Blastocrithidia nonstop mitochondrial genome and its expression are remarkably insulated from nuclear codon reassignment

. 2024 Apr 24 ; 52 (7) : 3870-3885.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38452217

Grantová podpora
22-01026S Czech Republic
19-74-10008 Russian Science Foundation
University of Ostrava
INTER-EXCELLENCE-LUASK22033 Ministry of Education
313021X329 ERDF
Slovak Ministry of Education
VEGA 1/0553/21 Academy of Sciences
SK-CZ-RD-21-0038 Slovak Research and Development Agency
90254 Ministry of Education, Youth and Sports of the Czech Republic
CZ.10 .03.01/00/22_003/0000003 Just Transition

The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.

Zobrazit více v PubMed

Kostygov  A.Y., Albanaz  A.T.S., Butenko  A., Gerasimov  E.S., Lukeš  J., Yurchenko  V.  Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol.  2024; 40:96–99. PubMed

Kostygov  A.Y., Karnkowska  A., Votýpka  J., Tashyreva  D., Maciszewski  K., Yurchenko  V., Lukeš  J.  Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021; 11:200407. PubMed PMC

Lukeš  J., Speijer  D., Zíková  A., Alfonzo  J.D., Hashimi  H., Field  M.C.  Trypanosomes as a magnifying glass for cell and molecular biology. Trends Parasitol.  2023; 39:902–912. PubMed

Maslov  D.A., Opperdoes  F.R., Kostygov  A.Y., Hashimi  H., Lukeš  J., Yurchenko  V.  Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019; 146:1–27. PubMed

Butenko  A., Hammond  M., Field  M.C., Ginger  M.L., Yurchenko  V., Lukeš  J.  Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol.  2021; 37:100–116. PubMed

Michaeli  S.  Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol.  2011; 6:459–474. PubMed

Clayton  C.  Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol.  2019; 9:190072. PubMed PMC

Záhonová  K., Kostygov  A., Ševčíková  T., Yurchenko  V., Eliáš  M.  An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol.  2016; 26:2364–2369. PubMed

Kachale  A., Pavlíková  Z., Nenarokova  A., Roithová  A., Durante  I.M., Miletínová  P., Záhonová  K., Nenarokov  S., Votýpka  J., Horáková  E.  et al. .  Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature. 2023; 613:751–758. PubMed

Baranov  P.V., Atkins  J.F.  No stopping with a short-stem transfer RNA. Nature. 2023; 613:631–632. PubMed

Valášek  L.S., Lukeš  J., Paris  Z.  Stops making sense - for the people?. Clin. Transl. Med.  2023; 13:e1270. PubMed PMC

Zürcher  J.F., Robertson  W.E., Kappes  T., Petris  G., Elliott  T.S., Salmond  G.P.C., Chin  J.W.  Refactored genetic codes enable bidirectional genetic isolation. Science. 2022; 378:516–523. PubMed PMC

Lukeš  J., Tesařová  M., Yurchenko  V., Votýpka  J.  Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.). Eur. J. Protistol.  2021; 79:125778. PubMed

Jensen  R.E., Englund  P.T.  Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol.  2012; 66:473–491. PubMed

Benne  R., Van den Burg  J., Brakenhoff  J.P., Sloof  P., Van Boom  J.H., Tromp  M.C.  Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986; 46:819–826. PubMed

Lukeš  J., Kaur  B., Speijer  D  RNA editing in mitochondria and plastids: weird and widespread. Trends Genet.  2021; 37:99–102. PubMed

Read  L.K., Lukeš  J., Hashimi  H.  Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip. Rev. RNA. 2016; 7:33–51. PubMed PMC

Zimmer  S.L., Simpson  R.M., Read  L.K.  High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1487. PubMed PMC

Aphasizheva  I., Alfonzo  J., Carnes  J., Cestari  I., Cruz-Reyes  J., Goringer  H.U., Hajduk  S., Lukeš  J., Madison-Antenucci  S., Maslov  D.A.  et al. .  Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol.  2020; 36:337–355. PubMed PMC

Gerasimov  E.S., Gasparyan  A.A., Kaurov  I., Tichý  B., Logacheva  M.D., Kolesnikov  A.A., Lukeš  J., Yurchenko  V., Zimmer  S.L., Flegontov  P.  Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res.  2018; 46:765–781. PubMed PMC

Cooper  S., Wadsworth  E.S., Schnaufer  A., Savill  N.J.  Organization of minicircle cassettes and guide RNA genes in Trypanosoma brucei. RNA. 2022; 28:972–992. PubMed PMC

Blom  D., de Haan  A., van den Berg  M., Sloof  P., Jirků  M., Lukeš  J., Benne  R.  RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res.  1998; 26:1205–1213. PubMed PMC

Kirby  L.E., Koslowsky  D  Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl. Trop. Dis.  2017; 11:e0005989. PubMed PMC

Gerasimov  E.S., Afonin  D.A., Korzhavina  O.A., Lukeš  J., Low  R., Hall  N., Tyler  K., Yurchenko  V., Zimmer  S.L.  Mitochondrial RNA editing in Trypanoplasma borreli: new tools, new revelations. Comput. Struct. Biotechnol. J.  2022; 20:6388–6402. PubMed PMC

Gerasimov  E.S., Kostygov  A.Y., Yan  S., Kolesnikov  A.A.  From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol.  2012; 48:185–193. PubMed

Liu  S., Wang  H., Li  X., Zhang  F., Lee  J.K.J., Li  Z., Yu  C., Hu  J.J., Zhao  X., Suematsu  T.  et al. .  Structural basis of gRNA stabilization and mRNA recognition in trypanosomal RNA editing. Science. 2023; 381:eadg4725. PubMed PMC

Aphasizheva  I., Zhang  L., Wang  X., Kaake  R.M., Huang  L., Monti  S., Aphasizhev  R.  RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol. Cell. Biol.  2014; 34:4329–4342. PubMed PMC

Gray  M.W.  Evolutionary origin of RNA editing. Biochemistry. 2012; 51:5235–5242. PubMed

Aphasizheva  I., Aphasizhev  R.  U-insertion/deletion mRNA-editing holoenzyme: definition in sight. Trends Parasitol.  2016; 32:144–156. PubMed PMC

Meehan  J., McDermott  S.M., Ivens  A., Goodall  Z., Chen  Z., Yu  Z., Woo  J., Rodshagen  T., McCleskey  L., Sechrist  R.  et al. .  Trypanosome RNA helicase KREH2 differentially controls non-canonical editing and putative repressive structure via a novel proposed ‘bifunctional’ gRNA in mRNA A6. Nucleic Acids Res.  2023; 51:6944–6965. PubMed PMC

Rusman  F., Floridia-Yapur  N., Diaz  A.G., Ponce  T., Diosque  P., Tomasini  N.  Hydrophobicity-driven increases in editing in mitochondrial mRNAs during the evolution of kinetoplastids. Mol. Biol. Evol.  2023; 40:msad081. PubMed PMC

Gerasimov  E.S., Gasparyan  A.A., Afonin  D.A., Zimmer  S.L., Kraeva  N., Lukeš  J., Yurchenko  V., Kolesnikov  A.  Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res.  2021; 49:3354–3370. PubMed PMC

Niemann  M., Harsman  A., Mani  J., Peikert  C.D., Oeljeklaus  S., Warscheid  B., Wagner  R., Schneider  A.  tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proc. Natl. Acad. Sci. U.S.A.  2017; 114:E7679–E7687. PubMed PMC

Mukherjee  S., Basu  S., Home  P., Dhar  G., Adhya  S.  Necessary and sufficient factors for the import of transfer RNA into the kinetoplast mitochondrion. EMBO Rep.  2007; 8:589–595. PubMed PMC

Shikha  S., Brogli  R., Schneider  A., Polacek  N.  tRNA biology in trypanosomes. Chimia. 2019; 73:395–405. PubMed

Jankevicius  J.V., Jankevicius  S.I., Campaner  M., Conchon  I., Maeda  L.A., Teixeira  M.M.G., Freymuller  E., Camargo  E.P.  Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. J. Protozool.  1989; 36:265–271.

Hamilton  P.T., Votýpka  J., Dostálová  A., Yurchenko  V., Bird  N.H., Lukeš  J., Lemaitre  B., Perlman  S.J.  Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio. 2015; 6:e01356-15. PubMed PMC

Yurchenko  V., Kostygov  A., Havlová  J., Grybchuk-Ieremenko  A., Ševčíková  T., Lukeš  J., Ševčík  J., Votýpka  J.  Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. J. Eukaryot. Microbiol.  2016; 63:198–209. PubMed

Walker  B.J., Abeel  T., Shea  T., Priest  M., Abouelliel  A., Sakthikumar  S., Cuomo  C.A., Zeng  Q., Wortman  J., Young  S.K.  et al. .  Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014; 9:e112963. PubMed PMC

Gerasimov  E.S., Ramirez-Barrios  R., Yurchenko  V., Zimmer  S.L.  Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA. 2022; 28:993–1012. PubMed PMC

Prjibelski  A., Antipov  D., Meleshko  D., Lapidus  A., Korobeynikov  A.  Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics. 2020; 70:e102. PubMed

Nurk  S., Meleshko  D., Korobeynikov  A., Pevzner  P.A.  metaSPAdes: a new versatile metagenomic assembler. Genome Res.  2017; 27:824–834. PubMed PMC

Yurchenko  V., Kolesnikov  A.A.  Minicircular kinetoplast DNA of Trypanosomatidae. Mol. Biol. (Mosk). 2001; 35:3–13. PubMed

Ray  D.S.  Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol. Cell. Biol.  1989; 9:1365–1367. PubMed PMC

Bailey  T.L., Boden  M., Buske  F.A., Frith  M., Grant  C.E., Clementi  L., Ren  J., Li  W.W., Noble  W.S.  MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res.  2009; 37:W202–W208. PubMed PMC

Rice  P., Longden  I., Bleasby  A.  EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet.  2000; 16:276–277. PubMed

Li  H., Durbin  R.  Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26:589–595. PubMed PMC

Ramirez-Gonzalez  R.H., Bonnal  R., Caccamo  M., Maclean  D  Bio-SAMtools: ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments. Source Code Biol. Med.  2012; 7:6. PubMed PMC

Quinlan  A.R.  BEDTools: the swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics. 2014; 47:11.12.11–11.12.34. PubMed PMC

Bolger  A.M., Lohse  M., Usadel  B.  Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–2120. PubMed PMC

Bushnell  B., Rood  J., Singer  E.  BBMerge - accurate paired shotgun read merging via overlap. PLoS One. 2017; 12:e0185056. PubMed PMC

Fu  L., Niu  B., Zhu  Z., Wu  S., Li  W.  CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28:3150–3152. PubMed PMC

Chan  P.P., Lin  B.Y., Mak  A.J., Lowe  T.M.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res.  2021; 49:9077–9096. PubMed PMC

Laslett  D., Canback  B.  ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res.  2004; 32:11–16. PubMed PMC

Lowe  T.M., Chan  P.P.  tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res.  2016; 44:W54–W57. PubMed PMC

Chomczynski  P., Sacchi  N.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.  1987; 162:156–159. PubMed

Verner  Z., Čermáková  P., Škodová  I., Kováčová  B., Lukeš  J., Horváth  A.  Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol. Biochem. Parasitol.  2014; 193:55–65. PubMed

Wittig  I., Carrozzo  R., Santorelli  F.M., Schägger  H.  Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis. 2007; 28:3811–3820. PubMed

Shanmugasundram  A., Starns  D., Böhme  U., Amos  B., Wilkinson  P.A., Harb  O.S., Warrenfeltz  S., Kissinger  J.C., McDowell  M.A., Roos  D.S.  et al. .  TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis. 2023; 17:e0011058. PubMed PMC

Čermáková  P., Maďarová  A., Baráth  P., Bellová  J., Yurchenko  V., Horváth  A.  Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology. 2021; 148:1161–1170. PubMed PMC

Zíková  A., Schnaufer  A., Dalley  R.A., Panigrahi  A.K., Stuart  K.D.  The FoF1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog.  2009; 5:e1000436. PubMed PMC

Katoh  K., Standley  D.M.  MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.  2013; 30:772–780. PubMed PMC

Capella-Gutiérrez  S., Silla-Martinez  J.M., Gabaldon  T.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009; 25:1972–1973. PubMed PMC

Minh  B.Q., Schmidt  H.A., Chernomor  O., Schrempf  D., Woodhams  M.D., Haeseler  A., Lanfear  R.  IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol.  2020; 37:1530–1534. PubMed PMC

Cestari  I., Kalidas  S., Monnerat  S., Anupama  A., Phillips  M.A., Stuart  K.  A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol. Cell. Biol.  2013; 33:4872–4888. PubMed PMC

Paris  Z., Svobodová  M., Kachale  A., Horáková  E., Nenarokova  A., Lukeš  J.  A mitochondrial cytidine deaminase is responsible for C to U editing of tRNATrp to decode the UGA codon in Trypanosoma brucei. RNA Biol.  2021; 18:278–286. PubMed PMC

Armenteros  J.J.A., Salvatore  M., Emanuelsson  O., Winther  O., von Heijne  G., Elofsson  A., Nielsen  H.  Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance. 2019; 2:e201900429. PubMed PMC

Blum  T., Briesemeister  S., Kohlbacher  O.  MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinf.  2009; 10:274. PubMed PMC

Small  I., Peeters  N., Legeai  F., Lurin  C.  Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics. 2004; 4:1581–1590. PubMed

Savojardo  C., Martelli  P.L., Fariselli  P., Casadio  R.  TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins. Bioinformatics. 2015; 31:3269–3275. PubMed

Opperdoes  F.R., Záhonová  K., Škodová‐Sveráková  I., Bučková  B., Chmelová  L., Lukeš  J., Yurchenko  V.  In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non‐canonical genetic code. Bmc Genomics. 2024; 25:184. PubMed PMC

Waterhouse  A., Bertoni  M., Bienert  S., Studer  G., Tauriello  G., Gumienny  R., Heer  F.T., de Beer  T.A.P., Rempfer  C., Bordoli  L.  et al. .  SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res.  2018; 46:W296–W303. PubMed PMC

Jumper  J., Evans  R., Pritzel  A., Green  T., Figurnov  M., Ronneberger  O., Tunyasuvunakool  K., Bates  R., Zidek  A., Potapenko  A.  et al. .  Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC

Wheeler  R.J.  A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One. 2021; 16:e0259871. PubMed PMC

Záhonová  K., Lax  G., Leonard  G., Sinha  S., Richards  T., Lukeš  J., Wideman  J.  Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoan. BMC Biol.  2021; 19:103. PubMed PMC

Gerasimov  E.S., Zamyatnina  K.A., Matveeva  N.S., Rudenskaya  Y.A., Kraeva  N., Kolesnikov  A.A., Yurchenko  V.  Common structural patterns in the maxicircle divergent region of Trypanosomatidae. Pathogens. 2020; 9:100. PubMed PMC

Nawathean  P., Maslov  D.A.  The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Curr. Genet.  2000; 38:95–103. PubMed

Cooper  S., Wadsworth  E.S., Ochsenreiter  T., Ivens  A., Savill  N.J., Schnaufer  A.  Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res.  2019; 47:11304–11325. PubMed PMC

Sturm  N.R., Maslov  D.A., Blum  B., Simpson  L.  Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell. 1992; 70:469–476. PubMed

Greif  G., Rodriguez  M., Reyna-Bello  A., Robello  C., Alvarez-Valin  F.  Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat. Res.  2015; 773:69–82. PubMed

Li  S.J., Zhang  X., Lukeš  J., Li  B.Q., Wang  J.F., Qu  L.H., Hide  G., Lai  D.H., Lun  Z.R.  Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res.  2020; 48:9747–9761. PubMed PMC

Bouzaidi-Tiali  N., Aeby  E., Charriere  F., Pusnik  M., Schneider  A.  Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J.  2007; 26:4302–4312. PubMed PMC

Tan  T.H., Bochud-Allemann  N., Horn  E.K., Schneider  A.  Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc. Natl. Acad. Sci. U.S.A.  2002; 99:1152–1157. PubMed PMC

Stuart  K., Allen  T.E., Heidmann  S., Seiwert  S.D.  RNA editing in kinetoplastid protozoa. Microbiol. Mol. Biol. Rev.  1997; 61:105–120. PubMed PMC

Duarte  M., Tomás  A.M.  The mitochondrial complex I of trypanosomatids–an overview of current knowledge. J. Bioenerg. Biomembr.  2014; 46:299–311. PubMed

Surve  S., Heestand  M., Panicucci  B., Schnaufer  A., Parsons  M.  Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Euk. Cell. 2012; 11:183–193. PubMed PMC

Opperdoes  F.R., Michels  P.A.  Complex I of Trypanosomatidae: does it exist?. Trends Parasitol.  2008; 24:310–317. PubMed

Thiemann  O.H., Maslov  D.A., Simpson  L.  Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J.  1994; 13:5689–5700. PubMed PMC

Simpson  L., Douglass  S.M., Lake  J.A., Pellegrini  M., Li  F.  Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, Leishmania tarentolae. PLoS Negl. Trop. Dis.  2015; 9:e0003841. PubMed PMC

Cartalas  J., Coudray  L., Gobert  A.  How RNases shape mitochondrial transcriptomes. Int. J. Mol. Sci.  2022; 23:6141. PubMed PMC

Carnes  J., Lewis Ernst  N., Wickham  C., Panicucci  B., Stuart  K.  KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei. PLoS One. 2012; 7:e33405. PubMed PMC

Lerch  M., Carnes  J., Acestor  N., Guo  X., Schnaufer  A., Stuart  K.  Editosome accessory factors KREPB9 and KREPB10 in Trypanosoma brucei. Euk. Cell. 2012; 11:832–843. PubMed PMC

Madina  B.R., Kuppan  G., Vashisht  A.A., Liang  Y.H., Downey  K.M., Wohlschlegel  J.A., Ji  X., Sze  S.H., Sacchettini  J.C., Read  L.K.  et al. .  Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA. 2011; 17:1821–1830. PubMed PMC

Nenarokova  A., Záhonová  K., Krasilnikova  M., Gahura  O., McCulloch  R., Zíková  A., Yurchenko  V., Lukeš  J.  Causes and effects of loss of classical nonhomologous end joining pathway in parasitic eukaryotes. mBio. 2019; 10:e01541-19. PubMed PMC

Alfonzo  J.D., Blanc  V., Estevez  A.M., Rubio  M.A., Simpson  L.  C to U editing of the anticodon of imported mitochondrial tRNATrp allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J.  1999; 18:7056–7062. PubMed PMC

Giegé  R., Eriani  G.  The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res.  2023; 51:1528–1570. PubMed PMC

Poláková  E., Albanaz  A.T.S., Zakharova  A., Novozhilova  T.S., Gerasimov  E.S., Yurchenko  V.  Ku80 is involved in telomere maintenance but dispensable for genomic stability in Leishmania mexicana. PLoS Negl. Trop. Dis.  2021; 15:e0010041. PubMed PMC

Hajduk  S., Ochsenreiter  T.  RNA editing in kinetoplastids. RNA Biol.  2010; 7:229–236. PubMed

Stuart  K.D., Schnaufer  A., Ernst  N.L., Panigrahi  A.K.  Complex management: RNA editing in trypanosomes. Trends Biochem. Sci. 2005; 30:97–105. PubMed

Futahashi  R., Tanaka  K., Tanahashi  M., Nikoh  N., Kikuchi  Y., Lee  B.L., Fukatsu  T.  Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont. PLoS One. 2013; 8:e64557. PubMed PMC

Cruz-Reyes  J., Mooers  B.H.M., Doharey  P.K., Meehan  J., Gulati  S.  Dynamic RNA holo-editosomes with subcomplex variants: insights into the control of trypanosome editing. Wiley Interdiscip. Rev. RNA. 2018; 9:e1502. PubMed PMC

Kannan  S., Burger  G.  Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2. Bmc Genomics. 2008; 9:455. PubMed PMC

Kaur  B., Záhonová  K., Valach  M., Faktorová  D., Prokopchuk  G., Burger  G., Lukeš  J.  Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res.  2020; 48:2694–2708. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace