Saccharomyces paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral dsRNA Content

. 2020 Nov 30 ; 8 (12) : . [epub] 20201130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33266158
Odkazy

PubMed 33266158
PubMed Central PMC7761358
DOI 10.3390/microorganisms8121902
PII: microorganisms8121902
Knihovny.cz E-zdroje

Killer yeasts are attractive antifungal agents with great potential applications in the food industry. Natural Saccharomyces paradoxus isolates provide new dsRNA-based killer systems available for investigation. The presence of viral dsRNA may alter transcriptional profile of S. paradoxus. To test this possibility, a high-throughput RNA sequencing was employed to compare the transcriptomes of S. paradoxus AML 15-66 K66 killer strains after curing them of either M-66 alone or both M-66 and L-A-66 dsRNA viruses. The S. paradoxus cells cured of viral dsRNA(s) showed respiration deficient or altered sporulation patterns. We have identified numerous changes in the transcription profile of genes including those linked to ribosomes and amino acid biosynthesis, as well as mitochondrial function. Our work advance studies of transcriptional adaptations of Saccharomyces spp. induced by changes in phenotype and set of dsRNA viruses, reported for the first time.

Zobrazit více v PubMed

Nielsen J. Yeast Systems Biology: Model Organism and Cell Factory. Biotechnol. J. 2019;14:e1800421. doi: 10.1002/biot.201800421. PubMed DOI

Orlic S., Redzepovic S., Jeromel A., Herjavec S., Iacumin L. Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. Int. J. Food Sci. Technol. 2007;42:95–101. doi: 10.1111/j.1365-2621.2006.01217.x. DOI

Dashko S., Liu P., Volk H., Butinar L., Piškur J., Fay J.C. Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations. Front. Microbiol. 2016;7:1–12. doi: 10.3389/fmicb.2016.00215. PubMed DOI PMC

Vaudano E., Quinterno G., Costantini A., Pulcini L., Pessione E., Garcia-Moruno E. Yeast distribution in Grignolino grapes growing in a new vineyard in Piedmont and the technological characterization of indigenous Saccharomyces spp. strains. Int. J. Food Microbiol. 2019;289:154–161. doi: 10.1016/j.ijfoodmicro.2018.09.016. PubMed DOI

Freimoser F.M., Rueda-Mejia M.P., Tilocca B., Migheli Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019;35:154. doi: 10.1007/s11274-019-2728-4. PubMed DOI PMC

Mannazzu I., Domizio P., Carboni G., Zara S., Zara G., Comitini F., Budroni M., Ciani M. Yeast killer toxins: From ecological significance to application. Crit. Rev. Biotechnol. 2019;39:603–617. doi: 10.1080/07388551.2019.1601679. PubMed DOI

Schmitt M.J., Breinig F. Yeast viral killer toxins: Lethality and self-protection. Nat. Rev. Microbiol. 2006;4:212–221. doi: 10.1038/nrmicro1347. PubMed DOI

Drinnenberg I.A., Fink G.R., Bartel D.P. Compatibility with killer explains the rise of RNAi-deficient fungi. Science. 2011;333:1592. doi: 10.1126/science.1209575. PubMed DOI PMC

Chang S.L., Leu J.Y., Chang T.H. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts. Mol. Ecol. 2015;24:4312–4322. doi: 10.1111/mec.13310. PubMed DOI

Pieczynska M.D., Korona R., De Visser J.A.G.M. Experimental tests of host-virus coevolution in natural killer yeast strains. J. Evol. Biol. 2017;30:773–781. doi: 10.1111/jeb.13044. PubMed DOI

Rodriguez-Cousino N., Gomez P., Esteban R. Variation and Distribution of L-A Helper Totiviruses in Saccharomyces sensu stricto Yeasts Producing Different Killer Toxins. Toxins. 2017;9:313. doi: 10.3390/toxins9100313. PubMed DOI PMC

Lukša J., Ravoitytė B., Konovalovas A., Aitmanaitė L., Butenko A., Yurchenko V., Serva S., Servienė E. Different Metabolic Pathways Are Involved in Response of Saccharomyces cerevisiae to L-A and M Viruses. Toxins. 2017;9:233. doi: 10.3390/toxins9080233. PubMed DOI PMC

McBride R.C., Boucher N., Park D.S., Turner P.E., Townsend J.P. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res. 2013;13:162–179. doi: 10.1111/1567-1364.12019. PubMed DOI

Gier S., Simon M., Gasparoni G., Khalifa S., Schulz M.H., Schmitt M.J., Breinig F. Yeast Viral Killer Toxin K1 Induces Specific Host Cell Adaptions via Intrinsic Selection Pressure. Appl. Environ. Microbiol. 2020;86 doi: 10.1128/AEM.02446-19. PubMed DOI PMC

Vepštaitė-Monstavičė I., Lukša J., Konovalovas A., Ežerskytė D., Stanevičienė R., Strazdaitė-Žielienė Ž., Serva S., Servienė E. Saccharomyces paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses. Viruses. 2018;10:564. doi: 10.3390/v10100564. PubMed DOI PMC

Fink G.R., Styles C. Curing of a killer factor in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1972;69:2846–2849. doi: 10.1073/pnas.69.10.2846. PubMed DOI PMC

Sommer S.S., Wickner R.B. Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that M1 requires L. J. Bacteriol. 1982;150:545–551. doi: 10.1128/JB.150.2.545-551.1982. PubMed DOI PMC

Wickner R.B. “Killer character” of Saccharomyces cerevisiae: Curing by growth at elevated temperature. J. Bacteriol. 1974;117:1356–1357. doi: 10.1128/JB.117.3.1356-1357.1974. PubMed DOI PMC

Rodríguez-Cousiño N., Esteban R. Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations. Appl. Environ. Microbiol. 2017;83 doi: 10.1128/AEM.02991-16. PubMed DOI PMC

Gao J., Chau S., Chowdhury F., Zhou T., Hossain S., McQuibban G.A., Meneghini M.D. Meiotic viral attenuation through an ancestral apoptotic pathway. Proc. Natl. Acad. Sci. USA. 2019;116:16454–16462. doi: 10.1073/pnas.1900751116. PubMed DOI PMC

Wickner R.B. Deletion of mitochondrial DNA bypassing a chromosomal gene needed for maintenance of the killer plasmid of yeast. Genetics. 1977;87:441–452. PubMed PMC

Jambhekar A., Amon A. Control of meiosis by respiration. Curr. Biol. 2008;18:969–975. doi: 10.1016/j.cub.2008.05.047. PubMed DOI PMC

Malina C., Larsson C., Nielsen J. Yeast mitochondria: An overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res. 2018;18 doi: 10.1093/femsyr/foy040. PubMed DOI

Tsai I.J., Bensasson D., Burt A., Koufopanou V. Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proc. Natl. Acad. Sci. USA. 2008;105:4957–4962. doi: 10.1073/pnas.0707314105. PubMed DOI PMC

Neiman A.M. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2005;69:565–584. doi: 10.1128/MMBR.69.4.565-584.2005. PubMed DOI PMC

Huang M., Hull C.M. Sporulation: How to survive on planet Earth (and beyond) Curr. Genet. 2017;63:831–838. doi: 10.1007/s00294-017-0694-7. PubMed DOI PMC

Knight S.J., Goddard M.R. Sporulation in soil as an overwinter survival strategy in Saccharomyces cerevisiae. FEMS Yeast Res. 2016;16:fov102. doi: 10.1093/femsyr/fov102. PubMed DOI PMC

Stelkens R.B., Miller E.L., Greig D. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus. FEMS Yeast Res. 2016;16:1–11. doi: 10.1093/femsyr/fow012. PubMed DOI

Ahn I.P., Lee Y.H. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol. Plant. Microbe. Interact. 2001;14:496–507. doi: 10.1094/MPMI.2001.14.4.496. PubMed DOI

Potgieter C.A., Castillo A., Castro M., Cottet L., Morales A. A wild-type Botrytis cinerea strain co-infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits. Virol. J. 2013;10:220. doi: 10.1186/1743-422X-10-220. PubMed DOI PMC

Wang L., Jiang J., Wang Y., Hong N., Zhang F., Xu W., Wang G. Hypovirulence of the phytopathogenic fungus Botryosphaeria dothidea: Association with a coinfecting chrysovirus and a partitivirus. J. Virol. 2014;88:7517–7527. doi: 10.1128/JVI.00538-14. PubMed DOI PMC

Ejmal M.A., Holland D.J., MacDiarmid R.M., Pearson M.N. A novel chrysovirus from a clinical isolate of Aspergillus thermomutatus affects sporulation. PLoS ONE. 2018;13:e0209443. doi: 10.1371/journal.pone.0209443. PubMed DOI PMC

Čitavičius D., Inge-Vectomov S.G. Saccharomyces cerevisiae multiple mutants: I. construction and general characterization. Genetika. 1972;1:95–102.

Grybchuk D., Akopyants N.S., Kostygov A.Y., Konovalovas A., Lye L.-F., Dobson D.E., Zangger H., Fasel N., Butenko A., Frolov A.O., et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA. 2018;115:E506–E515. doi: 10.1073/pnas.1717806115. PubMed DOI PMC

Yue J.-X., Li J., Aigrain L., Hallin J., Persson K., Oliver K., Bergström A., Coupland P., Warringer J., Lagomarsino M.C., et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat. Genet. 2017;49:913–924. doi: 10.1038/ng.3847. PubMed DOI PMC

Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001;125:279–284. doi: 10.1016/S0166-4328(01)00297-2. PubMed DOI

Cherry J.M., Hong E.L., Amundsen C., Balakrishnan R., Binkley G., Chan E.T., Christie K.R., Costanzo M.C., Dwight S.S., Engel S.R., et al. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2012;40:D700–D705. doi: 10.1093/nar/gkr1029. PubMed DOI PMC

Boyle E.I., Weng S., Gollub J., Jin H., Botstein D., Cherry J.M., Sherlock G. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–3715. doi: 10.1093/bioinformatics/bth456. PubMed DOI PMC

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Doncheva N.T., Morris J.H., Gorodkin J., Jensen L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Pronk J.T. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 2002;68:2095–2100. doi: 10.1128/AEM.68.5.2095-2100.2002. PubMed DOI PMC

Salvadó Z., Arroyo-López F.N., Guillamón J.M., Salazar G., Querol A., Barrio E. Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl. Environ. Microbiol. 2011;77:2292–2302. doi: 10.1128/AEM.01861-10. PubMed DOI PMC

Sweeney J.Y., Kuehne H.A., Sniegowski P.D. Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Res. 2004;4:521–525. doi: 10.1016/S1567-1356(03)00171-5. PubMed DOI

Piskur J., Rozpedowska E., Polakova S., Merico A., Compagno C. How did Saccharomyces evolve to become a good brewer? Trends Genet. 2006;22:183–186. doi: 10.1016/j.tig.2006.02.002. PubMed DOI

Kayikci Ö., Nielsen J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15 doi: 10.1093/femsyr/fov068. PubMed DOI PMC

Stenger M., Le D.T., Klecker T., Westermann B. Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. Cerevisiae. Microb. Cell. 2020;7:234–249. doi: 10.15698/mic2020.09.729. PubMed DOI PMC

Williamson D. The curious history of yeast mitochondrial DNA. Nat. Rev. Genet. 2002;3:475–481. doi: 10.1038/nrg814. PubMed DOI

Gerke J., Lorenz K., Cohen B. Genetic interactions between transcription factors cause natural variation in yeast. Science. 2009;323:498–501. doi: 10.1126/science.1166426. PubMed DOI PMC

Tomar P., Bhatia A., Ramdas S., Diao L., Bhanot G., Sinha H. Sporulation genes associated with sporulation efficiency in natural isolates of yeast. PLoS ONE. 2013;8:e69765. doi: 10.1371/journal.pone.0069765. PubMed DOI PMC

Gupta S., Radhakrishnan A., Raharja-Liu P., Lin G., Steinmetz L.M., Gagneur J., Sinha H. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype. PLoS Genet. 2015;11:e1005195. doi: 10.1371/journal.pgen.1005195. PubMed DOI PMC

Piekarska I., Rytka J., Rempola B. Regulation of sporulation in the yeast Saccharomyces cerevisiae. Acta Biochim. Pol. 2010;57:241–250. doi: 10.18388/abp.2010_2401. PubMed DOI

Bostian K.A., Sturgeon J.A., Tipper D.J. Encapsidation of yeast killer double-stranded ribonucleic acids: Dependence of M on L. J. Bacteriol. 1980;143:463–470. doi: 10.1128/JB.143.1.463-470.1980. PubMed DOI PMC

Ball S.G., Tirtiaux C., Wickner R.B. Genetic Control of L-A and L-(BC) DsRNA Copy Number in Killer Systems of Saccharomyces Cerevisiae. Genetics. 1984;107:199–217. PubMed PMC

DeRisi J., van den Hazel B., Marc P., Balzi E., Brown P., Jacq C., Goffeau A. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett. 2000;470:156–160. doi: 10.1016/S0014-5793(00)01294-1. PubMed DOI

Traven A., Wong J.M., Xu D., Sopta M., Ingles C.J. Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant. J. Biol. Chem. 2001;276:4020–4027. doi: 10.1074/jbc.M006807200. PubMed DOI

Xu S., Yamamoto N. Anti-infective nitazoxanide disrupts transcription of ribosome biogenesis-related genes in yeast. Genes Genom. 2020 doi: 10.1007/s13258-020-00958-0. PubMed DOI

Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P.O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998;282:699–705. doi: 10.1126/science.282.5389.699. PubMed DOI

Primig M., Williams R.M., Winzeler E.A., Tevzadze G.G., Conway A.R., Hwang S.Y., Davis R.W., Esposito R.E. The core meiotic transcriptome in budding yeasts. Nat. Genet. 2000;26:415–423. doi: 10.1038/82539. PubMed DOI

Szwarcwort-Cohen M., Kasulin-Boneh Z., Sagee S., Kassir Y. Human Cdk2 is a functional homolog of budding yeast Ime2, the meiosis-specific Cdk-like kinase. Cell Cycle. 2009;8:647–654. doi: 10.4161/cc.8.4.7843. PubMed DOI

Covitz P.A., Mitchell A.P. Repression by the yeast meiotic inhibitor RME1. Genes Dev. 1993;7:1598–1608. doi: 10.1101/gad.7.8.1598. PubMed DOI

Ohtake Y., Wickner R.B. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 1995;15:2772–2781. doi: 10.1128/MCB.15.5.2772. PubMed DOI PMC

Pagé N., Gérard-Vincent M., Ménard P., Beaulieu M., Azuma M., Dijkgraaf G.J.P., Li H., Marcoux J., Nguyen T., Dowse T., et al. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics. 2003;163:875–894. PubMed PMC

Van Hoof A., Frischmeyer P.A., Dietz H.C., Parker R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science. 2002;295:2262–2264. doi: 10.1126/science.1067272. PubMed DOI

Ridley S.P., Sommer S.S., Wickner R.B. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol. Cell. Biol. 1984;4:761–770. doi: 10.1128/MCB.4.4.761. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...