Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
22-01026S
Czech Republic
19-74-10008
Russian Science Foundation
University of Ostrava
INTER-EXCELLENCE-LUASK22033
Ministry of Education
313021X329
ERDF
Slovak Ministry of Education
VEGA 1/0553/21
Academy of Sciences
SK-CZ-RD-21-0038
Slovak Research and Development Agency
90254
Ministry of Education, Youth and Sports of the Czech Republic
CZ.10 .03.01/00/22_003/0000003
Just Transition
PubMed
38452217
PubMed Central
PMC11040004
DOI
10.1093/nar/gkae168
PII: 7624074
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro * genetika metabolismus MeSH
- editace RNA * MeSH
- genetický kód MeSH
- genom mitochondriální * MeSH
- guide RNA, Kinetoplastida genetika metabolismus MeSH
- kodon genetika MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- otevřené čtecí rámce genetika MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA transferová * genetika metabolismus MeSH
- terminační kodon genetika MeSH
- Trypanosomatina genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- guide RNA, Kinetoplastida MeSH
- kodon MeSH
- messenger RNA MeSH
- protozoální proteiny MeSH
- RNA transferová * MeSH
- terminační kodon MeSH
The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.
De Duve Institute Université Catholique de Louvain 1200 Brussels Belgium
Department of Parasitology Faculty of Science Charles University BIOCEV 252 50 Vestec Czechia
Faculty of Biology Lomonosov Moscow State University Moscow 119991 Russia
Faculty of Science University of South Bohemia 370 05 České Budějovice Czechia
Institute for Information Transmission Problems Russian Academy of Sciences Moscow 127051 Russia
Institute of Parasitology Biology Centre Czech Academy of Sciences 370 05 České Budějovice Czechia
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czechia
University of Minnesota Medical School Duluth Campus Duluth MN 55812 USA
Zobrazit více v PubMed
Kostygov A.Y., Albanaz A.T.S., Butenko A., Gerasimov E.S., Lukeš J., Yurchenko V. Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol. 2024; 40:96–99. PubMed
Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021; 11:200407. PubMed PMC
Lukeš J., Speijer D., Zíková A., Alfonzo J.D., Hashimi H., Field M.C. Trypanosomes as a magnifying glass for cell and molecular biology. Trends Parasitol. 2023; 39:902–912. PubMed
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019; 146:1–27. PubMed
Butenko A., Hammond M., Field M.C., Ginger M.L., Yurchenko V., Lukeš J. Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 2021; 37:100–116. PubMed
Michaeli S. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol. 2011; 6:459–474. PubMed
Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019; 9:190072. PubMed PMC
Záhonová K., Kostygov A., Ševčíková T., Yurchenko V., Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 2016; 26:2364–2369. PubMed
Kachale A., Pavlíková Z., Nenarokova A., Roithová A., Durante I.M., Miletínová P., Záhonová K., Nenarokov S., Votýpka J., Horáková E. et al. . Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature. 2023; 613:751–758. PubMed
Baranov P.V., Atkins J.F. No stopping with a short-stem transfer RNA. Nature. 2023; 613:631–632. PubMed
Valášek L.S., Lukeš J., Paris Z. Stops making sense - for the people?. Clin. Transl. Med. 2023; 13:e1270. PubMed PMC
Zürcher J.F., Robertson W.E., Kappes T., Petris G., Elliott T.S., Salmond G.P.C., Chin J.W. Refactored genetic codes enable bidirectional genetic isolation. Science. 2022; 378:516–523. PubMed PMC
Lukeš J., Tesařová M., Yurchenko V., Votýpka J. Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.). Eur. J. Protistol. 2021; 79:125778. PubMed
Jensen R.E., Englund P.T. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 2012; 66:473–491. PubMed
Benne R., Van den Burg J., Brakenhoff J.P., Sloof P., Van Boom J.H., Tromp M.C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986; 46:819–826. PubMed
Lukeš J., Kaur B., Speijer D RNA editing in mitochondria and plastids: weird and widespread. Trends Genet. 2021; 37:99–102. PubMed
Read L.K., Lukeš J., Hashimi H. Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA. 2016; 7:33–51. PubMed PMC
Zimmer S.L., Simpson R.M., Read L.K. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1487. PubMed PMC
Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Goringer H.U., Hajduk S., Lukeš J., Madison-Antenucci S., Maslov D.A. et al. . Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020; 36:337–355. PubMed PMC
Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichý B., Logacheva M.D., Kolesnikov A.A., Lukeš J., Yurchenko V., Zimmer S.L., Flegontov P. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res. 2018; 46:765–781. PubMed PMC
Cooper S., Wadsworth E.S., Schnaufer A., Savill N.J. Organization of minicircle cassettes and guide RNA genes in Trypanosoma brucei. RNA. 2022; 28:972–992. PubMed PMC
Blom D., de Haan A., van den Berg M., Sloof P., Jirků M., Lukeš J., Benne R. RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res. 1998; 26:1205–1213. PubMed PMC
Kirby L.E., Koslowsky D Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl. Trop. Dis. 2017; 11:e0005989. PubMed PMC
Gerasimov E.S., Afonin D.A., Korzhavina O.A., Lukeš J., Low R., Hall N., Tyler K., Yurchenko V., Zimmer S.L. Mitochondrial RNA editing in Trypanoplasma borreli: new tools, new revelations. Comput. Struct. Biotechnol. J. 2022; 20:6388–6402. PubMed PMC
Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012; 48:185–193. PubMed
Liu S., Wang H., Li X., Zhang F., Lee J.K.J., Li Z., Yu C., Hu J.J., Zhao X., Suematsu T. et al. . Structural basis of gRNA stabilization and mRNA recognition in trypanosomal RNA editing. Science. 2023; 381:eadg4725. PubMed PMC
Aphasizheva I., Zhang L., Wang X., Kaake R.M., Huang L., Monti S., Aphasizhev R. RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol. Cell. Biol. 2014; 34:4329–4342. PubMed PMC
Gray M.W. Evolutionary origin of RNA editing. Biochemistry. 2012; 51:5235–5242. PubMed
Aphasizheva I., Aphasizhev R. U-insertion/deletion mRNA-editing holoenzyme: definition in sight. Trends Parasitol. 2016; 32:144–156. PubMed PMC
Meehan J., McDermott S.M., Ivens A., Goodall Z., Chen Z., Yu Z., Woo J., Rodshagen T., McCleskey L., Sechrist R. et al. . Trypanosome RNA helicase KREH2 differentially controls non-canonical editing and putative repressive structure via a novel proposed ‘bifunctional’ gRNA in mRNA A6. Nucleic Acids Res. 2023; 51:6944–6965. PubMed PMC
Rusman F., Floridia-Yapur N., Diaz A.G., Ponce T., Diosque P., Tomasini N. Hydrophobicity-driven increases in editing in mitochondrial mRNAs during the evolution of kinetoplastids. Mol. Biol. Evol. 2023; 40:msad081. PubMed PMC
Gerasimov E.S., Gasparyan A.A., Afonin D.A., Zimmer S.L., Kraeva N., Lukeš J., Yurchenko V., Kolesnikov A. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res. 2021; 49:3354–3370. PubMed PMC
Niemann M., Harsman A., Mani J., Peikert C.D., Oeljeklaus S., Warscheid B., Wagner R., Schneider A. tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E7679–E7687. PubMed PMC
Mukherjee S., Basu S., Home P., Dhar G., Adhya S. Necessary and sufficient factors for the import of transfer RNA into the kinetoplast mitochondrion. EMBO Rep. 2007; 8:589–595. PubMed PMC
Shikha S., Brogli R., Schneider A., Polacek N. tRNA biology in trypanosomes. Chimia. 2019; 73:395–405. PubMed
Jankevicius J.V., Jankevicius S.I., Campaner M., Conchon I., Maeda L.A., Teixeira M.M.G., Freymuller E., Camargo E.P. Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. J. Protozool. 1989; 36:265–271.
Hamilton P.T., Votýpka J., Dostálová A., Yurchenko V., Bird N.H., Lukeš J., Lemaitre B., Perlman S.J. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio. 2015; 6:e01356-15. PubMed PMC
Yurchenko V., Kostygov A., Havlová J., Grybchuk-Ieremenko A., Ševčíková T., Lukeš J., Ševčík J., Votýpka J. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. J. Eukaryot. Microbiol. 2016; 63:198–209. PubMed
Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K. et al. . Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014; 9:e112963. PubMed PMC
Gerasimov E.S., Ramirez-Barrios R., Yurchenko V., Zimmer S.L. Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA. 2022; 28:993–1012. PubMed PMC
Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics. 2020; 70:e102. PubMed
Nurk S., Meleshko D., Korobeynikov A., Pevzner P.A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017; 27:824–834. PubMed PMC
Yurchenko V., Kolesnikov A.A. Minicircular kinetoplast DNA of Trypanosomatidae. Mol. Biol. (Mosk). 2001; 35:3–13. PubMed
Ray D.S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol. Cell. Biol. 1989; 9:1365–1367. PubMed PMC
Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009; 37:W202–W208. PubMed PMC
Rice P., Longden I., Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16:276–277. PubMed
Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26:589–595. PubMed PMC
Ramirez-Gonzalez R.H., Bonnal R., Caccamo M., Maclean D Bio-SAMtools: ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol. Med. 2012; 7:6. PubMed PMC
Quinlan A.R. BEDTools: the swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics. 2014; 47:11.12.11–11.12.34. PubMed PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–2120. PubMed PMC
Bushnell B., Rood J., Singer E. BBMerge - accurate paired shotgun read merging via overlap. PLoS One. 2017; 12:e0185056. PubMed PMC
Fu L., Niu B., Zhu Z., Wu S., Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28:3150–3152. PubMed PMC
Chan P.P., Lin B.Y., Mak A.J., Lowe T.M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021; 49:9077–9096. PubMed PMC
Laslett D., Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004; 32:11–16. PubMed PMC
Lowe T.M., Chan P.P. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016; 44:W54–W57. PubMed PMC
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987; 162:156–159. PubMed
Verner Z., Čermáková P., Škodová I., Kováčová B., Lukeš J., Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol. Biochem. Parasitol. 2014; 193:55–65. PubMed
Wittig I., Carrozzo R., Santorelli F.M., Schägger H. Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis. 2007; 28:3811–3820. PubMed
Shanmugasundram A., Starns D., Böhme U., Amos B., Wilkinson P.A., Harb O.S., Warrenfeltz S., Kissinger J.C., McDowell M.A., Roos D.S. et al. . TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis. 2023; 17:e0011058. PubMed PMC
Čermáková P., Maďarová A., Baráth P., Bellová J., Yurchenko V., Horváth A. Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology. 2021; 148:1161–1170. PubMed PMC
Zíková A., Schnaufer A., Dalley R.A., Panigrahi A.K., Stuart K.D. The FoF1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog. 2009; 5:e1000436. PubMed PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013; 30:772–780. PubMed PMC
Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009; 25:1972–1973. PubMed PMC
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., Haeseler A., Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020; 37:1530–1534. PubMed PMC
Cestari I., Kalidas S., Monnerat S., Anupama A., Phillips M.A., Stuart K. A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol. Cell. Biol. 2013; 33:4872–4888. PubMed PMC
Paris Z., Svobodová M., Kachale A., Horáková E., Nenarokova A., Lukeš J. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNATrp to decode the UGA codon in Trypanosoma brucei. RNA Biol. 2021; 18:278–286. PubMed PMC
Armenteros J.J.A., Salvatore M., Emanuelsson O., Winther O., von Heijne G., Elofsson A., Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance. 2019; 2:e201900429. PubMed PMC
Blum T., Briesemeister S., Kohlbacher O. MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinf. 2009; 10:274. PubMed PMC
Small I., Peeters N., Legeai F., Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics. 2004; 4:1581–1590. PubMed
Savojardo C., Martelli P.L., Fariselli P., Casadio R. TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins. Bioinformatics. 2015; 31:3269–3275. PubMed
Opperdoes F.R., Záhonová K., Škodová‐Sveráková I., Bučková B., Chmelová L., Lukeš J., Yurchenko V. In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non‐canonical genetic code. Bmc Genomics. 2024; 25:184. PubMed PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L. et al. . SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46:W296–W303. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A. et al. . Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC
Wheeler R.J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One. 2021; 16:e0259871. PubMed PMC
Záhonová K., Lax G., Leonard G., Sinha S., Richards T., Lukeš J., Wideman J. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoan. BMC Biol. 2021; 19:103. PubMed PMC
Gerasimov E.S., Zamyatnina K.A., Matveeva N.S., Rudenskaya Y.A., Kraeva N., Kolesnikov A.A., Yurchenko V. Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens. 2020; 9:100. PubMed PMC
Nawathean P., Maslov D.A. The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Curr. Genet. 2000; 38:95–103. PubMed
Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 2019; 47:11304–11325. PubMed PMC
Sturm N.R., Maslov D.A., Blum B., Simpson L. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell. 1992; 70:469–476. PubMed
Greif G., Rodriguez M., Reyna-Bello A., Robello C., Alvarez-Valin F. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat. Res. 2015; 773:69–82. PubMed
Li S.J., Zhang X., Lukeš J., Li B.Q., Wang J.F., Qu L.H., Hide G., Lai D.H., Lun Z.R. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res. 2020; 48:9747–9761. PubMed PMC
Bouzaidi-Tiali N., Aeby E., Charriere F., Pusnik M., Schneider A. Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J. 2007; 26:4302–4312. PubMed PMC
Tan T.H., Bochud-Allemann N., Horn E.K., Schneider A. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:1152–1157. PubMed PMC
Stuart K., Allen T.E., Heidmann S., Seiwert S.D. RNA editing in kinetoplastid protozoa. Microbiol. Mol. Biol. Rev. 1997; 61:105–120. PubMed PMC
Duarte M., Tomás A.M. The mitochondrial complex I of trypanosomatids–an overview of current knowledge. J. Bioenerg. Biomembr. 2014; 46:299–311. PubMed
Surve S., Heestand M., Panicucci B., Schnaufer A., Parsons M. Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Euk. Cell. 2012; 11:183–193. PubMed PMC
Opperdoes F.R., Michels P.A. Complex I of Trypanosomatidae: does it exist?. Trends Parasitol. 2008; 24:310–317. PubMed
Thiemann O.H., Maslov D.A., Simpson L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 1994; 13:5689–5700. PubMed PMC
Simpson L., Douglass S.M., Lake J.A., Pellegrini M., Li F. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop. Dis. 2015; 9:e0003841. PubMed PMC
Cartalas J., Coudray L., Gobert A. How RNases shape mitochondrial transcriptomes. Int. J. Mol. Sci. 2022; 23:6141. PubMed PMC
Carnes J., Lewis Ernst N., Wickham C., Panicucci B., Stuart K. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei. PLoS One. 2012; 7:e33405. PubMed PMC
Lerch M., Carnes J., Acestor N., Guo X., Schnaufer A., Stuart K. Editosome accessory factors KREPB9 and KREPB10 in Trypanosoma brucei. Euk. Cell. 2012; 11:832–843. PubMed PMC
Madina B.R., Kuppan G., Vashisht A.A., Liang Y.H., Downey K.M., Wohlschlegel J.A., Ji X., Sze S.H., Sacchettini J.C., Read L.K. et al. . Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA. 2011; 17:1821–1830. PubMed PMC
Nenarokova A., Záhonová K., Krasilnikova M., Gahura O., McCulloch R., Zíková A., Yurchenko V., Lukeš J. Causes and effects of loss of classical nonhomologous end joining pathway in parasitic eukaryotes. mBio. 2019; 10:e01541-19. PubMed PMC
Alfonzo J.D., Blanc V., Estevez A.M., Rubio M.A., Simpson L. C to U editing of the anticodon of imported mitochondrial tRNATrp allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 1999; 18:7056–7062. PubMed PMC
Giegé R., Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 2023; 51:1528–1570. PubMed PMC
Poláková E., Albanaz A.T.S., Zakharova A., Novozhilova T.S., Gerasimov E.S., Yurchenko V. Ku80 is involved in telomere maintenance but dispensable for genomic stability in Leishmania mexicana. PLoS Negl. Trop. Dis. 2021; 15:e0010041. PubMed PMC
Hajduk S., Ochsenreiter T. RNA editing in kinetoplastids. RNA Biol. 2010; 7:229–236. PubMed
Stuart K.D., Schnaufer A., Ernst N.L., Panigrahi A.K. Complex management: RNA editing in trypanosomes. Trends Biochem. Sci. 2005; 30:97–105. PubMed
Futahashi R., Tanaka K., Tanahashi M., Nikoh N., Kikuchi Y., Lee B.L., Fukatsu T. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont. PLoS One. 2013; 8:e64557. PubMed PMC
Cruz-Reyes J., Mooers B.H.M., Doharey P.K., Meehan J., Gulati S. Dynamic RNA holo-editosomes with subcomplex variants: insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1502. PubMed PMC
Kannan S., Burger G. Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2. Bmc Genomics. 2008; 9:455. PubMed PMC
Kaur B., Záhonová K., Valach M., Faktorová D., Prokopchuk G., Burger G., Lukeš J. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020; 48:2694–2708. PubMed PMC