Different Metabolic Pathways Are Involved in Response of Saccharomyces cerevisiae to L-A and M Viruses

. 2017 Jul 25 ; 9 (8) : . [epub] 20170725

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28757599

Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus-host and virus-virus interplays.

Zobrazit více v PubMed

Ghabrial S.A. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes. 1998;16:119–131. doi: 10.1023/A:1007966229595. PubMed DOI PMC

Wickner R.B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Microbiol. 1992;46:347–375. doi: 10.1146/annurev.mi.46.100192.002023. PubMed DOI

Wickner R.B. Prions and RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Genet. 1996;30:109–139. doi: 10.1146/annurev.genet.30.1.109. PubMed DOI

Liu H., Fu Y., Jiang D., Li G., Xie J., Cheng J., Peng Y., Ghabrial S.A., Yi X. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J. Virol. 2010;84:11876–11887. doi: 10.1128/JVI.00955-10. PubMed DOI PMC

Ahn I.-P., Lee Y.-H. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol. Plant-Microbe Interact. 2001;14:496–507. doi: 10.1094/MPMI.2001.14.4.496. PubMed DOI

Xie J., Jiang D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 2014;52:45–68. doi: 10.1146/annurev-phyto-102313-050222. PubMed DOI

Wickner R.B. Double-stranded RNA replication in yeast: The killer system. Ann. Rev. Biochem. 1986;55:373–395. doi: 10.1146/annurev.bi.55.070186.002105. PubMed DOI

Varga J., Kevei F., Vagvolgyi C., Vriesema A., Croft J.H. Double-stranded RNA mycoviruses in section Nigri of the Aspergillus genus. Can. J. Microbiol. 1994;40:325–329. doi: 10.1139/m94-054. PubMed DOI

Magliani W., Conti S., Gerloni M., Bertolotti D., Polonelli L. Yeast killer systems. Clin. Microbiol. Rev. 1997;10:369–400. PubMed PMC

Schmitt M.J., Tipper D.J. K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol. Cell. Biol. 1990;10:4807–4815. doi: 10.1128/MCB.10.9.4807. PubMed DOI PMC

Rodriguez-Cousino N., Gomez P., Esteban R. L-A-lus, a new variant of the L-A totivirus found in wine yeasts with Klus killer toxin-encoding Mlus double-stranded RNA: Possible role of killer toxin-encoding satellite RNAs in the evolution of their helper viruses. Appl. Environ. Microbiol. 2013;79:4661–4674. doi: 10.1128/AEM.00500-13. PubMed DOI PMC

Bevan E.A., Herring A.J., Mitchell D.J. Preliminary characterization of two species of dsRNA in yeast and their relationship to the “killer” character. Nature. 1973;245:81–86. doi: 10.1038/245081b0. PubMed DOI

Starmer W.T., Ganter P.F., Aberdeen V., Lachance M.A., Phaff H.J. The ecological role of killer yeasts in natural communities of yeasts. Can. J. Microbiol. 1987;33:783–796. doi: 10.1139/m87-134. PubMed DOI

Rowley P.A. The frenemies within: Viruses, retrotransposons, and plasmids that naturally infect Saccharomyces yeasts. Yeast. 2017 doi: 10.1002/yea.3234. PubMed DOI

Palpacelli V., Ciani M., Rosini G. Activity of different “killer” yeasts on strains of yeast species undesirable in the food industry. FEMS Microbiol. Lett. 1991;68:75–78. doi: 10.1111/j.1574-6968.1991.tb04572.x. PubMed DOI

Salek A., Schnettler R., Zimmermann U. Stably inherited killer activity in industrial yeast strains obtained by electrotransformation. FEMS Microbiol. Lett. 1992;75:103–109. doi: 10.1111/j.1574-6968.1992.tb05400.x. PubMed DOI

Javadekar V.S., SivaRaman H., Gokhale D.V. Industrial yeast strain improvement: Construction of a highly flocculent yeast with a killer character by protoplast fusion. J. Ind. Microbiol. Biotechnol. 1995;15:94–102. doi: 10.1007/BF01569806. PubMed DOI

Buzzini P., Martini A. Discrimination between Candida albicans and other pathogenic species of the genus Candida by their differential sensitivities to toxins of a panel of killer yeasts. J. Clin. Microbiol. 2001;39:3362–3364. doi: 10.1128/JCM.39.9.3362-3364.2001. PubMed DOI PMC

Vadkertiova R., Slavikova E. Killer activity of yeasts isolated from natural environments against some medically important Candida species. Pol. J. Microbiol. 2007;56:39–43. PubMed

Banjara N., Nickerson K.W., Suhr M.J., Hallen-Adams H.E. Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. Int. J. Food Microbiol. 2016;222:23–29. doi: 10.1016/j.ijfoodmicro.2016.01.016. PubMed DOI

Pagé N., Gérard-Vincent M., Ménard P., Beaulieu M., Azuma M., Dijkgraaf G.J.P., Li H., Marcoux J., Nguyen T., Dowse T., Sdicu A.M., Bussey H. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics. 2003;163:875–894. doi: 10.1016/s0092-8674(00)81659-1. PubMed DOI PMC

Carroll S.Y., Stirling P.C., Stimpson H.E.M., Gießelmann E., Schmitt M.J., Drubin D.G. A Yeast killer toxin screen provides insights into A/B toxin entry, trafficking, and killing mechanisms. Dev. Cell. 2009;17:552–560. doi: 10.1016/j.devcel.2009.08.006. PubMed DOI PMC

Serviene E., Luksa J., Orentaite I., Lafontaine D.L.J., Urbonavicius J. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. PLoS ONE. 2012;7:e50779. doi: 10.1371/journal.pone.0050779. PubMed DOI PMC

Pieczynska M.D., de Visser J.A.G.M., Korona R. Incidence of symbiotic dsRNA “killer” viruses in wild and domesticated yeast. FEMS Yeast Res. 2013;13:856–859. doi: 10.1111/1567-1364.12086. PubMed DOI

Pieczynska M.D., Korona R., De Visser J.A.G.M. Experimental tests of host-virus coevolution in natural killer yeast strains. J. Evol. Biol. 2017;30:773–781. doi: 10.1111/jeb.13044. PubMed DOI

Veses-Garcia M., Liu X., Rigden D.J., Kenny J.G., McCarthy A.J., Allison H.E. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl. Environ. Microbiol. 2015;81:8118–8125. doi: 10.1128/AEM.02034-15. PubMed DOI PMC

Lin X., Ding H., Zeng Q. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions. Environ. Microbiol. 2016;18:450–460. doi: 10.1111/1462-2920.13104. PubMed DOI

Hillung J., Garcia-Garcia F., Dopazo J., Cuevas J.M., Elena S.F. The transcriptomics of an experimentally evolved plant-virus interaction. Sci. Rep. 2016;6:24901. doi: 10.1038/srep24901. PubMed DOI PMC

Castorena K.M., Stapleford K.A., Miller D.J. Complementary transcriptomic, lipidomic, and targeted functional genetic analyses in cultured Drosophila cells highlight the role of glycerophospholipid metabolism in Flock House virus RNA replication. BMC Genom. 2010;11:183. doi: 10.1186/1471-2164-11-183. PubMed DOI PMC

Martinez-Rubio L., Evensen O., Krasnov A., Jorgensen S.M., Wadsworth S., Ruohonen K., Vecino J.L.G., Tocher D.R. Effects of functional feeds on the lipid composition, transcriptomic responses and pathology in heart of Atlantic salmon (Salmo salar L.) before and after experimental challenge with Piscine Myocarditis Virus (PMCV) BMC Genom. 2014;15:462. doi: 10.1186/1471-2164-15-462. PubMed DOI PMC

Yen J.Y., Garamszegi S., Geisbert J.B., Rubins K.H., Geisbert T.W., Honko A., Xia Y., Connor J.H., Hensley L.E. Therapeutics of Ebola hemorrhagic fever: Whole-genome transcriptional analysis of successful disease mitigation. J. Infect. Dis. 2011;204(Suppl. 3):S1043–S1052. doi: 10.1093/infdis/jir345. PubMed DOI

Tsuge M., Oka T., Yamashita N., Saito Y., Fujii Y., Nagaoka Y., Yashiro M., Tsukahara H., Morishima T. Gene expression analysis in children with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. J. Neurovirol. 2014;20:73–84. doi: 10.1007/s13365-013-0231-5. PubMed DOI

Allen T.D., Nuss D.L. Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J. Virol. 2004;78:4145–4155. doi: 10.1128/JVI.78.8.4145-4155.2004. PubMed DOI PMC

Cho W.K., Yu J., Lee K.-M., Son M., Min K., Lee Y.-W., Kim K.-H. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genom. 2012;13:173. doi: 10.1186/1471-2164-13-173. PubMed DOI PMC

Eusebio-Cope A., Sun L., Tanaka T., Chiba S., Kasahara S., Suzuki N. The chestnut blight fungus for studies on virus/host and virus/virus interactions: From a natural to a model host. Virology. 2015;477:164–175. doi: 10.1016/j.virol.2014.09.024. PubMed DOI

Mcbride R.C., Boucher N., Park D.S., Turner P.E., Townsend J.P. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res. 2013;13:162–179. doi: 10.1111/1567-1364.12019. PubMed DOI

Milewski S., Gabriel I., Olchowy J. Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast. 2006;23:1–14. doi: 10.1002/yea.1337. PubMed DOI

Wickner R.B., Leibowitz M.J. Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: The killer character of yeast. J. Mol. Biol. 1976;105:427–443. doi: 10.1016/0022-2836(76)90102-9. PubMed DOI

Toh-E A., Wickner R.B. “Superkiller” mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1980;77:527–530. doi: 10.1073/pnas.77.1.527. PubMed DOI PMC

Icho T., Wickner R.B. The MAK11 protein is essential for cell growth and replication of M double-stranded RNA and is apparently a membrane-associated protein. J. Biol. Chem. 1988;263:1467–1475. PubMed

Coelho P.S. R., Bryan A.C., Kumar A., Shadel G.S., Snyder M. A novel mitochondrial protein, Tar1p, is encoded on the antisense strand of the nuclear 25S rDNA. Genes Dev. 2002;16:2755–2760. doi: 10.1101/gad.1035002. PubMed DOI PMC

Wang Z., Gerstein M., Snyder M. RNA-Seq.: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63. doi: 10.1038/nrg2484. PubMed DOI PMC

Ellahi A., Thurtle D.M., Rine J. The chromatin and transcriptional landscape of native Saccharomyces cerevisiae telomeres and subtelomeric domains. Genetics. 2015;200:505–521. doi: 10.1534/genetics.115.175711. PubMed DOI PMC

Bendjilali N., MacLeon S., Kalra G., Willis S.D., Hossian A.K. M.N., Avery E., Wojtowicz O., Hickman M.J. Time-course analysis of gene expression during the Saccharomyces cerevisiae hypoxic response. G3 Genes Genomes Genet. 2017;7:221–231. doi: 10.1534/g3.116.034991. PubMed DOI PMC

Ball S.G., Tirtiaux C., Wickner R.B. Genetic control of L-A and L-(BC) dsRNA copy number in killer systems of Saccharomyces cerevisiae. Genetics. 1984;107:199–217. PubMed PMC

Ohtake Y., Wickner R.B. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 1995;15:2772–2781. doi: 10.1128/MCB.15.5.2772. PubMed DOI PMC

Naumova G.I., Naumova T.I. Comparative genetics of yeasts. XIII, Comparative study of Saccharomycetes-killers from different collections. Genetika. 1973;9:140–145. (In Russian) PubMed

Citavicius D., Inge-Vectomov S.G. Saccharomyces cerevisiae multiple mutants: I. construction and general characterization. Genetika (Moscow) 1972;1:95–102. (In Russian)

Aitmanaitė L., Konovalovas A., Servienė E., Serva S. Healing yeast from L-A virus. unpublished work.

Gulbiniene G., Kondratiene L., Jokantaite T., Serviene E., Melvydas V., Petkuniene G. Occurrence of killer yeast strains in fruit and berry wine yeast populations. Food Technol. Biotechnol. 2004;42:159–163.

Drinnenberg I.A., Fink G.R., Bartel D.P. Compatibility with killer explains the rise of RNAi-deficient fungi. Science. 2011;333:1592. doi: 10.1126/science.1209575. PubMed DOI PMC

Boyle E.I., Weng S., Gollub J., Jin H., Botstein D., Cherry J.M., Sherlock G. GO: TermFinder open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–3715. doi: 10.1093/bioinformatics/bth456. PubMed DOI PMC

Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC

Killcoyne S., Carter G.W., Smith J., Boyle J. Cytoscape: A community-based framework for network modeling. Methods Mol. Biol. 2009;563:219–239. doi: 10.1007/978-1-60761-175-2_12. PubMed DOI

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC

Wong M.L., Medrano J.F. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39:75–85. doi: 10.2144/05391RV01. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace