/EC.05027-11. PubMed DOI PMC
Lukeš J, Guilbride D, Votýpka J, Zíková A, Benne R, Englund PT. 2002. The kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 1:495–502. doi:10.1128/EC.1.4.495-502.2002. PubMed DOI PMC
Lukeš J, Arts GJ, van den Burg J, de Haan A, Opperdoes F, Sloof P, Benne R. 1994. Novel pattern of editing regions in mitochondrial transcripts of the cryptobid Trypanoplasma borreli. EMBO J 13:5086–5098. PubMed PMC
Maslov DA, Simpson L. 2007. Strategies of kinetoplastid cryptogene discovery and analysis. Methods Enzymol 424:127–139. doi:10.1016/S0076-6879(07)24006-6. PubMed DOI
Flegontov PN, Guo Q, Ren L, Strelkova MV, Kolesnikov AA. 2006. Conserved repeats in the kinetoplast maxicircle divergent region of Leishmania sp. and leptomonas seymouri. Mol Genet Genomics 276:322–333. doi:10.1007/s00438-006-0145-5. PubMed DOI
Verner Z, Čermáková P, Škodová I, Kriegová E, Horváth A, Lukeš J. 2011. Complex I NADH:ubiquinone oxidoreductase is active in but non-essential for procyclic Trypanosoma brucei. Mol Biochem Parasitol 175:196–200. doi:10.1016/j.molbiopara.2010.11.003. PubMed DOI
Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. 2012. Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot Cell 11:183–193. doi:10.1128/EC.05282-11. PubMed DOI PMC
Grams J, Morris JC, Drew ME, Wang Z, Englund PT, Hajduk SL. 2002. A trypanosome mitochondrial RNA polymerase is required for transcription replication. J Biol Chem 277:16952–16959. doi:10.1074/jbc.M200662200. PubMed DOI
Aphasizheva I, Maslov D, Wang X, Huang L, Aphasizhev R. 2011. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol Cell 42:106–117. doi:10.1016/j.molcel.2011.02.021. PubMed DOI PMC
Aphasizheva I, Aphasizhev R. 2010. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol Cell Biol 30:1555–1567. doi:10.1128/MCB.01281-09. PubMed DOI PMC
Carnes J, Trotter JR, Peltan A, Fleck M, Stuart K. 2008. RNA editing in Trypanosoma brucei requires three different editosomes. Mol Cell Biol 28:122–130. doi:10.1128/MCB.01374-07. PubMed DOI PMC
Golden DE, Hajduk SL. 2005. The 3′-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA 11:29–37. doi:10.1261/rna.7170705. PubMed DOI PMC
Carnes J, Soares CZ, Wickham C, Stuart K. 2011. Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J Biol Chem 286:19320–19330. doi:10.1074/jbc.M111.228965. PubMed DOI PMC
Ernst NL, Panicucci B, Carnes J, Stuart K. 2009. Differential functions of two editosome exoUases in Trypanosoma brucei. RNA 15:947–957. doi:10.1261/rna.1373009. PubMed DOI PMC
Ernst NL, Panicucci B, Igo RP Jr., Panigrahi AK, Salavati R, Stuart K. 2003. TbMP57 is a 3′ terminal uridylyl transferase (TUTase) of the Trypanosoma brucei editosome. Mol Cell 11:1525–1536. doi:10.1016/S1097-2765(03)00185-0. PubMed DOI
Aphasizhev R, Aphasizheva I. 2011. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. Wiley Interdiscip Rev RNA 2:669–685. doi:10.1002/wrna.82. PubMed DOI PMC
Hashimi H, Zíková A, Panigrahi AK, Stuart KD, Lukeš J. 2008. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA 14:970–980. doi:10.1261/rna.888808. PubMed DOI PMC
Panigrahi AK, Zíková A, Halley RA, Acestor N, Ogata Y, Myler PJ, Stuart K. 2008. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteom 7:534–545. doi:10.1074/mcp.M700430-MCP200. PubMed DOI
Weng J, Aphasizheva I, Etheridge RD, Huang L, Wang X, Falick AM, Aphasizhev R. 2008. Guide RNA-binding complex from mitochondria of trypanosomatids. Mol Cell 32:198–209. doi:10.1016/j.molcel.2008.08.023. PubMed DOI PMC
Ammerman ML, Downey KM, Hashimi H, Fisk JC, Tomasello DL, Faktorová D, Kafková L, King T, Lukeš J, Read LK. 2012. Architecture of the trypanosome RNA editing accessory complex, MRB1. Nucleic Acids Res 40:5637–5650. doi:10.1093/nar/gks211. PubMed DOI PMC
Kafková L, Ammerman ML, Faktorová D, Fisk JC, Zimmer SL, Sobotka R, Read LK, Lukeš J, Hashimi H. 2012. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA 18:1846–1861. doi:10.1261/rna.033852.112. PubMed DOI PMC
McAdams NM, Ammerman ML, Nanduri J, Lott K, Fisk JC, Read LK. 2015. An arginine-glycine-rich RNA binding protein impacts the abundance of specific mRNAs in the mitochondria of Trypanosoma brucei. Eukaryot Cell 14:149–157. doi:10.1128/EC.00232-14. PubMed DOI PMC
Schumacher MA, Karamooz E, Zíková A, Trantírek L, Lukeš J. 2006. Crystal structures of T. brucei MRP1/MRP2 guide-RNA binding complex reveal RNA matchmaking mechanism. Cell 126:701–711. doi:10.1016/j.cell.2006.06.047. PubMed DOI
Zíková A, Kopečná J, Schumacher MA, Stuart K, Trantírek L, Lukeš J. 2008. Structure and function of the native recombinant mitochondrial MRP1/MRP2 complex from Trypanosoma brucei. Int J Parasitol 38:901–912. doi:10.1016/j.ijpara.2007.12.009. PubMed DOI PMC
Fisk JC, Presnyak V, Ammerman ML, Read LK. 2009. Distinct and overlapping functions of MRP1/2 RBP16 in mitochondrial RNA metabolism. Mol Cell Biol 29:5214–5225. doi:10.1128/MCB.00520-09. PubMed DOI PMC
Madina BR, Kuppan G, Vashisht AA, Liang Y-, Downey KM, Wohlschlegel JA, Ji X, Sze S-H, Sacchettini JC, Read LK, Cruz-Reyes J. 2011. Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA 17:1821–1830. doi:10.1261/rna.2815911. PubMed DOI PMC
Hernandez A, Madina BR, Ro K, Wohlschlegel JA, Willard B, Kinter MT, Cruz-Reyes J. 2010. REH2 RNA helicase in kinetoplastid mitochondria: ribonucleoprotein complexes and essential motifs for unwinding and guide RNA (gRNA) binding. J Biol Chem 285:1220–1228. doi:10.1074/jbc.M109.051862. PubMed DOI PMC
Li F, Herrera J, Zhou S, Maslov DA, Simpson L. 2011. Trypanosome REH1 is an RNA helicase involved with the 3′-5′ polarity of multiple gRNA-guided uridine insertion/deletion RNA editing. Proc Natl Acad Sci U S A 108:3542–3547. doi:10.1073/pnas.1014152108. PubMed DOI PMC
Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. 2011. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537. doi:10.1002/iub.489. PubMed DOI
Landweber LF, Gilbert W. 1993. RNA editing as a source of genetic variation. Nature 363:179–182. doi:10.1038/363179a0. PubMed DOI
Phreaner CG, Williams MA, Mulligan RM. 1996. Incomplete editing of rps12 transcripts results in the synthesis of polymorphic polypeptides in plant mitochondria. Plant Cell 8:107–117. doi:10.1105/tpc.8.1.107. PubMed DOI PMC
Page FC. 1973. Paramoeba—common marine genus. Hydrobiologia 41:183–188. doi:10.1007/BF00016444. DOI
Yurchenko VY, Lukeš J, Tesarová M, Jirků M, Maslov DA. 2008. Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist 159:99–114. doi:10.1016/j.protis.2007.07.003. PubMed DOI
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. 2014. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165:825–838. doi:10.1016/j.protis.2014.09.002. PubMed DOI
Page FC. 1976. An illustrated key to freshwater and soil amoebae with notes on cultivation and ecology. The ferry house. Far Sawrey, Ambleside, Cumbria, England.
Dyková I, Nowak BF, Crosbie PBB, Fiala I, Pecková H, Adams MB, Macháčková B, Dvořáková H. 2005. Neoparamoeba branchiphila n. sp., related species of the genus Neoparamoeba Page 1987: morphological and molecular characterization of selected strains. J Fish Dis 28:49–64. doi:10.1111/j.1365-2761.2004.00600.x. PubMed DOI
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. doi:10.1038/nprot.2013.084. PubMed DOI PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340. PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Farrar M. 2007. Striped Smith-waterman speeds database searches six times over other SIMD implementations. Bioinformatics 23:156–161. doi:10.1093/bioinformatics/btl582. PubMed DOI
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa
Transcriptome, proteome and draft genome of Euglena gracilis
Massive mitochondrial DNA content in diplonemid and kinetoplastid protists
Combinatorial interplay of RNA-binding proteins tunes levels of mitochondrial mRNA in trypanosomes
Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis