Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
206815/Z/17/Z
Wellcome Trust - United Kingdom
BB/M028909/1
Biotechnology and Biological Sciences Research Council - United Kingdom
104111
Wellcome Trust - United Kingdom
BB/K006495/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
BB/N016165/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
31311886
PubMed Central
PMC6635534
DOI
10.1128/mbio.01541-19
PII: mBio.01541-19
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, genome size, parasite,
- MeSH
- antigen Ku chemie metabolismus MeSH
- Eukaryota metabolismus MeSH
- fylogeneze MeSH
- genom MeSH
- genomika metody MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- oprava DNA spojením konců * MeSH
- paraziti klasifikace genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigen Ku MeSH
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Department of Parasitology Faculty of Science Charles University BIOCEV Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Martsinovsky Institute of Medical Parasitology Sechenov University Moscow Russia
Zobrazit více v PubMed
Chang HHY, Pannunzio NR, Adachi N, Lieber MR. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506. doi:10.1038/nrm.2017.48. PubMed DOI PMC
Jain S, Sugawara N, Haber JE. 2016. Role of double-strand break end-tethering during gene conversion in Saccharomyces cerevisiae. PLoS Genet 12:e1005976. doi:10.1371/journal.pgen.1005976. PubMed DOI PMC
Rodgers K, McVey M. 2016. Error-prone repair of DNA double-strand breaks. J Cell Physiol 231:15–24. doi:10.1002/jcp.25053. PubMed DOI PMC
Haber JE. 2018. DNA repair: the search for homology. Bioessays 40:1700229. doi:10.1002/bies.201700229. PubMed DOI PMC
Kramara J, Osia B, Malkova A. 2018. Break-induced replication: the where, the why, and the how. Trends Genet 34:518–531. doi:10.1016/j.tig.2018.04.002. PubMed DOI PMC
Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA. 2014. Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst) 17:39–51. doi:10.1016/j.dnarep.2014.02.008. PubMed DOI PMC
Williams GJ, Hammel M, Radhakrishnan SK, Ramsden D, Lees-Miller SP, Tainer JA. 2014. Structural insights into NHEJ: building up an integrated picture of the dynamic DSB repair super complex, one component and interaction at a time. DNA Repair (Amst) 17:110–120. doi:10.1016/j.dnarep.2014.02.009. PubMed DOI PMC
Her J, Bunting SF. 2018. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem 293:10502–10511. doi:10.1074/jbc.TM118.000371. PubMed DOI PMC
Doré AS, Drake AC, Brewerton SC, Blundell TL. 2004. Identification of DNA-PK in the arthropods: evidence for the ancient ancestry of vertebrate non-homologous end-joining. DNA Repair (Amst) 3:33–41. doi:10.1016/j.dnarep.2003.09.003. PubMed DOI
Fell VL, Schild-Poulter C. 2015. The Ku heterodimer: function in DNA repair and beyond. Mutat Res Rev Mutat Res 763:15–29. doi:10.1016/j.mrrev.2014.06.002. PubMed DOI
Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE. 2001. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8:1105–1115. doi:10.1016/S1097-2765(01)00388-4. PubMed DOI
Emerson CH, Bertuch AA. 2016. Consider the workhorse: nonhomologous end-joining in budding yeast. Biochem Cell Biol 94:396–406. doi:10.1139/bcb-2016-0001. PubMed DOI PMC
Aravind L, Koonin EV. 2001. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11:1365–1374. doi:10.1101/gr.181001. PubMed DOI PMC
Della M, Palmbos PL, Tseng H-M, Tonkin LM, Daley JM, Topper LM, Pitcher RS, Tomkinson AE, Wilson TE, Doherty AJ. 2004. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306:683–685. doi:10.1126/science.1099824. PubMed DOI
Shuman S, Glickman MS. 2007. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–861. doi:10.1038/nrmicro1768. PubMed DOI
Pitcher RS, Brissett NC, Doherty AJ. 2007. Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 61:259–282. doi:10.1146/annurev.micro.61.080706.093354. PubMed DOI
Bartlett EJ, Brissett NC, Doherty AJ. 2013. Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates. Proc Natl Acad Sci U S A 110:E1984–E1991. doi:10.1073/pnas.1302616110. PubMed DOI PMC
Malkova A, Haber JE. 2012. Mutations arising during repair of chromosome breaks. Annu Rev Genet 46:455–473. doi:10.1146/annurev-genet-110711-155547. PubMed DOI
Bétermier M, Bertrand P, Lopez BS. 2014. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10:e1004086. doi:10.1371/journal.pgen.1004086. PubMed DOI PMC
Seol J-H, Shim EY, Lee SE. 2018. Microhomology-mediated end joining: good, bad and ugly. Mutat Res 809:81–87. doi:10.1016/j.mrfmmm.2017.07.002. PubMed DOI PMC
Koole W, van Schendel R, Karambelas AE, van Heteren JT, Okihara KL, Tijsterman M. 2014. A polymerase theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat Commun 5:3216. doi:10.1038/ncomms4216. PubMed DOI
Wood RD, Doublié S. 2016. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair (Amst) 44:22–32. doi:10.1016/j.dnarep.2016.05.003. PubMed DOI PMC
Robert I, Dantzer F, Reina-San-Martin B. 2009. Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206:1047–1056. doi:10.1084/jem.20082468. PubMed DOI PMC
Rass E, Grabarz A, Plo I, Gautier J, Bertrand P, Lopez BS. 2009. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol 16:819–824. doi:10.1038/nsmb.1641. PubMed DOI
Lee-Theilen M, Matthews AJ, Kelly D, Zheng S, Chaudhuri J. 2011. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol 18:75–80. doi:10.1038/nsmb.1942. PubMed DOI PMC
Ma J-L, Kim EM, Haber JE, Lee SE. 2003. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 23:8820–8828. doi:10.1128/mcb.23.23.8820-8828.2003. PubMed DOI PMC
Paul K, Wang M, Mladenov E, Bencsik-Theilen A, Bednar T, Wu W, Arakawa H, Iliakis G. 2013. DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates. PLoS One 8:e59505. doi:10.1371/journal.pone.0059505. PubMed DOI PMC
He P, Yang W. 2018. Template and primer requirements for DNA Pol θ-mediated end joining. Proc Natl Acad Sci U S A 115:7747–7752. doi:10.1073/pnas.1807329115. PubMed DOI PMC
Chan SH, Yu AM, McVey M. 2010. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 6:e1001005. doi:10.1371/journal.pgen.1001005. PubMed DOI PMC
Yu AM, McVey M. 2010. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 38:5706–5717. doi:10.1093/nar/gkq379. PubMed DOI PMC
Roerink SF, van Schendel R, Tijsterman M, Schendel R, Tijsterman M. 2014. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res 24:954–962. doi:10.1101/gr.170431.113. PubMed DOI PMC
Sfeir A, Symington LS. 2015. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40:701–714. doi:10.1016/j.tibs.2015.08.006. PubMed DOI PMC
Pannunzio NR, Watanabe G, Lieber MR. 2018. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 293:10512–10523. doi:10.1074/jbc.TM117.000374. PubMed DOI PMC
Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Löbrich M. 2009. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28:3413–3427. doi:10.1038/emboj.2009.276. PubMed DOI PMC
Deriano L, Roth DB. 2013. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455. doi:10.1146/annurev-genet-110711-155540. PubMed DOI
Sallmyr A, Tomkinson AE. 2018. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 293:10536–10549. doi:10.1074/jbc.TM117.000375. PubMed DOI PMC
Burton P, McBride DJ, Wilkes JM, Barry JD, McCulloch R. 2007. Ku heterodimer-independent end joining in Trypanosoma brucei cell extracts relies upon sequence microhomology. Eukaryot Cell 6:1773–1781. doi:10.1128/EC.00212-07. PubMed DOI PMC
Lee AH, Symington LS, Fidock DA. 2014. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 78:469–486. doi:10.1128/MMBR.00059-13. PubMed DOI PMC
Gill EE, Fast NM. 2007. Stripped-down DNA repair in a highly reduced parasite. BMC Mol Biol 8:24. doi:10.1186/1471-2199-8-24. PubMed DOI PMC
Conway C, Proudfoot C, Burton P, Barry JD, McCulloch R. 2002. Two pathways of homologous recombination in Trypanosoma brucei. Mol Microbiol 45:1687–1700. doi:10.1046/j.1365-2958.2002.03122.x. PubMed DOI
Glover L, McCulloch R, Horn D. 2008. Sequence homology and microhomology dominate chromosomal double-strand break repair in African trypanosomes. Nucleic Acids Res 36:2608–2618. doi:10.1093/nar/gkn104. PubMed DOI PMC
Kirkman LA, Lawrence EA, Deitsch KW. 2014. Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity. Nucleic Acids Res 42:370–379. doi:10.1093/nar/gkt881. PubMed DOI PMC
Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL. 2014. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio 6:e02097-14. doi:10.1128/mBio.02097-14. PubMed DOI PMC
Zhang W-W, Matlashewski G. 2015. CRISPR-Cas9-mediated genome editing in Leishmania donovani. mBio 6:e00861-15. doi:10.1128/mBio.00861-15. PubMed DOI PMC
Zhang W-W, Lypaczewski P, Matlashewski G. 2017. Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms. mSphere 2:e00340-16. doi:10.1128/mSphere.00340-16. PubMed DOI PMC
Galindo LJ, Torruella G, Moreira D, Timpano H, Paskerova G, Smirnov A, Nassonova E, López-García P. 2018. Evolutionary genomics of Metchnikovella incurvata (Metchnikovellidae): an early branching microsporidium. Genome Biol Evol 10:2736–2748. doi:10.1093/gbe/evy205. PubMed DOI PMC
Bowater R, Doherty AJ. 2006. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2:e8. doi:10.1371/journal.pgen.0020008. PubMed DOI PMC
Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wilkinson A, d'Adda di Fagagna F, Devine KM, Bowater RP, Jeggo PA, Jackson SP, Doherty AJ. 2002. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297:1686–1689. doi:10.1126/science.1074584. PubMed DOI
Heidenreich E, Novotny R, Kneidinger B, Holzmann V, Wintersberger U. 2003. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J 22:2274–2283. doi:10.1093/emboj/cdg203. PubMed DOI PMC
Karathanasis E, Wilson TE. 2002. Enhancement of Saccharomyces cerevisiae end-joining efficiency by cell growth stage but not by impairment of recombination. Genetics 161:1015–1027. PubMed PMC
Ivics Z, Izsvák Z. 2015. Sleeping Beauty transposition. Microbiol Spectr 3:853–874. PubMed
Chaudhuri J, Alt FW. 2004. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4:541–552. doi:10.1038/nri1395. PubMed DOI
Matic I, Taddei F, Radman M. 2004. Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res Microbiol 155:337–341. doi:10.1016/j.resmic.2004.01.010. PubMed DOI
Deng W, Henriet S, Chourrout D. 2018. Prevalence of mutation-prone microhomology-mediated end joining in a chordate lacking the c-NHEJ DNA repair pathway. Curr Biol 28:3337–3341.e4. doi:10.1016/j.cub.2018.08.048. PubMed DOI
Chayot R, Montagne B, Mazel D, Ricchetti M. 2010. An end-joining repair mechanism in Escherichia coli. Proc Natl Acad Sci U S A 107:2141–2146. doi:10.1073/pnas.0906355107. PubMed DOI PMC
El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran A-N, Wortman JR, Alsmark UCM, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N. 2005. Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409. doi:10.1126/science.1112181. PubMed DOI
Weatherly DB, Peng D, Tarleton RL. 2016. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics 17:729. doi:10.1186/s12864-016-3037-z. PubMed DOI PMC
Jackson AP, Berry A, Aslett M, Allison HC, Burton P, Vavrova-Anderson J, Brown R, Browne H, Corton N, Hauser H, Gamble J, Gilderthorp R, Marcello L, McQuillan J, Otto TD, Quail MA, Sanders MJ, van Tonder A, Ginger ML, Field MC, Barry JD, Hertz-Fowler C, Berriman M. 2012. Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc Natl Acad Sci U S A 109:3416–3421. doi:10.1073/pnas.1117313109. PubMed DOI PMC
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, Filatov D, Flegontova O, Gerasimov ES, Hlaváčová J, Ishemgulova A, Jackson AP, Kelly S, Kostygov AY, Logacheva MD, Maslov DA, Opperdoes FR, O’Reilly A, Sádlová J, Ševčíková T, Venkatesh D, Vlček Č, Volf P, Votýpka J, Záhonová K, Yurchenko V, Lukeš J. 2016. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 6:23704. doi:10.1038/srep23704. PubMed DOI PMC
Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657. doi:10.1038/nature02398. PubMed DOI
Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG. 2001. Massive gene decay in the leprosy bacillus. Nature 409:1007–1011. doi:10.1038/35059006. PubMed DOI
Gardner MJ, Bishop R, Shah T, De Villiers EP, Carlton JM, Hall N, Ren Q, Paulsen IT, Pain A, Berriman M, Wilson RJM, Sato S, Ralph SA, Mann DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L, Lynn J, Weaver B, Shoaibi A, Domingo AR, Wasawo D, Crabtree J, Wortman JR, Haas B, Angiuoli SV, Creasy TH, Lu C, Suh B, Silva JC, Utterback TR, Feldblyum TV, Pertea M, Allen J, Nierman WC, Taracha ELN, Salzberg SL, White OR, Fitzhugh HA, Morzaria S, Venter JC, Fraser CM, Nene V. 2005. Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309:134–137. doi:10.1126/science.1110439. PubMed DOI
Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA. 2004. The genome of Cryptosporidium hominis. Nature 431:1107–1112. doi:10.1038/nature02977. PubMed DOI
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan M-S, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin D, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511. doi:10.1038/nature01097. PubMed DOI PMC
Kissinger JC, Gajria B, Li L, Paulsen IT, Roos DS. 2003. ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res 31:234–236. doi:10.1093/nar/gkg072. PubMed DOI PMC
Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès CP. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453. doi:10.1038/35106579. PubMed DOI
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao QQ, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CLC-L, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik S-BSB, Logsdon JM, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CHC-H, Lee YSY-S, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212. doi:10.1126/science.1132894. PubMed DOI PMC
Benabdelkader S, Andreani J, Gillet A, Terrer E, Pignoly M, Chaudet H, Aboudharam G, La Scola B. 2019. Specific clones of Trichomonas tenax are associated with periodontitis. PLoS One 14:e0213338. doi:10.1371/journal.pone.0213338. PubMed DOI PMC
Cavalier-Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:147–175. doi:10.1093/aob/mci010. PubMed DOI PMC
Poulin R, Randhawa H. 2015. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology 142:S6–S15. doi:10.1017/S0031182013001674. PubMed DOI PMC
Mari P-O, Florea BI, Persengiev SP, Verkaik NS, Bruggenwirth HT, Modesti M, Giglia-Mari G, Bezstarosti K, Demmers JAA, Luider TM, Houtsmuller AB, van Gent DC. 2006. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci U S A 103:18597–18602. doi:10.1073/pnas.0609061103. PubMed DOI PMC
Mimitou EP, Symington LS. 2010. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29:3358–3369. doi:10.1038/emboj.2010.193. PubMed DOI PMC
Bhargava R, Sandhu M, Muk S, Lee G, Vaidehi N, Stark JM. 2018. C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat Commun 9:2484. doi:10.1038/s41467-018-04867-5. PubMed DOI PMC
Malkova A, Ira G. 2013. Break-induced replication: functions and molecular mechanism. Curr Opin Genet Dev 23:271–279. doi:10.1016/j.gde.2013.05.007. PubMed DOI PMC
Boulton SJ, Jackson SP. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15:5093–5103. doi:10.1002/j.1460-2075.1996.tb00890.x. PubMed DOI PMC
Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A. 2000. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:510–514. doi:10.1038/35006670. PubMed DOI PMC
Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA, Alt FW. 2000. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci U S A 97:6630–6633. doi:10.1073/pnas.110152897. PubMed DOI PMC
Keeling PJ, Slamovits CH. 2005. Causes and effects of nuclear genome reduction. Curr Opin Genet Dev 15:601–608. doi:10.1016/j.gde.2005.09.003. PubMed DOI
Vinogradov AE. 2004. Evolution of genome size: multilevel selection, mutation bias or dynamical chaos? Curr Opin Genet Dev 14:620–626. doi:10.1016/j.gde.2004.09.007. PubMed DOI
Garcia-Diaz M, Kunkel TA. 2006. Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem Sci 31:206–214. doi:10.1016/j.tibs.2006.02.004. PubMed DOI
de Jong WW, Rydén L. 1981. Causes of more frequent deletions than insertions in mutations and protein evolution. Nature 290:157–159. doi:10.1038/290157a0. PubMed DOI
Graur D, Shuali Y, Li WH. 1989. Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol 28:279–285. doi:10.1007/BF02103423. PubMed DOI
Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. 2014. Is homologous recombination really an error-free process? Front Genet 5:175. doi:10.3389/fgene.2014.00175. PubMed DOI PMC
Bahmed K, Nitiss KC, Nitiss JL. 2010. Yeast Tdp1 regulates the fidelity of nonhomologous end joining. Proc Natl Acad Sci U S A 107:4057–4062. doi:10.1073/pnas.0909917107. PubMed DOI PMC
Daley JM, Wilson TE. 2005. Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Biol 25:896–906. doi:10.1128/MCB.25.3.896-906.2005. PubMed DOI PMC
Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16:2164–2173. doi:10.1128/mcb.16.5.2164. PubMed DOI PMC
Boulton SJ, Jackson SP. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24:4639–4648. doi:10.1093/nar/24.23.4639. PubMed DOI PMC
Chico L, Ciudad T, Hsu M, Lue NF, Larriba G. 2011. The Candida albicans Ku70 modulates telomere length and structure by regulating both telomerase and recombination. PLoS One 6:e23732. doi:10.1371/journal.pone.0023732. PubMed DOI PMC
d’Adda di Fagagna F, Hande MP, Tong WM, Roth D, Lansdorp PM, Wang ZQ, Jackson SP. 2001. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11:1192–1196. doi:10.1016/S0960-9822(01)00328-1. PubMed DOI
Barry JD, Ginger ML, Burton P, McCulloch R. 2003. Why are parasite contingency genes often associated with telomeres? Int J Parasitol 33:29–45. doi:10.1016/S0020-7519(02)00247-3. PubMed DOI
Merrick CJ, Duraisingh MT. 2006. Heterochromatin-mediated control of virulence gene expression. Mol Microbiol 62:612–620. doi:10.1111/j.1365-2958.2006.05397.x. PubMed DOI
Jackson AP, Otto TD, Darby A, Ramaprasad A, Xia D, Echaide IE, Farber M, Gahlot S, Gamble J, Gupta D, Gupta Y, Jackson L, Malandrin L, Malas TB, Moussa E, Nair M, Reid AJ, Sanders M, Sharma J, Tracey A, Quail MA, Weir W, Wastling JM, Hall N, Willadsen P, Lingelbach K, Shiels B, Tait A, Berriman M, Allred DR, Pain A. 2014. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction. Nucleic Acids Res 42:7113–7131. doi:10.1093/nar/gku322. PubMed DOI PMC
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UCM, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth T-J, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DMA, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream M-A, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CMR, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM. 2005. The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422. doi:10.1126/science.1112642. PubMed DOI
Navarro M, Cross GA, Wirtz E. 1999. Trypanosoma brucei variant surface glycoprotein regulation involves coupled activation/inactivation and chromatin remodeling of expression sites. EMBO J 18:2265–2272. doi:10.1093/emboj/18.8.2265. PubMed DOI PMC
Stringer JR, Keely SP. 2001. Genetics of surface antigen expression in Pneumocystis carinii. Infect Immun 69:627–639. doi:10.1128/IAI.69.2.627-639.2001. PubMed DOI PMC
Meyer TF, Mlawer N, So M. 1982. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 30:45–52. doi:10.1016/0092-8674(82)90010-1. PubMed DOI
Maskell DJ, Szabo MJ, Butler PD, Williams AE, Moxon ER. 1992. Molecular biology of phase-variable lipopolysaccharide biosynthesis by Haemophilus influenzae. J Infect Dis 165:S90–S92. doi:10.1093/infdis/165-Supplement_1-S90. PubMed DOI
Plasterk RHA, Simon MI, Barbour AG. 1985. Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii. Nature 318:257–263. doi:10.1038/318257a0. PubMed DOI
Li B. 2015. DNA double-strand breaks and telomeres play important roles in Trypanosoma brucei antigenic variation. Eukaryot Cell 14:196–205. doi:10.1128/EC.00207-14. PubMed DOI PMC
Freitas-Junior LH, Bottius E, Pirrit LA, Deitsch KW, Scheidig C, Guinet F, Nehrbass U, Wellems TE, Scherf A. 2000. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407:1018–1022. doi:10.1038/35039531. PubMed DOI
Taylor HM, Kyes SA, Newbold CI. 2000. Var gene diversity in Plasmodium falciparum is generated by frequent recombination events. Mol Biochem Parasitol 110:391–397. doi:10.1016/S0166-6851(00)00286-3. PubMed DOI
Calhoun SF, Reed J, Alexander N, Mason CE, Deitsch KW, Kirkman LA. 2017. Chromosome end repair and genome stability in Plasmodium falciparum. mBio 8:e00547-17. doi:10.1128/mBio.00547-17. PubMed DOI PMC
Celli GB, Denchi EL, de Lange T. 2006. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–890. doi:10.1038/ncb1444. PubMed DOI
Conway C, McCulloch R, Ginger ML, Robinson NP, Browitt A, Barry JD. 2002. Ku is important for telomere maintenance, but not for differential expression of telomeric VSG genes, in African trypanosomes. J Biol Chem 277:21269–21277. doi:10.1074/jbc.M200550200. PubMed DOI
Janzen CJ, Lander F, Dreesen O, Cross G. 2004. Telomere length regulation and transcriptional silencing in KU80-deficient Trypanosoma brucei. Nucleic Acids Res 32:6575–6584. doi:10.1093/nar/gkh991. PubMed DOI PMC
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29:43–52. doi:10.1016/j.pt.2012.11.001. PubMed DOI
Záhonová K, Kostygov AY, Ševčíková T, Yurchenko V, Eliáš M. 2016. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol 26:2364–2369. doi:10.1016/j.cub.2016.06.064. PubMed DOI
Genois M-M, Paquet ER, Laffitte M-C, Maity R, Rodrigue A, Ouellette M, Masson J-Y. 2014. DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol Mol Biol Rev 78:40–73. doi:10.1128/MMBR.00045-13. PubMed DOI PMC
Laffitte M-C, Leprohon P, Papadopoulou B, Ouellette M. 2016. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res 5:2350. doi:10.12688/f1000research.9218.1. PubMed DOI PMC
da Silva MS, Hovel-Miner GA, Briggs EM, Elias MC, McCulloch R. 2018. Evaluation of mechanisms that may generate DNA lesions triggering antigenic variation in African trypanosomes. PLoS Pathog 14:e1007321. doi:10.1371/journal.ppat.1007321. PubMed DOI PMC
Li H, Marple T, Hasty P. 2013. Ku80-deleted cells are defective at base excision repair. Mutat Res 745–746:16–25. doi:10.1016/j.mrfmmm.2013.03.010. PubMed DOI PMC
Reis H, Schwebs M, Dietz S, Janzen CJ, Butter F. 2018. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes. Nucleic Acids Res 46:2820–2833. doi:10.1093/nar/gky028. PubMed DOI PMC
van Schendel R, van Heteren J, Welten R, Tijsterman M. 2016. Genomic scars generated by polymerase theta reveal the versatile mechanism of alternative end-joining. PLoS Genet 12:e1006368. doi:10.1371/journal.pgen.1006368. PubMed DOI PMC
Kent T, Mateos-Gomez PA, Sfeir A, Pomerantz RT. 2016. Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining. Elife 5:e13740. doi:10.7554/eLife.13740. PubMed DOI PMC
Ajawatanawong P, Baldauf SL. 2013. Evolution of protein indels in plants, animals and fungi. BMC Evol Biol 13:140. doi:10.1186/1471-2148-13-140. PubMed DOI PMC
Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D. 2017. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res 45:1889–1901. doi:10.1093/nar/gkw1259. PubMed DOI PMC
Chen JQ, Wu Y, Yang H, Bergelson J, Kreitman M, Tian D. 2009. Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria. Mol Biol Evol 26:1523–1531. doi:10.1093/molbev/msp063. PubMed DOI
Vanichtanankul J, Taweechai S, Yuvaniyama J, Vilaivan T, Chitnumsub P, Kamchonwongpaisan S, Yuthavong Y. 2011. Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. ACS Chem Biol 6:905–911. doi:10.1021/cb200124r. PubMed DOI
Timm J, Valente M, García-Caballero D, Wilson KS, González-Pacanowska D. 2017. Structural characterization of acidic M17 leucine aminopeptidases from the TriTryps and evaluation of their role in nutrient starvation in Trypanosoma brucei. mSphere 2:e00226-17. doi:10.1128/mSphere.00226-17. PubMed DOI PMC
Mercaldi GF, Pereira HM, Cordeiro AT, Michels PAM, Thiemann OH. 2012. Structural role of the active-site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase. FEBS J 279:2012–2021. doi:10.1111/j.1742-4658.2012.08586.x. PubMed DOI
Timm J, González-Pacanowska D, Wilson KS. 2014. Structures of adenosine kinase from Trypanosoma brucei brucei. Acta Crystallogr F Struct Biol Commun 70:34–39. doi:10.1107/S2053230X13033621. PubMed DOI PMC
Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis