Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations

. 2022 ; 20 () : 6388-6402. [epub] 20221114

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36420151
Odkazy

PubMed 36420151
PubMed Central PMC9679448
DOI 10.1016/j.csbj.2022.11.023
PII: S2001-0370(22)00517-7
Knihovny.cz E-zdroje

The kinetoplastids are unicellular flagellates that derive their name from the 'kinetoplast', a region within their single mitochondrion harboring its organellar genome of high DNA content, called kinetoplast (k) DNA. Some protein products of this mitochondrial genome are encoded as cryptogenes; their transcripts require editing to generate an open reading frame. This happens through RNA editing, whereby small regulatory guide (g)RNAs direct the proper insertion and deletion of one or more uridines at each editing site within specific transcript regions. An accurate perspective of the kDNA expansion and evolution of their unique uridine insertion/deletion editing across kinetoplastids has been difficult to achieve. Here, we resolved the kDNA structure and editing patterns in the early-branching kinetoplastid Trypanoplasma borreli and compare them with those of the well-studied trypanosomatids. We find that its kDNA consists of circular molecules of about 42 kb that harbor the rRNA and protein-coding genes, and 17 different contigs of approximately 70 kb carrying an average of 23 putative gRNA loci per contig. These contigs may be linear molecules, as they contain repetitive termini. Our analysis uncovered a putative gRNA population with unique length and sequence parameters that is massive relative to the editing needs of this parasite. We validated or determined the sequence identity of four edited mRNAs, including one coding for ATP synthase 6 that was previously thought to be missing. We utilized computational methods to show that the T. borreli transcriptome includes a substantial number of transcripts with inconsistent editing patterns, apparently products of non-canonical editing. This species utilizes the most extensive uridine deletion compared to other studied kinetoplastids to enforce amino acid conservation of cryptogene products, although insertions still remain more frequent. Finally, in three tested mitochondrial transcriptomes of kinetoplastids, uridine deletions are more common in the raw mitochondrial reads than aligned to the fully edited, translationally competent mRNAs. We conclude that the organization of kDNA across known kinetoplastids represents variations on partitioned coding and repetitive regions of circular molecules encoding mRNAs and rRNAs, while gRNA loci are positioned on a highly unstable population of molecules that differ in relative abundance across strains. Likewise, while all kinetoplastids possess conserved machinery performing RNA editing of the uridine insertion/deletion type, its output parameters are species-specific.

Zobrazit více v PubMed

Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146(1):1–27. PubMed

Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11 PubMed PMC

Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34(6):466–480. PubMed

Stuart K., Brun R., Croft S., Fairlamb A., Gürtler R.E., McKerrow J., et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008;118(4):1301–1310. PubMed PMC

Lom J. In: Biology of the trypanosomes and trypanoplasms of fish. Lumsden W.H.R., Evans D.A., editors. Academic Press; London: 1979. Biology of the trypanosomes and trypanoplasms of fish; pp. 269–337.

Losev A., Grybchuk-Ieremenko A., Kostygov A.Y., Lukeš J., Yurchenko V. Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes. Parasitol Res. 2015;114(3):1071–1078. PubMed

Saeij J.P., de Vries B.J., Wiegertjes G.F. The immune response of carp to Trypanoplasma borreli: kinetics of immune gene expression and polyclonal lymphocyte activation. Dev Comp Immunol. 2003;27(10):859–874. PubMed

Lukeš J., Kaur B., Speijer D. RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. 2021;37(2):99–102. PubMed

Benne R., Van den Burg J., Brakenhoff J.P., Sloof P., Van Boom J.H., Tromp M.C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46(6):819–826. PubMed

Gray M.W. Evolutionary origin of RNA editing. Biochemistry. 2012;51(26):5235–5242. PubMed

Lukeš J., Arts G.J., van den Burg J., de Haan A., Opperdoes F., Sloof P., et al. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J. 1994;13(21):5086–5098. PubMed PMC

Maslov D.A., Simpson L. RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Mol Cell Biol. 1994;14(12):8174–8182. PubMed PMC

Maslov D.A., Avila H.A., Lake J.A., Simpson L. Evolution of RNA editing in kinetoplastid protozoa. Nature. 1994;368(6469):345–348. PubMed

Carrington M., Doro E., Forlenza M., Wiegertjes G.F., Kelly S. Transcriptome sequence of the bloodstream form of Trypanoplasma borreli, a hematozoic parasite of fish transmitted by leeches. Genome Announc. 2017;5(9):e01712–e1806. PubMed PMC

Záhonová K., Lax G., Leonard G., Sinha S., Richards T., Lukeš J., et al. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoan. BMC Biol. 2021;19:103. PubMed PMC

Jensen R.E., Englund P.T. Network news: the replication of kinetoplast DNA. Annu Rev Microbiol. 2012;66:473–491. PubMed

Stuart K., Panigrahi A.K. RNA editing: complexity and complications. Mol Microbiol. 2002;45(3):591–596. PubMed

Simpson L., Thiemann O.H., Savill N.J., Alfonzo J.D., Maslov D.A. Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci U S A. 2000;97(13):6986–6993. PubMed PMC

Shlomai J. The structure and replication of kinetoplast DNA. Curr Mol Med. 2004;4(6):623–647. PubMed

Lukeš J., Jirků M., Avliyakulov N., Benada O. Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J. 1998;17(3):838–846. PubMed PMC

Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell. 2002;1(4):495–502. PubMed PMC

Lukeš J., Wheeler R., Jírsová D., David V., Archibald J.M. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018;70(12):1267–1274. PubMed PMC

Poinar G., Jr. Early Cretaceous trypanosomatids associated with fossil sand fly larvae in Burmese amber. Mem Inst Oswaldo Cruz. 2007;102(5):635–637. PubMed

Yurchenko V., Lukeš J., Xu X., Maslov D.A. An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae) J Eukaryot Microbiol. 2006;53(2):103–111. PubMed

Pecková H., Lom J. Growth, morphology and division of flagellates of the genus Trypanoplasma (Protozoa, Kinetoplastida) in vitro. Parasitol Res. 1990;76(7):553–558. PubMed

Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O'Sullivan C (2022) The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Res 50(D1): D387-D390. PubMed PMC

Gerasimov E.S., Gasparyan A.A., Afonin D.A., Zimmer S.L., Kraeva N., Lukeš J., et al. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucl Acids Res. 2021;49(6):3354–3370. PubMed PMC

Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichý B., Logacheva M.D., Kolesnikov A.A., et al. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucl Acids Res. 2018;46(2):765–781. PubMed PMC

Andrews S (2019) FastQC: a quality control tool for high throughput sequence data. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 2022 August 27.

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. PubMed PMC

Zhang J., Kobert K., Flouri T., Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–620. PubMed PMC

Kolmogorov M., Yuan J., Lin Y., Pevzner P.A. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–546. PubMed

Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. PubMed PMC

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. BLAST+: architecture and applications. BMC Bioinf. 2009;10:421. PubMed PMC

Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37(23):4572–4574. PubMed PMC

Gerasimov E.S., Zamyatnina K.A., Matveeva N.S., Rudenskaya Y.A., Kraeva N., Kolesnikov A.A., et al. Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens. 2020;9(2):100. PubMed PMC

Yasuhira S., Simpson L. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA. 1996;2(11):1153–1160. PubMed PMC

Ramirez-Gonzalez R.H., Bonnal R., Caccamo M., Maclean D. Bio-SAMtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol Med. 2012;7(1):6. PubMed PMC

Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–595. PubMed PMC

Quinlan AR (2014) BEDTools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47: 11.12.1-11.12.34. PubMed PMC

Gerasimov E.S., Ramirez-Barrios R., Yurchenko V., Zimmer S.L. Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA. 2022;28(7):993–1012. PubMed PMC

Lin R.H., Lai D.H., Zheng L.L., Wu J., Lukes J., Hide G., et al. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen. Parasit Vectors. 2015;8:665. PubMed PMC

Greif G., Rodriguez M., Reyna-Bello A., Robello C., Alvarez-Valin F. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat Res. 2015;773:69–82. PubMed

Callejas-Hernández F., Herreros-Cabello A., Del Moral-Salmoral J., Fresno M., Gironès N. The complete mitochondrial DNA of Trypanosoma cruzi: maxicircles and minicircles. Front Cell Infect Microbiol. 2021;11 PubMed PMC

Kaufer A., Stark D., Ellis J. Evolutionary insight into the Trypanosomatidae using alignment-free phylogenomics of the kinetoplast. Pathogens. 2019;8(3):157. PubMed PMC

Kay C., Williams T.A., Gibson W. Mitochondrial DNAs provide insight into trypanosome phylogeny and molecular evolution. BMC Evol Biol. 2020;20(1):161. PubMed PMC

Yurchenko V., Kolesnikov A.A. Minicircular kinetoplast DNA of Trypanosomatidae. Mol Biol (Mosk) 2001;35(1):1–10. PubMed

Simpson L. The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol Biochem Parasitol. 1997;86(2):133–141. PubMed

Ray D.S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol Cell Biol. 1989;9(3):1365–1367. PubMed PMC

Yurchenko V., Kolesnikov A.A., Lukeš J. Phylogenetic analysis of Trypanosomatina (Protozoa: Kinetoplastida) based on minicircle conserved regions. Folia Parasitol. 2000;47(1):1–5. PubMed

Camacho E., Rastrojo A., Sanchiz A., Gonzalez-de la Fuente S., Aguado B., Requena J.M. Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes. 2019;10(10):758. PubMed PMC

Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucl Acids Res. 2019;47(21):11304–11325. PubMed PMC

Li S.J., Zhang X., Lukeš J., Li B.Q., Wang J.F., Qu L.H., et al. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucl Acids Res. 2020;48(17):9747–9761. PubMed PMC

David V., Flegontov P., Gerasimov E., Tanifuji G., Hashimi H., Logacheva M.D., et al. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. mBio. 2015;6(6):e01498–e10515. PubMed PMC

Blom D., de Haan A., van den Berg M., Sloof P., Jirků M., Lukeš J., et al. RNA editing in the free-living bodonid Bodo saltans. Nucl Acids Res. 1998;26(5):1205–1213. PubMed PMC

Kolesnikov A.A., Merzlyak E.M., Bessolitsyna E.A., Fedyakov A.V., Schönian G. Reduction of the edited domain of the mitochondrial A6 gene for ATPase subunit 6 in Trypanosomatidae. Mol Biol (Mosk) 2003;37(4):637–642. PubMed

Gastineau R., Lemieux C., Turmel M., Davidovich N.A., Davidovich O.I., Mouget J.L., et al. Mitogenome sequence of a Black Sea isolate of the kinetoplastid Bodo saltans. Mitochondrial DNA B Resour. 2018;3(2):968–969. PubMed PMC

Tikhonenkov D.V., Gawryluk R.M.R., Mylnikov A.P., Keeling P.J. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci Rep. 2021;11(1):2946. PubMed PMC

Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Goringer H.U., et al. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020;36(4):337–355. PubMed PMC

Aphasizhev R., Aphasizheva I. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie. 2014;100:125–131. PubMed PMC

Simpson R.M., Bruno A.E., Bard J.E., Buck M.J., Read L.K. High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA. 2016;22(5):677–695. PubMed PMC

Rusman F., Floridia-Yapur N., Tomasini N., Diosque P. Guide RNA repertoires in the main lineages of Trypanosoma cruzi: high diversity and variable redundancy among strains. Front Cell Infect Microbiol. 2021;11 PubMed PMC

Kirby L.E., Koslowsky D. Cell-line specific RNA editing patterns in Trypanosoma brucei suggest a unique mechanism to generate protein variation in a system intolerant to genetic mutations. Nucl Acids Res. 2020;48(3):1479–1493. PubMed PMC

Simpson L., Douglass S.M., Lake J.A., Pellegrini M., Li F. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl Trop Dis. 2015;9(7):e0003841. PubMed PMC

Koslowsky D., Sun Y., Hindenach J., Theisen T., Lucas J. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucl Acids Res. 2014;42(3):1873–1886. PubMed PMC

Cooper S., Wadsworth E.S., Schnaufer A., Savill N.J. Organization of minicircle cassettes and guide RNA genes in Trypanosoma brucei. RNA. 2022;28(7):972–992. PubMed PMC

Zimmer S.L., Simpson R.M., Read L.K. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip Rev RNA. 2018;9(5):e1487. PubMed PMC

Tylec B.L., Simpson R.M., Kirby L.E., Chen R., Sun Y., Koslowsky D.J., et al. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res. 2019;47(7):3640–3657. PubMed PMC

Thiemann O.H., Maslov D.A., Simpson L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 1994;13(23):5689–5700. PubMed PMC

Yurchenko V., Hobza R., Benada O., Lukeš J. Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp Parasitol. 1999;92(3):215–218. PubMed

Maslov D.A., Sturm N.R., Niner B.M., Gruszynski E.S., Peris M., Simpson L. An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol Cell Biol. 1992;12(1):56–67. PubMed PMC

Sturm N.R., Maslov D.A., Blum B., Simpson L. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell. 1992;70(3):469–476. PubMed

Souza A.E., Myler P.J., Stuart K. Maxicircle CR1 transcripts of Trypanosoma brucei are edited and developmentally regulated and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit. Mol Cell Biol. 1992;12(5):2100–2107. PubMed PMC

Duarte M., Tomás A.M. The mitochondrial complex I of trypanosomatids–an overview of current knowledge. J Bioenerg Biomembr. 2014;46(4):299–311. PubMed

Saurer M., Ramrath D.J.F., Niemann M., Calderaro S., Prange C., Mattei S., et al. Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science. 2019;365(6458):1144–1149. PubMed

Jaskolowski M., Ramrath D.J.F., Bieri P., Niemann M., Mattei S., Calderaro S., et al. Structural insights into the mechanism of mitoribosomal large subunit biogenesis. Mol Cell. 2020;79(4):629–644. PubMed

Aphasizheva I., Aphasizhev R. Mitochondrial RNA quality control in trypanosomes. Wiley Interdiscip Rev RNA. 2021;12(3):e1638. PubMed PMC

Carnes J., Trotter J.R., Peltan A., Fleck M., Stuart K. RNA editing in Trypanosoma brucei requires three different editosomes. Mol Cell Biol. 2008;28(1):122–130. PubMed PMC

Simpson R.M., Bruno A.E., Chen R., Lott K., Tylec B.L., Bard J.E., et al. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucl Acids Res. 2017;45(13):7965–7983. PubMed PMC

Hashimi H., Zimmer S.L., Ammerman M.L., Read L.K., Lukeš J. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol. 2013;29(2):91–99. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...