Diverse telomeres in trypanosomatids
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33612129
PubMed Central
PMC8311970
DOI
10.1017/s0031182021000378
PII: S0031182021000378
Knihovny.cz E-zdroje
- Klíčová slova
- Genomes, Trypanosomatidae, telomere maintenance,
- MeSH
- Leishmania mexicana genetika MeSH
- telomery metabolismus MeSH
- Trypanosomatina genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the ‘end replication and protection’ problems, associated with linearity. At the nucleotide level, telomeres typically represent stretches of tandemly arranged telomeric repeats, which vary in length and sequence among different groups of organisms. Recently, a composition of the telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this work, we subjected proteins from that list to a more detailed bioinformatic analysis and delineated a core set of 20 conserved proteins putatively associated with telomeres in trypanosomatids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to be affected. In this work, based on the analysis of a large set of trypanosomatids widely different in their phylogenetic position and life strategies, we demonstrated that telomeres of trypanosomatids are diverse in length, even within groups of closely related species. Our analysis showed that the expression of two proteins predicted to be associated with telomeres (those encoding telomerase and telomere-associated hypothetical protein orthologous to Tb927.6.4330) may directly affect and account for the differences in telomere length within the species of the Leishmania mexicana complex.
Faculty of Science Charles University BIOCEV 252 50Vestec Czech Republic
Faculty of Sciences University of South Bohemia 370 05České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 710 00Ostrava Czech Republic
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403–410. PubMed
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Goringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S and Aphasizhev R (2020) Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends in Parasitology 36, 337–355. PubMed PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ Jr., Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G and Wang H (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research 38, D457–D462. PubMed PMC
Beck K, Acestor N, Schulfer A, Anupama A, Carnes J, Panigrahi AK and Stuart K (2013) Trypanosoma brucei Tb927.2.6100 is an essential protein associated with kinetoplast DNA. Eukaryotic Cell 12, 970–978. PubMed PMC
Bernards A, Michels PA, Lincke CR and Borst P (1983) Growth of chromosome ends in multiplying trypanosomes. Nature 303, 592–597. PubMed
Borst P and van Leeuwen F (1997) beta-D-glucosyl-hydroxymethyluracil, a novel base in African trypanosomes and other Kinetoplastida. Molecular and Biochemical Parasitology 90, 1–8. PubMed
Boulton SJ and Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO Journal 17, 1819–1828. PubMed PMC
Butenko A, Kostygov AY, Sádlová J, Kleschenko Y, Bečvář T, Podešvová L, Macedo DH, Žihala D, Lukeš J, Bates PA, Volf P, Opperdoes FR and Yurchenko V (2019) Comparative genomics of Leishmania (Mundinia). BMC Genomics 20, 726. PubMed PMC
Campelo R, Diaz Lozano I, Figarella K, Osuna A and Ramirez JL (2015) Leishmania major telomerase TERT protein has a nuclear/mitochondrial eclipsed distribution that is affected by oxidative stress. Infection and Immunity 83, 57–66. PubMed PMC
Chico L, Ciudad T, Hsu M, Lue NF and Larriba G (2011) The Candida albicans Ku70 modulates telomere length and structure by regulating both telomerase and recombination. PLoS ONE 6, e23732. PubMed PMC
Chiurillo MA, Cano I, Da Silveira JF and Ramirez JL (1999) Organization of telomeric and sub-telomeric regions of chromosomes from the protozoan parasite Trypanosoma cruzi. Molecular and Biochemical Parasitology 100, 173–183. PubMed
Chiurillo MA, Peralta A and Ramirez JL (2002) Comparative study of Trypanosoma rangeli and Trypanosoma cruzi telomeres. Molecular and Biochemical Parasitology 120, 305–308. PubMed
Clayton C (2019) Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biology 9, 190072. PubMed PMC
Conte FF and Cano MI (2005) Genomic organization of telomeric and subtelomeric sequences of Leishmania (Leishmania) amazonensis. International Journal for Parasitology 35, 1435–1443. PubMed
Csűrös M (2010) Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics (Oxford, England) 26, 1910–1912. PubMed
Damasceno JD, Marques CA, Beraldi D, Crouch K, Lapsley C, Obonaga R, Tosi LR and McCulloch R (2020) Genome duplication in Leishmania major relies on persistent subtelomeric DNA replication. eLife 9, e58030. PubMed PMC
Damasceno JD, Marques CA, Black J, Briggs E and McCulloch R (2021) Read, write, adapt: challenges and opportunities during kinetoplastid genome replication. Trends in Genetics 37, 21–34. PubMed PMC
de Lima LP, Calderano SG, da Silva MS, de Araujo CB, Vasconcelos EJR, Iwai LK, Pereira CA, Fragoso SP and Elias MC (2019) Ortholog of the polymerase theta helicase domain modulates DNA replication in Trypanosoma cruzi. Scientific Reports 9, 2888. PubMed PMC
Dobson DE, Scholtes LD, Myler PJ, Turco SJ and Beverley SM (2006) Genomic organization and expression of the expanded SCG/L/R gene family of Leishmania major: internal clusters and telomeric localization of SCGs mediating species-specific LPG modifications. Molecular and Biochemical Parasitology 146, 231–241. PubMed
Docampo R (2016) The origin and evolution of the acidocalcisome and its interactions with other organelles. Molecular and Biochemical Parasitology 209, 3–9. PubMed PMC
Dreesen O and Cross GA (2006) Telomerase-independent stabilization of short telomeres in Trypanosoma brucei. Molecular and Cellular Biology 26, 4911–4919. PubMed PMC
Dreesen O and Cross GA (2008) Telomere length in Trypanosoma brucei. Experimental Parasitology 118, 103–110. PubMed PMC
Dreesen O, Li B and Cross GA (2005) Telomere structure and shortening in telomerase-deficient Trypanosoma brucei. Nucleic Acids Research 33, 4536–4543. PubMed PMC
Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome Informatics 23, 205–211. PubMed
Eresh S, McCallum SM and Barker DC (1994) Identification and diagnosis of Leishmania mexicana complex isolates by polymerase chain reaction. Parasitology 109, 423–433. PubMed
Espinosa OA, Serrano MG, Camargo EP, Teixeira MM and Shaw JJ (2018) An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 145, 430–442. PubMed
Estévez AM (2008) The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Research 36, 4573–4586. PubMed PMC
Fernández-Orgiler A, Martinez-Jimenez MI, Alonso A, Alcolea PJ, Requena JM, Thomas MC, Blanco L and Larraga V (2016) A putative Leishmania DNA polymerase theta protects the parasite against oxidative damage. Nucleic Acids Research 44, 4855–4870. PubMed PMC
Frank AK, Tran DC, Qu RW, Stohr BA, Segal DJ and Xu L (2015) The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS Genetics 11, e1005410. PubMed PMC
Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Yurchenko V and Kostygov AY (2019) Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas. PLoS ONE 14, e0214484. PubMed PMC
Fu G and Barker DC (1998a) Characterisation of Leishmania telomeres reveals unusual telomeric repeats and conserved telomere-associated sequence. Nucleic Acids Research 26, 2161–2167. PubMed PMC
Fu G and Barker DC (1998b) Rapid cloning of telomere-associated sequence using primer-tagged amplification. Biotechniques 24, 386–390. PubMed
Fu G, Perona-Wright G and Barker DC (1998) Leishmania braziliensis: characterisation of a complex specific subtelomeric repeat sequence and its use in the detection of parasites. Experimental Parasitology 90, 236–243. PubMed
Fulnečková J, Ševčíková T, Fajkus J, Lukešová A, Lukeš M, Vlček Č, Lang BF, Kim E, Eliáš M and Sýkorová E (2013) A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biology and Evolution 5, 468–483. PubMed PMC
Genest PA and Borst P (2007) Analysis of telomere length variation in Leishmania over time. Molecular and Biochemical Parasitology 151, 213–215. PubMed
Genest PA, Ter Riet B, Cijsouw T, van Luenen HG and Borst P (2007) Telomeric localization of the modified DNA base J in the genome of the protozoan parasite Leishmania. Nucleic Acids Research 35, 2116–2124. PubMed PMC
Glover L, Hutchinson S, Alsford S and Horn D (2016) VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. Proceedings of the National Academy of Sciences of the USA 113, 7225–7230. PubMed PMC
Glover L, Marques CA, Suska O and Horn D (2019) Persistent DNA damage foci and DNA replication with a broken chromosome in the African trypanosome. MBio 10, e01252–e01219. PubMed PMC
Greider CW (1990) Telomeres, telomerase and senescence. Bioessays 12, 363–369. PubMed
Greider CW and Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413. PubMed
Grybchuk D, Akopyants NS, Kostygov AY, Konovalovas A, Lye LF, Dobson DE, Zangger H, Fasel N, Butenko A, Frolov AO, Votýpka J, d'Avila-Levy CM, Kulich P, Moravcová J, Plevka P, Rogozin IB, Serva S, Lukeš J, Beverley SM and Yurchenko V (2018) Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proceedings of the National Academy of Sciences of the USA 115, E506–E515. PubMed PMC
Hackett JA and Greider CW (2002) Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 21, 619–626. PubMed
Hock R, Furusawa T, Ueda T and Bustin M (2007) HMG chromosomal proteins in development and disease. Trends in Cell Biology 17, 72–79. PubMed PMC
Horn D, Spence C and Ingram AK (2000) Telomere maintenance and length regulation in Trypanosoma brucei. EMBO Journal 19, 2332–2339. PubMed PMC
Hovel-Miner GA, Boothroyd CE, Mugnier M, Dreesen O, Cross GA and Papavasiliou FN (2012) Telomere length affects the frequency and mechanism of antigenic variation in Trypanosoma brucei. PLoS Pathogens 8, e1002900. PubMed PMC
Janzen CJ, Lander F, Dreesen O and Cross GA (2004) Telomere length regulation and transcriptional silencing in Ku80-deficient Trypanosoma brucei. Nucleic Acids Research 32, 6575–6584. PubMed PMC
Jehi SE, Li X, Sandhu R, Ye F, Benmerzouga I, Zhang M, Zhao Y and Li B (2014a) Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity. Nucleic Acids Research 42, 12899–12911. PubMed PMC
Jehi SE, Wu F and Li B (2014b) Trypanosoma brucei TIF2 suppresses VSG switching by maintaining subtelomere integrity. Cell Research 24, 870–885. PubMed PMC
Jehi SE, Nanavaty V and Li B (2016) Trypanosoma brucei TIF2 and TRF suppress VSG switching using overlapping and independent mechanisms. PLoS ONE 11, e0156746. PubMed PMC
Kato H, Caceres AG, Seki C, Silupu Garcia CR, Holguin Mauricci C, Castro Martinez SC, Moreno Paico D, Castro Muniz JL, Troyes Rivera LD, Villegas Briones ZI, Guerrero Quincho S, Sulca Jayo GL, Tineo Villafuerte E, Manrique de Lara Estrada C, Arias FR, Passara FS, Ruelas Llerena N, Kubo M, Tabbabi A, Yamamoto DS and Hashiguchi Y (2019) Further insight into the geographic distribution of Leishmania species in Peru by cytochrome b and mannose phosphate isomerase gene analyses. PLoS Neglected Tropical Diseases 13, e0007496. PubMed PMC
Kostygov AY and Yurchenko V (2017) Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasitologica 64, 020. PubMed
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO and Yurchenko V (2014) Molecular revision of the genus Wallaceina. Protist 165, 594–604. PubMed
Kostygov A, Frolov AO, Malysheva MN, Ganyukova AI, Chistyakova LV, Tashyreva D, Tesařová M, Spodareva VV, Režnarová J, Macedo DH, Butenko A, d'Avila-Levy CM, Lukeš J and Yurchenko V (2020) Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biology 18, 187. PubMed PMC
Kraeva N, Leštinová T, Ishemgulova A, Majerová K, Butenko A, Vaselek S, Bespyatykh J, Charyyeva A, Spitzová T, Kostygov AY, Lukeš J, Volf P, Votýpka J and Yurchenko V (2019) LmxM.22.0250-encoded dual specificity protein/lipid phosphatase impairs Leishmania mexicana virulence in vitro. Pathogens (Basel, Switzerland) 8, 241. PubMed PMC
Kramer S, Bannerman-Chukualim B, Ellis L, Boulden EA, Kelly S, Field MC and Carrington M (2013) Differential localization of the two T. brucei poly(A) binding proteins to the nucleus and RNP granules suggests binding to distinct mRNA pools. PLoS ONE 8, e54004. PubMed PMC
Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H, Lemgruber L, Luko K, Wilkes J, Butter F, McCulloch R and Janzen CJ (2020) Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Nucleic Acids Research 48, 9660–9680. PubMed PMC
Lewis KA and Wuttke DS (2012) Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure (London, England: 1993) 20, 28–39. PubMed PMC
Li B, Espinal A and Cross GA (2005) Trypanosome telomeres are protected by a homologue of mammalian TRF2. Molecular and Cellular Biology 25, 5011–5021. PubMed PMC
Li CH, Irmer H, Gudjonsdottir-Planck D, Freese S, Salm H, Haile S, Estevez AM and Clayton C (2006) Roles of a Trypanosoma brucei 5′->3′ exoribonuclease homolog in mRNA degradation. RNA 12, 2171–2186. PubMed PMC
Lukeš J, Skalický T, Týč J, Votýpka J and Yurchenko V (2014) Evolution of parasitism in kinetoplastid flagellates. Molecular and Biochemical Parasitology 195, 115–122. PubMed
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J and Yurchenko V (2018) Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends in Parasitology 34, 466–480. PubMed
Lyčka M, Peška V, Demko M, Spyroglou I, Kilar A, Fajkus J and Fojtová M (2021) WALTER: an easy way to online evaluate telomere lengths from terminal restriction fragment analysis. BMC Bioinformatics (in press). PubMed PMC
Maslov DA, Votýpka J, Yurchenko V and Lukeš J (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends in Parasitology 29, 43–52. PubMed
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J and Yurchenko V (2019) Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1–27. PubMed
Michaeli S (2011) Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiology 6, 459–474. PubMed
Muñoz-Jordán JL, Cross GA, de Lange T and Griffith JD (2001) T-loops at trypanosome telomeres. EMBO Journal 20, 579–588. PubMed PMC
Nanavaty V, Sandhu R, Jehi SE, Pandya UM and Li B (2017) Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids. Nucleic Acids Research 45, 5785–5796. PubMed PMC
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Ziková A, Yurchenko V and Lukeš J (2019) Causes and effects of loss of classical nonhomologous end joining pathway in parasitic eukaryotes. MBio 10, e01541–e01519. PubMed PMC
Nussbaum K, Honek J, Cadmus CM and Efferth T (2010) Trypanosomatid parasites causing neglected diseases. Current Medicinal Chemistry 17, 1594–1617. PubMed
Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology 41, 181–190. PubMed
Pardue ML, Danilevskaya ON, Traverse KL and Lowenhaupt K (1997) Evolutionary links between telomeres and transposable elements. Genetica 100, 73–84. PubMed
Paugam A, Bulteau AL, Dupouy-Camet J, Creuzet C and Friguet B (2003) Characterization and role of protozoan parasite proteasomes. Trends in Parasitology 19, 55–59. PubMed
Pavani RS, da Silva MS, Fernandes CA, Morini FS, Araujo CB, Fontes MR, Sant'Anna OA, Machado CR, Cano MI, Fragoso SP and Elias MC (2016) Replication protein A presents canonical functions and is also involved in the differentiation capacity of Trypanosoma cruzi. PLoS Neglected Tropical Diseases 10, e0005181. PubMed PMC
Pays E, Laurent M, Delinte K, Van Meirvenne N and Steinert M (1983) Differential size variations between transcriptionally active and inactive telomeres of Trypanosoma brucei. Nucleic Acids Research 11, 8137–8147. PubMed PMC
Pfeiffer V and Lingner J (2013) Replication of telomeres and the regulation of telomerase. Cold Spring Harbor Perspectives in Biology 5, a010405. PubMed PMC
Porcel BM, Denoeud F, Opperdoes FR, Noel B, Madoui M-A, Hammarton TC, Field MC, Da Silva C, Couloux A, Poulain J, Katinka M, Jabbari K, Aury J-M, Campbell DA, Cintron R, Dickens NJ, Docampo R, Sturm NR, Koumandou VL, Fabre S, Flegontov P, Lukeš J, Michaeli S, Mottram JC, Szoor B, Zilberstein D, Bringaud F, W P and Dollet M (2014) The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genetics 10, e1004007. PubMed PMC
Rahnama M, Novikova O, Starnes JH, Zhang S, Chen L and Farman ML (2020) Transposon-mediated telomere destabilization: a driver of genome evolution in the blast fungus. Nucleic Acids Research 48, 7197–7217. PubMed PMC
Reis H, Schwebs M, Dietz S, Janzen CJ and Butter F (2018) TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes. Nucleic Acids Research 46, 2820–2833. PubMed PMC
Riha K and Shippen DE (2003) Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proceedings of the National Academy of Sciences of the USA 100, 611–615. PubMed PMC
Rudd SG, Glover L, Jozwiakowski SK, Horn D and Doherty AJ (2013) PPL2 translesion polymerase is essential for the completion of chromosomal DNA replication in the African trypanosome. Molecular Cell 52, 554–565. PubMed PMC
Ruvinsky I and Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends in Biochemical Sciences 31, 342–348. PubMed
Sandhu R, Sanford S, Basu S, Park M, Pandya UM, Li B and Chakrabarti K (2013) A trans-spliced telomerase RNA dictates telomere synthesis in Trypanosoma brucei. Cell Research 23, 537–551. PubMed PMC
Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, Connor R, Fiorini N, Funk K, Hefferon T, Holmes JB, Kim S, Kimchi A, Kitts PA, Lathrop S, Lu Z, Madden TL, Marchler-Bauer A, Phan L, Schneider VA, Schoch CL, Pruitt KD and Ostell J (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 47, D23–D28. PubMed PMC
Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, Reed S and Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. Journal of Clinical Investigation 118, 1301–1310. PubMed PMC
Szöör B, Haanstra JR, Gualdrón-López M and Michels PA (2014) Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Current Opinion in Microbiology 22, 79–87. PubMed
Tomáška L, Nosek J, Kar A, Willcox S and Griffith JD (2019) A new view of the t-loop junction: implications for self-primed telomere extension, expansion of disease-related nucleotide repeat blocks, and telomere evolution. Frontiers in Genetics 10, 792. PubMed PMC
van Luenen HG, Farris C, Jan S, Genest PA, Tripathi P, Velds A, Kerkhoven RM, Nieuwland M, Haydock A, Ramasamy G, Vainio S, Heidebrecht T, Perrakis A, Pagie L, van Steensel B, Myler PJ and Borst P (2012) Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell 150, 909–921. PubMed PMC
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J and Yurchenko V (2014) Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165, 825–838. PubMed
Walne AJ, Vulliamy T, Beswick R, Kirwan M and Dokal I (2008) TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112, 3594–3600. PubMed PMC
Yang X, Figueiredo LM, Espinal A, Okubo E and Li B (2009) RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell 137, 99–109. PubMed PMC
Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J and Vesteg M (2014) A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Letters 588, 783–788. PubMed
Záhonová K, Kostygov A, Ševčíková T, Yurchenko V and Eliáš M (2016) An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Current Biology 26, 2364–2369. PubMed
Zoltner M, Krienitz N, Field MC and Kramer S (2018) Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Neglected Tropical Diseases 12, e0006679. PubMed PMC