Saccharomyces paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral dsRNA Content
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33266158
PubMed Central
PMC7761358
DOI
10.3390/microorganisms8121902
PII: microorganisms8121902
Knihovny.cz E-zdroje
- Klíčová slova
- RNA-Seq, Saccharomyces paradoxus, dsRNA viruses, host gene expression,
- Publikační typ
- časopisecké články MeSH
Killer yeasts are attractive antifungal agents with great potential applications in the food industry. Natural Saccharomyces paradoxus isolates provide new dsRNA-based killer systems available for investigation. The presence of viral dsRNA may alter transcriptional profile of S. paradoxus. To test this possibility, a high-throughput RNA sequencing was employed to compare the transcriptomes of S. paradoxus AML 15-66 K66 killer strains after curing them of either M-66 alone or both M-66 and L-A-66 dsRNA viruses. The S. paradoxus cells cured of viral dsRNA(s) showed respiration deficient or altered sporulation patterns. We have identified numerous changes in the transcription profile of genes including those linked to ribosomes and amino acid biosynthesis, as well as mitochondrial function. Our work advance studies of transcriptional adaptations of Saccharomyces spp. induced by changes in phenotype and set of dsRNA viruses, reported for the first time.
Zobrazit více v PubMed
Nielsen J. Yeast Systems Biology: Model Organism and Cell Factory. Biotechnol. J. 2019;14:e1800421. doi: 10.1002/biot.201800421. PubMed DOI
Orlic S., Redzepovic S., Jeromel A., Herjavec S., Iacumin L. Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. Int. J. Food Sci. Technol. 2007;42:95–101. doi: 10.1111/j.1365-2621.2006.01217.x. DOI
Dashko S., Liu P., Volk H., Butinar L., Piškur J., Fay J.C. Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations. Front. Microbiol. 2016;7:1–12. doi: 10.3389/fmicb.2016.00215. PubMed DOI PMC
Vaudano E., Quinterno G., Costantini A., Pulcini L., Pessione E., Garcia-Moruno E. Yeast distribution in Grignolino grapes growing in a new vineyard in Piedmont and the technological characterization of indigenous Saccharomyces spp. strains. Int. J. Food Microbiol. 2019;289:154–161. doi: 10.1016/j.ijfoodmicro.2018.09.016. PubMed DOI
Freimoser F.M., Rueda-Mejia M.P., Tilocca B., Migheli Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019;35:154. doi: 10.1007/s11274-019-2728-4. PubMed DOI PMC
Mannazzu I., Domizio P., Carboni G., Zara S., Zara G., Comitini F., Budroni M., Ciani M. Yeast killer toxins: From ecological significance to application. Crit. Rev. Biotechnol. 2019;39:603–617. doi: 10.1080/07388551.2019.1601679. PubMed DOI
Schmitt M.J., Breinig F. Yeast viral killer toxins: Lethality and self-protection. Nat. Rev. Microbiol. 2006;4:212–221. doi: 10.1038/nrmicro1347. PubMed DOI
Drinnenberg I.A., Fink G.R., Bartel D.P. Compatibility with killer explains the rise of RNAi-deficient fungi. Science. 2011;333:1592. doi: 10.1126/science.1209575. PubMed DOI PMC
Chang S.L., Leu J.Y., Chang T.H. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts. Mol. Ecol. 2015;24:4312–4322. doi: 10.1111/mec.13310. PubMed DOI
Pieczynska M.D., Korona R., De Visser J.A.G.M. Experimental tests of host-virus coevolution in natural killer yeast strains. J. Evol. Biol. 2017;30:773–781. doi: 10.1111/jeb.13044. PubMed DOI
Rodriguez-Cousino N., Gomez P., Esteban R. Variation and Distribution of L-A Helper Totiviruses in Saccharomyces sensu stricto Yeasts Producing Different Killer Toxins. Toxins. 2017;9:313. doi: 10.3390/toxins9100313. PubMed DOI PMC
Lukša J., Ravoitytė B., Konovalovas A., Aitmanaitė L., Butenko A., Yurchenko V., Serva S., Servienė E. Different Metabolic Pathways Are Involved in Response of Saccharomyces cerevisiae to L-A and M Viruses. Toxins. 2017;9:233. doi: 10.3390/toxins9080233. PubMed DOI PMC
McBride R.C., Boucher N., Park D.S., Turner P.E., Townsend J.P. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res. 2013;13:162–179. doi: 10.1111/1567-1364.12019. PubMed DOI
Gier S., Simon M., Gasparoni G., Khalifa S., Schulz M.H., Schmitt M.J., Breinig F. Yeast Viral Killer Toxin K1 Induces Specific Host Cell Adaptions via Intrinsic Selection Pressure. Appl. Environ. Microbiol. 2020;86 doi: 10.1128/AEM.02446-19. PubMed DOI PMC
Vepštaitė-Monstavičė I., Lukša J., Konovalovas A., Ežerskytė D., Stanevičienė R., Strazdaitė-Žielienė Ž., Serva S., Servienė E. Saccharomyces paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses. Viruses. 2018;10:564. doi: 10.3390/v10100564. PubMed DOI PMC
Fink G.R., Styles C. Curing of a killer factor in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1972;69:2846–2849. doi: 10.1073/pnas.69.10.2846. PubMed DOI PMC
Sommer S.S., Wickner R.B. Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that M1 requires L. J. Bacteriol. 1982;150:545–551. doi: 10.1128/JB.150.2.545-551.1982. PubMed DOI PMC
Wickner R.B. “Killer character” of Saccharomyces cerevisiae: Curing by growth at elevated temperature. J. Bacteriol. 1974;117:1356–1357. doi: 10.1128/JB.117.3.1356-1357.1974. PubMed DOI PMC
Rodríguez-Cousiño N., Esteban R. Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations. Appl. Environ. Microbiol. 2017;83 doi: 10.1128/AEM.02991-16. PubMed DOI PMC
Gao J., Chau S., Chowdhury F., Zhou T., Hossain S., McQuibban G.A., Meneghini M.D. Meiotic viral attenuation through an ancestral apoptotic pathway. Proc. Natl. Acad. Sci. USA. 2019;116:16454–16462. doi: 10.1073/pnas.1900751116. PubMed DOI PMC
Wickner R.B. Deletion of mitochondrial DNA bypassing a chromosomal gene needed for maintenance of the killer plasmid of yeast. Genetics. 1977;87:441–452. PubMed PMC
Jambhekar A., Amon A. Control of meiosis by respiration. Curr. Biol. 2008;18:969–975. doi: 10.1016/j.cub.2008.05.047. PubMed DOI PMC
Malina C., Larsson C., Nielsen J. Yeast mitochondria: An overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res. 2018;18 doi: 10.1093/femsyr/foy040. PubMed DOI
Tsai I.J., Bensasson D., Burt A., Koufopanou V. Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proc. Natl. Acad. Sci. USA. 2008;105:4957–4962. doi: 10.1073/pnas.0707314105. PubMed DOI PMC
Neiman A.M. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2005;69:565–584. doi: 10.1128/MMBR.69.4.565-584.2005. PubMed DOI PMC
Huang M., Hull C.M. Sporulation: How to survive on planet Earth (and beyond) Curr. Genet. 2017;63:831–838. doi: 10.1007/s00294-017-0694-7. PubMed DOI PMC
Knight S.J., Goddard M.R. Sporulation in soil as an overwinter survival strategy in Saccharomyces cerevisiae. FEMS Yeast Res. 2016;16:fov102. doi: 10.1093/femsyr/fov102. PubMed DOI PMC
Stelkens R.B., Miller E.L., Greig D. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus. FEMS Yeast Res. 2016;16:1–11. doi: 10.1093/femsyr/fow012. PubMed DOI
Ahn I.P., Lee Y.H. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol. Plant. Microbe. Interact. 2001;14:496–507. doi: 10.1094/MPMI.2001.14.4.496. PubMed DOI
Potgieter C.A., Castillo A., Castro M., Cottet L., Morales A. A wild-type Botrytis cinerea strain co-infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits. Virol. J. 2013;10:220. doi: 10.1186/1743-422X-10-220. PubMed DOI PMC
Wang L., Jiang J., Wang Y., Hong N., Zhang F., Xu W., Wang G. Hypovirulence of the phytopathogenic fungus Botryosphaeria dothidea: Association with a coinfecting chrysovirus and a partitivirus. J. Virol. 2014;88:7517–7527. doi: 10.1128/JVI.00538-14. PubMed DOI PMC
Ejmal M.A., Holland D.J., MacDiarmid R.M., Pearson M.N. A novel chrysovirus from a clinical isolate of Aspergillus thermomutatus affects sporulation. PLoS ONE. 2018;13:e0209443. doi: 10.1371/journal.pone.0209443. PubMed DOI PMC
Čitavičius D., Inge-Vectomov S.G. Saccharomyces cerevisiae multiple mutants: I. construction and general characterization. Genetika. 1972;1:95–102.
Grybchuk D., Akopyants N.S., Kostygov A.Y., Konovalovas A., Lye L.-F., Dobson D.E., Zangger H., Fasel N., Butenko A., Frolov A.O., et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA. 2018;115:E506–E515. doi: 10.1073/pnas.1717806115. PubMed DOI PMC
Yue J.-X., Li J., Aigrain L., Hallin J., Persson K., Oliver K., Bergström A., Coupland P., Warringer J., Lagomarsino M.C., et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat. Genet. 2017;49:913–924. doi: 10.1038/ng.3847. PubMed DOI PMC
Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001;125:279–284. doi: 10.1016/S0166-4328(01)00297-2. PubMed DOI
Cherry J.M., Hong E.L., Amundsen C., Balakrishnan R., Binkley G., Chan E.T., Christie K.R., Costanzo M.C., Dwight S.S., Engel S.R., et al. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2012;40:D700–D705. doi: 10.1093/nar/gkr1029. PubMed DOI PMC
Boyle E.I., Weng S., Gollub J., Jin H., Botstein D., Cherry J.M., Sherlock G. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–3715. doi: 10.1093/bioinformatics/bth456. PubMed DOI PMC
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Doncheva N.T., Morris J.H., Gorodkin J., Jensen L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Pronk J.T. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 2002;68:2095–2100. doi: 10.1128/AEM.68.5.2095-2100.2002. PubMed DOI PMC
Salvadó Z., Arroyo-López F.N., Guillamón J.M., Salazar G., Querol A., Barrio E. Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl. Environ. Microbiol. 2011;77:2292–2302. doi: 10.1128/AEM.01861-10. PubMed DOI PMC
Sweeney J.Y., Kuehne H.A., Sniegowski P.D. Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Res. 2004;4:521–525. doi: 10.1016/S1567-1356(03)00171-5. PubMed DOI
Piskur J., Rozpedowska E., Polakova S., Merico A., Compagno C. How did Saccharomyces evolve to become a good brewer? Trends Genet. 2006;22:183–186. doi: 10.1016/j.tig.2006.02.002. PubMed DOI
Kayikci Ö., Nielsen J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15 doi: 10.1093/femsyr/fov068. PubMed DOI PMC
Stenger M., Le D.T., Klecker T., Westermann B. Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. Cerevisiae. Microb. Cell. 2020;7:234–249. doi: 10.15698/mic2020.09.729. PubMed DOI PMC
Williamson D. The curious history of yeast mitochondrial DNA. Nat. Rev. Genet. 2002;3:475–481. doi: 10.1038/nrg814. PubMed DOI
Gerke J., Lorenz K., Cohen B. Genetic interactions between transcription factors cause natural variation in yeast. Science. 2009;323:498–501. doi: 10.1126/science.1166426. PubMed DOI PMC
Tomar P., Bhatia A., Ramdas S., Diao L., Bhanot G., Sinha H. Sporulation genes associated with sporulation efficiency in natural isolates of yeast. PLoS ONE. 2013;8:e69765. doi: 10.1371/journal.pone.0069765. PubMed DOI PMC
Gupta S., Radhakrishnan A., Raharja-Liu P., Lin G., Steinmetz L.M., Gagneur J., Sinha H. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype. PLoS Genet. 2015;11:e1005195. doi: 10.1371/journal.pgen.1005195. PubMed DOI PMC
Piekarska I., Rytka J., Rempola B. Regulation of sporulation in the yeast Saccharomyces cerevisiae. Acta Biochim. Pol. 2010;57:241–250. doi: 10.18388/abp.2010_2401. PubMed DOI
Bostian K.A., Sturgeon J.A., Tipper D.J. Encapsidation of yeast killer double-stranded ribonucleic acids: Dependence of M on L. J. Bacteriol. 1980;143:463–470. doi: 10.1128/JB.143.1.463-470.1980. PubMed DOI PMC
Ball S.G., Tirtiaux C., Wickner R.B. Genetic Control of L-A and L-(BC) DsRNA Copy Number in Killer Systems of Saccharomyces Cerevisiae. Genetics. 1984;107:199–217. PubMed PMC
DeRisi J., van den Hazel B., Marc P., Balzi E., Brown P., Jacq C., Goffeau A. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett. 2000;470:156–160. doi: 10.1016/S0014-5793(00)01294-1. PubMed DOI
Traven A., Wong J.M., Xu D., Sopta M., Ingles C.J. Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant. J. Biol. Chem. 2001;276:4020–4027. doi: 10.1074/jbc.M006807200. PubMed DOI
Xu S., Yamamoto N. Anti-infective nitazoxanide disrupts transcription of ribosome biogenesis-related genes in yeast. Genes Genom. 2020 doi: 10.1007/s13258-020-00958-0. PubMed DOI
Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P.O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998;282:699–705. doi: 10.1126/science.282.5389.699. PubMed DOI
Primig M., Williams R.M., Winzeler E.A., Tevzadze G.G., Conway A.R., Hwang S.Y., Davis R.W., Esposito R.E. The core meiotic transcriptome in budding yeasts. Nat. Genet. 2000;26:415–423. doi: 10.1038/82539. PubMed DOI
Szwarcwort-Cohen M., Kasulin-Boneh Z., Sagee S., Kassir Y. Human Cdk2 is a functional homolog of budding yeast Ime2, the meiosis-specific Cdk-like kinase. Cell Cycle. 2009;8:647–654. doi: 10.4161/cc.8.4.7843. PubMed DOI
Covitz P.A., Mitchell A.P. Repression by the yeast meiotic inhibitor RME1. Genes Dev. 1993;7:1598–1608. doi: 10.1101/gad.7.8.1598. PubMed DOI
Ohtake Y., Wickner R.B. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 1995;15:2772–2781. doi: 10.1128/MCB.15.5.2772. PubMed DOI PMC
Pagé N., Gérard-Vincent M., Ménard P., Beaulieu M., Azuma M., Dijkgraaf G.J.P., Li H., Marcoux J., Nguyen T., Dowse T., et al. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics. 2003;163:875–894. PubMed PMC
Van Hoof A., Frischmeyer P.A., Dietz H.C., Parker R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science. 2002;295:2262–2264. doi: 10.1126/science.1067272. PubMed DOI
Ridley S.P., Sommer S.S., Wickner R.B. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol. Cell. Biol. 1984;4:761–770. doi: 10.1128/MCB.4.4.761. PubMed DOI PMC