Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
R01 AI029646
NIAID NIH HHS - United States
R01 AI130222
NIAID NIH HHS - United States
R56 AI099364
NIAID NIH HHS - United States
PubMed
29284754
PubMed Central
PMC5776999
DOI
10.1073/pnas.1717806115
PII: 1717806115
Knihovny.cz E-zdroje
- Klíčová slova
- Bunyavirales, Trypanosomatidae, coevolution, coinfection, persistent virus infection,
- MeSH
- fylogeneze MeSH
- genetická variace MeSH
- hostitelská specificita MeSH
- infekce prvoky kmene Euglenozoa parazitologie veterinární MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- RNA-viry genetika izolace a purifikace MeSH
- Trypanosomatina virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite Leishmania (Crithidia and Leptomonas), as well as plant-infecting PhytomonasLeptomonas pyrrhocoris was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as Leptomonas seymouri bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis. A deep-branching trypanosomatid viral lineage showing strong affinities to bunyaviruses was termed "Leishbunyavirus" (LBV) and judged sufficiently distinct to warrant assignment within a proposed family termed "Leishbunyaviridae" Numerous relatives of trypanosomatid viruses were found in insect metatranscriptomic surveys, which likely arise from trypanosomatid microbiota. Despite extensive sampling we found no relatives of the totivirus Leishmaniavirus (LRV1/2), implying that it was acquired at about the same time the Leishmania became able to parasitize vertebrates. As viruses were found in over a quarter of isolates tested, many more are likely to be found in the >600 unsurveyed trypanosomatid species. Viral loss was occasionally observed in culture, providing potentially isogenic virus-free lines enabling studies probing the biological role of trypanosomatid viruses. These data shed important insights on the emergence of viruses within an important trypanosomatid clade relevant to human disease.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Biochemistry University of Lausanne 1066 Epalinges Switzerland
Department of Molecular Microbiology Washington University School of Medicine Saint Louis MO 63110
Department of Molecular Microbiology Washington University School of Medicine Saint Louis MO 63110;
Department of Parasitology Faculty of Science Charles University 128 44 Prague Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic;
University of South Bohemia Faculty of Sciences 370 05 České Budějovice Czech Republic
Veterinary Research Institute 621 00 Brno Czech Republic
Zoological Institute of the Russian Academy of Sciences St Petersburg 199034 Russia
Zobrazit více v PubMed
Shi M, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–543. PubMed
Wang AL, Wang CC. Viruses of the protozoa. Annu Rev Microbiol. 1991;45:251–263. PubMed
Banik GR, Stark D, Rashid H, Ellis JT. Recent advances in molecular biology of parasitic viruses. Infect Disord Drug Targets. 2014;14:155–167. PubMed
Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479-480:356–368. PubMed
Chen B, Geletka LM, Nuss DL. Using chimeric hypoviruses to fine-tune the interaction between a pathogenic fungus and its plant host. J Virol. 2000;74:7562–7567. PubMed PMC
Ives A, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331:775–778. PubMed PMC
Fichorova RN, et al. Endobiont viruses sensed by the human host–Beyond conventional antiparasitic therapy. PLoS One. 2012;7:e48418. PubMed PMC
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016;63:657–678. PubMed
Stuart K, Panigrahi AK. RNA editing: Complexity and complications. Mol Microbiol. 2002;45:591–596. PubMed
Záhonová K, Kostygov AY, Ševčíková T, Yurchenko V, Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol. 2016;26:2364–2369. PubMed
Simpson L. A base called J. Proc Natl Acad Sci USA. 1998;95:2037–2038. PubMed PMC
Michaeli S. Trans-splicing in trypanosomes: Machinery and its impact on the parasite transcriptome. Future Microbiol. 2011;6:459–474. PubMed
Nussbaum K, Honek J, Cadmus CM, Efferth T. Trypanosomatid parasites causing neglected diseases. Curr Med Chem. 2010;17:1594–1617. PubMed
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. PubMed
Flegontov P, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23:1787–1793. PubMed
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195:115–122. PubMed
Kostygov AY, Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae) Folia Parasitol. 2017;64:020. PubMed
Molyneux DH. Virus-like particles in Leishmania parasites. Nature. 1974;249:588–589. PubMed
Croft SL, Chance ML, Gardener PJ. Ultrastructural and biochemical characterization of stocks of Endotrypanum. Ann Trop Med Parasitol. 1980;74:585–589. PubMed
Soares MJ, Motta MC, de Souza W. Bacterium-like endosymbiont and virus-like particles in the trypanosomatid Crithidia desouzai. Microbios Lett. 1989;41:137–141.
Marche S, Roth C, Manohar SK, Dollet M, Baltz T. RNA virus-like particles in pathogenic plant trypanosomatids. Mol Biochem Parasitol. 1993;57:261–267. PubMed
Yurchenko V, et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 2014;61:97–112. PubMed
Kraeva N, et al. Leptomonas seymouri: Adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11:e1005127. PubMed PMC
Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL. Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci USA. 1989;86:5979–5982. PubMed PMC
Tarr PI, et al. LR1: A candidate RNA virus of Leishmania. Proc Natl Acad Sci USA. 1988;85:9572–9575. PubMed PMC
Eren RO, et al. Mammalian innate immune response to a Leishmania-resident RNA Virus increases macrophage survival to promote parasite persistence. Cell Host Microbe. 2016;20:318–328. PubMed PMC
Brettmann EA, et al. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc Natl Acad Sci USA. 2016;113:11998–12005. PubMed PMC
Zangger H, et al. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl Trop Dis. 2014;8:e2836. PubMed PMC
Rossi M, et al. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc Natl Acad Sci USA. 2017;114:4987–4992. PubMed PMC
Hartley MA, Drexler S, Ronet C, Beverley SM, Fasel N. The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends Parasitol. 2014;30:412–422. PubMed PMC
Ronet C, Beverley SM, Fasel N. Muco-cutaneous leishmaniasis in the New World: The ultimate subversion. Virulence. 2011;2:547–552. PubMed PMC
Adaui V, et al. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by Leishmania braziliensis in Peru and Bolivia. J Infect Dis. 2016;213:112–121. PubMed PMC
Bourreau E, et al. Presence of Leishmania RNA Virus 1 in Leishmania guyanensis increases the risk of first-line treatment failure and symptomatic relapse. J Infect Dis. 2016;213:105–111. PubMed
Ito MM, et al. Correlation between presence of Leishmania RNA virus 1 and clinical characteristics of nasal mucosal leishmaniosis. Rev Bras Otorrinolaringol (Engl Ed) 2015;81:533–540. PubMed PMC
Cantanhêde LM, et al. Further evidence of an association between the presence of Leishmania RNA Virus 1 and the mucosal manifestations in tegumentary leishmaniasis patients. PLoS Negl Trop Dis. 2015;9:e0004079. PubMed PMC
Pereira LdeO, et al. Severity of tegumentary leishmaniasis is not exclusively associated with Leishmania RNA virus 1 infection in Brazil. Mem Inst Oswaldo Cruz. 2013;108:665–667. PubMed PMC
Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. A novel Bunyavirus-like virus of trypanosomatid protist parasites. Genome Announc. 2016;4:e00715–e00716. PubMed PMC
Lye LF, Akopyants NS, Dobson DE, Beverley SM. A Narnavirus-like element from the trypanosomatid protozoan parasite Leptomonas seymouri. Genome Announc. 2016;4:e00713–e00716. PubMed PMC
Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. A Narnavirus in the trypanosomatid protist plant pathogen Phytomonas serpens. Genome Announc. 2016;4:e00711–e00716. PubMed PMC
Sukla S, Roy S, Sundar S, Biswas S. Leptomonas seymouri narna-like virus 1 and not leishmaniaviruses detected in kala-azar samples from India. Arch Virol. 2017;162:3827–3835. PubMed
Beiting DP, et al. Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS One. 2014;9:e88398. PubMed PMC
Votýpka J, et al. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist. 2012;163:616–631. PubMed
Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. PubMed PMC
Firth AE, Chung BY, Fleeton MN, Atkins JF. Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virol J. 2008;5:108. PubMed PMC
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 2016;44:7007–7078. PubMed PMC
Dreher TW, Miller WA. Translational control in positive strand RNA plant viruses. Virology. 2006;344:185–197. PubMed PMC
Kim KH, Lommel SA. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus. Virology. 1998;250:50–59. PubMed
Olivier V, et al. Molecular characterisation and phylogenetic analysis of Chronic bee paralysis virus, a honey bee virus. Virus Res. 2008;132:59–68. PubMed
Johnson KN, Johnson KL, Dasgupta R, Gratsch T, Ball LA. Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. J Gen Virol. 2001;82:1855–1866. PubMed
Na H, White KA. Structure and prevalence of replication silencer-3′ terminus RNA interactions in Tombusviridae. Virology. 2006;345:305–316. PubMed
Schneemann A, Ball LA, Delsert C, Johnson JE, Nishizawa T. Family Nodaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier; New York: 2005. pp. 865–872.
Socha R. Pyrrhocoris apterus (Heteroptera) - an experimental model species: A review. Eur J Entomol. 1993;90:241–286.
Flegontov P, et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704. PubMed PMC
Feschotte C, Gilbert C. Endogenous viruses: Insights into viral evolution and impact on host biology. Nat Rev Genet. 2012;13:283–296. PubMed
Bruenn JA, Warner BE, Yerramsetty P. Widespread mitovirus sequences in plant genomes. PeerJ. 2015;3:e876. PubMed PMC
Geuking MB, et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science. 2009;323:393–396. PubMed
Viruses ICoTo . Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Academic; London: 2012. p. 1327.
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–858. PubMed PMC
Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:W244–W248. PubMed PMC
Routhier E, Bruenn JA. Functions of conserved motifs in the RNA-dependent RNA polymerase of a yeast double-stranded RNA virus. J Virol. 1998;72:4427–4429. PubMed PMC
te Velthuis AJW. Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci. 2014;71:4403–4420. PubMed PMC
Gong P, Peersen OB. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci USA. 2010;107:22505–22510. PubMed PMC
Bishop DH. Ambisense RNA viruses: Positive and negative polarities combined in RNA virus genomes. Microbiol Sci. 1986;3:183–187. PubMed
Elliott RM. Molecular biology of the Bunyaviridae. J Gen Virol. 1990;71:501–522. PubMed
Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010;6:e1001101. PubMed PMC
Sanchez AJ, Vincent MJ, Nichol ST. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol. 2002;76:7263–7275. PubMed PMC
Cifuentes-Muñoz N, Salazar-Quiroz N, Tischler ND. Hantavirus Gn and Gc envelope glycoproteins: Key structural units for virus cell entry and virus assembly. Viruses. 2014;6:1801–1822. PubMed PMC
Moriconi M, et al. Phlebotomine sand fly-borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLoS Negl Trop Dis. 2017;11:e0005660. PubMed PMC
Li CX, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife. 2015;4:e05378. PubMed PMC
Remnant EJ, et al. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol. 2017;91:e00158–17. PubMed PMC
Dudas G, Obbard DJ. Are arthropods at the heart of virus evolution? eLife. 2015;4:e06837. PubMed PMC
Marklewitz M, Zirkel F, Kurth A, Drosten C, Junglen S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. Proc Natl Acad Sci USA. 2015;112:7536–7541. PubMed PMC
Franzosa EA, et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol. 2015;13:360–372. PubMed PMC
d’Avila-Levy CM, et al. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz. 2015;110:956–965. PubMed PMC
Votýpka J, et al. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist. 2014;165:825–838. PubMed
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165:594–604. PubMed
Yurchenko VY, Lukeš J, Jirků M, Maslov DA. Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: A case of several novel species isolated from Neotropical Heteroptera. Int J Syst Evol Microbiol. 2009;59:893–909. PubMed
Votýpka J, et al. Probing into the diversity of trypanosomatid flagellates parasitizing insect hosts in South-West China reveals both endemism and global dispersal. Mol Phylogenet Evol. 2010;54:243–253. PubMed
Rodríguez-Cousiño N, Solórzano A, Fujimura T, Esteban R. Yeast positive-stranded virus-like RNA replicons. 20 S and 23 S RNA terminal nucleotide sequences and 3′ end secondary structures resemble those of RNA coliphages. J Biol Chem. 1998;273:20363–20371. PubMed
Murphy WJ, Watkins KP, Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: Evidence for trans splicing. Cell. 1986;47:517–525. PubMed
Günzl A. The pre-mRNA splicing machinery of trypanosomes: Complex or simplified? Eukaryot Cell. 2010;9:1159–1170. PubMed PMC
Mandelboim M, Estraño CL, Tschudi C, Ullu E, Michaeli S. On the role of exon and intron sequences in trans-splicing utilization and cap 4 modification of the trypanosomatid Leptomonas collosoma SL RNA. J Biol Chem. 2002;277:35210–35218. PubMed
Cai G, Myers K, Fry WE, Hillman BI. A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch Virol. 2012;157:165–169. PubMed
Reinhardt JA, et al. Meiotic drive impacts expression and evolution of x-linked genes in stalk-eyed flies. PLoS Genet. 2014;10:e1004362. PubMed PMC
Rastgou M, et al. Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J Gen Virol. 2009;90:2525–2535. PubMed PMC
Hillman BI, Cai G. The family narnaviridae: Simplest of RNA viruses. Adv Virus Res. 2013;86:149–176. PubMed
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology. 2015;479–480:2–25. PubMed PMC
Dolja VV, Krupovic M. Accelerating expansion of the viral universe. Curr Opin Virol. 2013;3:542–545. PubMed
Araújo JP, Hughes DP. Diversity of entomopathogenic fungi: Which groups conquered the insect body? Adv Genet. 2016;94:1–39. PubMed
Mitchell PL. Heteroptera as vectors of plant pathogens. Neotrop Entomol. 2004;33:519–545.
Ro YT, Scheffter SM, Patterson JL. Hygromycin B resistance mediates elimination of Leishmania virus from persistently infected parasites. J Virol. 1997;71:8991–8998. PubMed PMC
Patterson JL. The current status of Leishmania RNA virus 1. Parasitol Today. 1993;9:135–136. PubMed
Widmer G, Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995;23:2300–2304. PubMed PMC
Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N. Leishmania RNA virus: When the host pays the toll. Front Cell Infect Microbiol. 2012;2:99. PubMed PMC
Obbard DJ, Gordon KH, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci. 2009;364:99–115. PubMed PMC
Matveyev AV, et al. The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. J Mol Evol. 2017;84:104–115. PubMed PMC
Lye LF, et al. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6:e1001161. PubMed PMC
Ghosh S, Banerjee P, Sarkar A, Datta S, Chatterjee M. Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J Clin Microbiol. 2012;50:2774–2778. PubMed PMC
Krautz R, Arefin B, Theopold U. Damage signals in the insect immune response. Front Plant Sci. 2014;5:342. PubMed PMC
Podlipaev SA. Insect trypanosomatids: The need to know more. Mem Inst Oswaldo Cruz. 2000;95:517–522. PubMed
Chomczyński P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. PubMed
Potgieter AC, et al. Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol. 2009;90:1423–1432. PubMed
Liu H, et al. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol Biol. 2012;12:91. PubMed PMC
Maslov DA, Yurchenko VY, Jirků M, Lukeš J. Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol. 2010;57:177–188. PubMed
Yurchenko V, Lukeš J, Tesarová M, Jirků M, Maslov DA. Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist. 2008;159:99–114. PubMed
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. PubMed PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. PubMed PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. PubMed PMC
Ronquist F, et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. PubMed PMC
Chistyakova LV, Kostygov AY, Kornilova OA, Yurchenko V. Reisolation and redescription of Balantidium duodeni Stein, 1867 (Litostomatea, Trichostomatia) Parasitol Res. 2014;113:4207–4215. PubMed
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. PubMed PMC
Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. PubMed PMC
Mullapudi E, et al. Structure and genome release mechanism of the human cardiovirus Saffold virus 3. J Virol. 2016;90:7628–7639. PubMed PMC
Owczarzy R, et al. IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 2008;36:W163–W169. PubMed PMC
Analysis of Leishbuviridae from Trypanosomatids
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania
Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris
Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Diverse telomeres in trypanosomatids
Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
The First Non-LRV RNA Virus in Leishmania
Molecular Characterization of Leishmania RNA virus 2 in Leishmaniamajor from Uzbekistan
RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus
RNA viruses in trypanosomatid parasites: a historical overview