Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36420151
PubMed Central
PMC9679448
DOI
10.1016/j.csbj.2022.11.023
PII: S2001-0370(22)00517-7
Knihovny.cz E-zdroje
- Klíčová slova
- ATPase 6, Euglenozoa, Maxicircle, Metakinetoplastina, Mitochondrion, RNA editing, U-indel editing, Uridine insertion/deletion editing, guide RNA,
- Publikační typ
- časopisecké články MeSH
The kinetoplastids are unicellular flagellates that derive their name from the 'kinetoplast', a region within their single mitochondrion harboring its organellar genome of high DNA content, called kinetoplast (k) DNA. Some protein products of this mitochondrial genome are encoded as cryptogenes; their transcripts require editing to generate an open reading frame. This happens through RNA editing, whereby small regulatory guide (g)RNAs direct the proper insertion and deletion of one or more uridines at each editing site within specific transcript regions. An accurate perspective of the kDNA expansion and evolution of their unique uridine insertion/deletion editing across kinetoplastids has been difficult to achieve. Here, we resolved the kDNA structure and editing patterns in the early-branching kinetoplastid Trypanoplasma borreli and compare them with those of the well-studied trypanosomatids. We find that its kDNA consists of circular molecules of about 42 kb that harbor the rRNA and protein-coding genes, and 17 different contigs of approximately 70 kb carrying an average of 23 putative gRNA loci per contig. These contigs may be linear molecules, as they contain repetitive termini. Our analysis uncovered a putative gRNA population with unique length and sequence parameters that is massive relative to the editing needs of this parasite. We validated or determined the sequence identity of four edited mRNAs, including one coding for ATP synthase 6 that was previously thought to be missing. We utilized computational methods to show that the T. borreli transcriptome includes a substantial number of transcripts with inconsistent editing patterns, apparently products of non-canonical editing. This species utilizes the most extensive uridine deletion compared to other studied kinetoplastids to enforce amino acid conservation of cryptogene products, although insertions still remain more frequent. Finally, in three tested mitochondrial transcriptomes of kinetoplastids, uridine deletions are more common in the raw mitochondrial reads than aligned to the fully edited, translationally competent mRNAs. We conclude that the organization of kDNA across known kinetoplastids represents variations on partitioned coding and repetitive regions of circular molecules encoding mRNAs and rRNAs, while gRNA loci are positioned on a highly unstable population of molecules that differ in relative abundance across strains. Likewise, while all kinetoplastids possess conserved machinery performing RNA editing of the uridine insertion/deletion type, its output parameters are species-specific.
Center of Excellence in Bionanoscience Research King Abdulaziz University Jeddah 21589 Saudi Arabia
Department of Molecular Biology Lomonosov Moscow State University Moscow 119234 Russia
Earlham Institute Norwich Research Park Norwich NR4 7UZ UK
Faculty of Science University of South Bohemia 370 05 České Budějovice Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences 370 05 České Budějovice Czechia
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czechia
Norwich Medical School University of East Anglia Norwich NR4 7TJ UK
University of Minnesota Medical School Duluth Campus Duluth MN 55812 USA
Zobrazit více v PubMed
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146(1):1–27. PubMed
Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11 PubMed PMC
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34(6):466–480. PubMed
Stuart K., Brun R., Croft S., Fairlamb A., Gürtler R.E., McKerrow J., et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008;118(4):1301–1310. PubMed PMC
Lom J. In: Biology of the trypanosomes and trypanoplasms of fish. Lumsden W.H.R., Evans D.A., editors. Academic Press; London: 1979. Biology of the trypanosomes and trypanoplasms of fish; pp. 269–337.
Losev A., Grybchuk-Ieremenko A., Kostygov A.Y., Lukeš J., Yurchenko V. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol Res. 2015;114(3):1071–1078. PubMed
Saeij J.P., de Vries B.J., Wiegertjes G.F. The immune response of carp to Trypanoplasma borreli: kinetics of immune gene expression and polyclonal lymphocyte activation. Dev Comp Immunol. 2003;27(10):859–874. PubMed
Lukeš J., Kaur B., Speijer D. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. 2021;37(2):99–102. PubMed
Benne R., Van den Burg J., Brakenhoff J.P., Sloof P., Van Boom J.H., Tromp M.C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46(6):819–826. PubMed
Gray M.W. Evolutionary origin of RNA editing. Biochemistry. 2012;51(26):5235–5242. PubMed
Lukeš J., Arts G.J., van den Burg J., de Haan A., Opperdoes F., Sloof P., et al. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J. 1994;13(21):5086–5098. PubMed PMC
Maslov D.A., Simpson L. RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Mol Cell Biol. 1994;14(12):8174–8182. PubMed PMC
Maslov D.A., Avila H.A., Lake J.A., Simpson L. Evolution of RNA editing in kinetoplastid protozoa. Nature. 1994;368(6469):345–348. PubMed
Carrington M., Doro E., Forlenza M., Wiegertjes G.F., Kelly S. Transcriptome sequence of the bloodstream form of Trypanoplasma borreli, a hematozoic parasite of fish transmitted by leeches. Genome Announc. 2017;5(9):e01712–e1806. PubMed PMC
Záhonová K., Lax G., Leonard G., Sinha S., Richards T., Lukeš J., et al. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoan. BMC Biol. 2021;19:103. PubMed PMC
Jensen R.E., Englund P.T. Network news: the replication of kinetoplast DNA. Annu Rev Microbiol. 2012;66:473–491. PubMed
Stuart K., Panigrahi A.K. RNA editing: complexity and complications. Mol Microbiol. 2002;45(3):591–596. PubMed
Simpson L., Thiemann O.H., Savill N.J., Alfonzo J.D., Maslov D.A. Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci U S A. 2000;97(13):6986–6993. PubMed PMC
Shlomai J. The structure and replication of kinetoplast DNA. Curr Mol Med. 2004;4(6):623–647. PubMed
Lukeš J., Jirků M., Avliyakulov N., Benada O. Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J. 1998;17(3):838–846. PubMed PMC
Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell. 2002;1(4):495–502. PubMed PMC
Lukeš J., Wheeler R., Jírsová D., David V., Archibald J.M. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018;70(12):1267–1274. PubMed PMC
Poinar G., Jr. Early Cretaceous trypanosomatids associated with fossil sand fly larvae in Burmese amber. Mem Inst Oswaldo Cruz. 2007;102(5):635–637. PubMed
Yurchenko V., Lukeš J., Xu X., Maslov D.A. An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae) J Eukaryot Microbiol. 2006;53(2):103–111. PubMed
Pecková H., Lom J. Growth, morphology and division of flagellates of the genus Trypanoplasma (Protozoa, Kinetoplastida) in vitro. Parasitol Res. 1990;76(7):553–558. PubMed
Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O'Sullivan C (2022) The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Res 50(D1): D387-D390. PubMed PMC
Gerasimov E.S., Gasparyan A.A., Afonin D.A., Zimmer S.L., Kraeva N., Lukeš J., et al. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucl Acids Res. 2021;49(6):3354–3370. PubMed PMC
Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichý B., Logacheva M.D., Kolesnikov A.A., et al. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucl Acids Res. 2018;46(2):765–781. PubMed PMC
Andrews S (2019) FastQC: a quality control tool for high throughput sequence data. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 2022 August 27.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. PubMed PMC
Zhang J., Kobert K., Flouri T., Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–620. PubMed PMC
Kolmogorov M., Yuan J., Lin Y., Pevzner P.A. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–546. PubMed
Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. PubMed PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. BLAST+: architecture and applications. BMC Bioinf. 2009;10:421. PubMed PMC
Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37(23):4572–4574. PubMed PMC
Gerasimov E.S., Zamyatnina K.A., Matveeva N.S., Rudenskaya Y.A., Kraeva N., Kolesnikov A.A., et al. Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens. 2020;9(2):100. PubMed PMC
Yasuhira S., Simpson L. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA. 1996;2(11):1153–1160. PubMed PMC
Ramirez-Gonzalez R.H., Bonnal R., Caccamo M., Maclean D. Bio-SAMtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol Med. 2012;7(1):6. PubMed PMC
Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–595. PubMed PMC
Quinlan AR (2014) BEDTools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47: 11.12.1-11.12.34. PubMed PMC
Gerasimov E.S., Ramirez-Barrios R., Yurchenko V., Zimmer S.L. Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA. 2022;28(7):993–1012. PubMed PMC
Lin R.H., Lai D.H., Zheng L.L., Wu J., Lukes J., Hide G., et al. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen. Parasit Vectors. 2015;8:665. PubMed PMC
Greif G., Rodriguez M., Reyna-Bello A., Robello C., Alvarez-Valin F. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat Res. 2015;773:69–82. PubMed
Callejas-Hernández F., Herreros-Cabello A., Del Moral-Salmoral J., Fresno M., Gironès N. The complete mitochondrial DNA of Trypanosoma cruzi: maxicircles and minicircles. Front Cell Infect Microbiol. 2021;11 PubMed PMC
Kaufer A., Stark D., Ellis J. Evolutionary insight into the Trypanosomatidae using alignment-free phylogenomics of the kinetoplast. Pathogens. 2019;8(3):157. PubMed PMC
Kay C., Williams T.A., Gibson W. Mitochondrial DNAs provide insight into trypanosome phylogeny and molecular evolution. BMC Evol Biol. 2020;20(1):161. PubMed PMC
Yurchenko V., Kolesnikov A.A. Minicircular kinetoplast DNA of Trypanosomatidae. Mol Biol (Mosk) 2001;35(1):1–10. PubMed
Simpson L. The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol Biochem Parasitol. 1997;86(2):133–141. PubMed
Ray D.S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol Cell Biol. 1989;9(3):1365–1367. PubMed PMC
Yurchenko V., Kolesnikov A.A., Lukeš J. Phylogenetic analysis of Trypanosomatina (Protozoa: Kinetoplastida) based on minicircle conserved regions. Folia Parasitol. 2000;47(1):1–5. PubMed
Camacho E., Rastrojo A., Sanchiz A., Gonzalez-de la Fuente S., Aguado B., Requena J.M. Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes. 2019;10(10):758. PubMed PMC
Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucl Acids Res. 2019;47(21):11304–11325. PubMed PMC
Li S.J., Zhang X., Lukeš J., Li B.Q., Wang J.F., Qu L.H., et al. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucl Acids Res. 2020;48(17):9747–9761. PubMed PMC
David V., Flegontov P., Gerasimov E., Tanifuji G., Hashimi H., Logacheva M.D., et al. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 2015;6(6):e01498–e10515. PubMed PMC
Blom D., de Haan A., van den Berg M., Sloof P., Jirků M., Lukeš J., et al. RNA editing in the free-living bodonid Bodo saltans. Nucl Acids Res. 1998;26(5):1205–1213. PubMed PMC
Kolesnikov A.A., Merzlyak E.M., Bessolitsyna E.A., Fedyakov A.V., Schönian G. Reduction of the edited domain of the mitochondrial A6 gene for ATPase subunit 6 in Trypanosomatidae. Mol Biol (Mosk) 2003;37(4):637–642. PubMed
Gastineau R., Lemieux C., Turmel M., Davidovich N.A., Davidovich O.I., Mouget J.L., et al. Mitogenome sequence of a Black Sea isolate of the kinetoplastid Bodo saltans. Mitochondrial DNA B Resour. 2018;3(2):968–969. PubMed PMC
Tikhonenkov D.V., Gawryluk R.M.R., Mylnikov A.P., Keeling P.J. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci Rep. 2021;11(1):2946. PubMed PMC
Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Goringer H.U., et al. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020;36(4):337–355. PubMed PMC
Aphasizhev R., Aphasizheva I. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie. 2014;100:125–131. PubMed PMC
Simpson R.M., Bruno A.E., Bard J.E., Buck M.J., Read L.K. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA. 2016;22(5):677–695. PubMed PMC
Rusman F., Floridia-Yapur N., Tomasini N., Diosque P. Guide RNA repertoires in the main lineages of Trypanosoma cruzi: high diversity and variable redundancy among strains. Front Cell Infect Microbiol. 2021;11 PubMed PMC
Kirby L.E., Koslowsky D. Cell-line specific RNA editing patterns in Trypanosoma brucei suggest a unique mechanism to generate protein variation in a system intolerant to genetic mutations. Nucl Acids Res. 2020;48(3):1479–1493. PubMed PMC
Simpson L., Douglass S.M., Lake J.A., Pellegrini M., Li F. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl Trop Dis. 2015;9(7):e0003841. PubMed PMC
Koslowsky D., Sun Y., Hindenach J., Theisen T., Lucas J. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucl Acids Res. 2014;42(3):1873–1886. PubMed PMC
Cooper S., Wadsworth E.S., Schnaufer A., Savill N.J. Organization of minicircle cassettes and guide RNA genes in Trypanosoma brucei. RNA. 2022;28(7):972–992. PubMed PMC
Zimmer S.L., Simpson R.M., Read L.K. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip Rev RNA. 2018;9(5):e1487. PubMed PMC
Tylec B.L., Simpson R.M., Kirby L.E., Chen R., Sun Y., Koslowsky D.J., et al. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res. 2019;47(7):3640–3657. PubMed PMC
Thiemann O.H., Maslov D.A., Simpson L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 1994;13(23):5689–5700. PubMed PMC
Yurchenko V., Hobza R., Benada O., Lukeš J. Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp Parasitol. 1999;92(3):215–218. PubMed
Maslov D.A., Sturm N.R., Niner B.M., Gruszynski E.S., Peris M., Simpson L. An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol Cell Biol. 1992;12(1):56–67. PubMed PMC
Sturm N.R., Maslov D.A., Blum B., Simpson L. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell. 1992;70(3):469–476. PubMed
Souza A.E., Myler P.J., Stuart K. Maxicircle CR1 transcripts of Trypanosoma brucei are edited and developmentally regulated and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit. Mol Cell Biol. 1992;12(5):2100–2107. PubMed PMC
Duarte M., Tomás A.M. The mitochondrial complex I of trypanosomatids–an overview of current knowledge. J Bioenerg Biomembr. 2014;46(4):299–311. PubMed
Saurer M., Ramrath D.J.F., Niemann M., Calderaro S., Prange C., Mattei S., et al. Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science. 2019;365(6458):1144–1149. PubMed
Jaskolowski M., Ramrath D.J.F., Bieri P., Niemann M., Mattei S., Calderaro S., et al. Structural insights into the mechanism of mitoribosomal large subunit biogenesis. Mol Cell. 2020;79(4):629–644. PubMed
Aphasizheva I., Aphasizhev R. Mitochondrial RNA quality control in trypanosomes. Wiley Interdiscip Rev RNA. 2021;12(3):e1638. PubMed PMC
Carnes J., Trotter J.R., Peltan A., Fleck M., Stuart K. RNA editing in Trypanosoma brucei requires three different editosomes. Mol Cell Biol. 2008;28(1):122–130. PubMed PMC
Simpson R.M., Bruno A.E., Chen R., Lott K., Tylec B.L., Bard J.E., et al. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucl Acids Res. 2017;45(13):7965–7983. PubMed PMC
Hashimi H., Zimmer S.L., Ammerman M.L., Read L.K., Lukeš J. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol. 2013;29(2):91–99. PubMed PMC