Different Metabolic Pathways Are Involved in Response of Saccharomyces cerevisiae to L-A and M Viruses
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28757599
PubMed Central
PMC5577567
DOI
10.3390/toxins9080233
PII: toxins9080233
Knihovny.cz E-zdroje
- Klíčová slova
- RNA-Seq, Saccharomyces cerevisiae, dsRNA viruses, host gene expression,
- MeSH
- dvouvláknová RNA MeSH
- interakce hostitele a patogenu * MeSH
- regulace genové exprese u hub * MeSH
- RNA virová MeSH
- RNA-viry fyziologie MeSH
- Saccharomyces cerevisiae genetika metabolismus virologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- RNA virová MeSH
Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus-host and virus-virus interplays.
Zobrazit více v PubMed
Ghabrial S.A. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes. 1998;16:119–131. doi: 10.1023/A:1007966229595. PubMed DOI PMC
Wickner R.B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Microbiol. 1992;46:347–375. doi: 10.1146/annurev.mi.46.100192.002023. PubMed DOI
Wickner R.B. Prions and RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Genet. 1996;30:109–139. doi: 10.1146/annurev.genet.30.1.109. PubMed DOI
Liu H., Fu Y., Jiang D., Li G., Xie J., Cheng J., Peng Y., Ghabrial S.A., Yi X. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J. Virol. 2010;84:11876–11887. doi: 10.1128/JVI.00955-10. PubMed DOI PMC
Ahn I.-P., Lee Y.-H. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol. Plant-Microbe Interact. 2001;14:496–507. doi: 10.1094/MPMI.2001.14.4.496. PubMed DOI
Xie J., Jiang D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 2014;52:45–68. doi: 10.1146/annurev-phyto-102313-050222. PubMed DOI
Wickner R.B. Double-stranded RNA replication in yeast: The killer system. Ann. Rev. Biochem. 1986;55:373–395. doi: 10.1146/annurev.bi.55.070186.002105. PubMed DOI
Varga J., Kevei F., Vagvolgyi C., Vriesema A., Croft J.H. Double-stranded RNA mycoviruses in section Nigri of the Aspergillus genus. Can. J. Microbiol. 1994;40:325–329. doi: 10.1139/m94-054. PubMed DOI
Magliani W., Conti S., Gerloni M., Bertolotti D., Polonelli L. Yeast killer systems. Clin. Microbiol. Rev. 1997;10:369–400. PubMed PMC
Schmitt M.J., Tipper D.J. K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol. Cell. Biol. 1990;10:4807–4815. doi: 10.1128/MCB.10.9.4807. PubMed DOI PMC
Rodriguez-Cousino N., Gomez P., Esteban R. L-A-lus, a new variant of the L-A totivirus found in wine yeasts with Klus killer toxin-encoding Mlus double-stranded RNA: Possible role of killer toxin-encoding satellite RNAs in the evolution of their helper viruses. Appl. Environ. Microbiol. 2013;79:4661–4674. doi: 10.1128/AEM.00500-13. PubMed DOI PMC
Bevan E.A., Herring A.J., Mitchell D.J. Preliminary characterization of two species of dsRNA in yeast and their relationship to the “killer” character. Nature. 1973;245:81–86. doi: 10.1038/245081b0. PubMed DOI
Starmer W.T., Ganter P.F., Aberdeen V., Lachance M.A., Phaff H.J. The ecological role of killer yeasts in natural communities of yeasts. Can. J. Microbiol. 1987;33:783–796. doi: 10.1139/m87-134. PubMed DOI
Rowley P.A. The frenemies within: Viruses, retrotransposons, and plasmids that naturally infect Saccharomyces yeasts. Yeast. 2017 doi: 10.1002/yea.3234. PubMed DOI
Palpacelli V., Ciani M., Rosini G. Activity of different “killer” yeasts on strains of yeast species undesirable in the food industry. FEMS Microbiol. Lett. 1991;68:75–78. doi: 10.1111/j.1574-6968.1991.tb04572.x. PubMed DOI
Salek A., Schnettler R., Zimmermann U. Stably inherited killer activity in industrial yeast strains obtained by electrotransformation. FEMS Microbiol. Lett. 1992;75:103–109. doi: 10.1111/j.1574-6968.1992.tb05400.x. PubMed DOI
Javadekar V.S., SivaRaman H., Gokhale D.V. Industrial yeast strain improvement: Construction of a highly flocculent yeast with a killer character by protoplast fusion. J. Ind. Microbiol. Biotechnol. 1995;15:94–102. doi: 10.1007/BF01569806. PubMed DOI
Buzzini P., Martini A. Discrimination between Candida albicans and other pathogenic species of the genus Candida by their differential sensitivities to toxins of a panel of killer yeasts. J. Clin. Microbiol. 2001;39:3362–3364. doi: 10.1128/JCM.39.9.3362-3364.2001. PubMed DOI PMC
Vadkertiova R., Slavikova E. Killer activity of yeasts isolated from natural environments against some medically important Candida species. Pol. J. Microbiol. 2007;56:39–43. PubMed
Banjara N., Nickerson K.W., Suhr M.J., Hallen-Adams H.E. Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. Int. J. Food Microbiol. 2016;222:23–29. doi: 10.1016/j.ijfoodmicro.2016.01.016. PubMed DOI
Pagé N., Gérard-Vincent M., Ménard P., Beaulieu M., Azuma M., Dijkgraaf G.J.P., Li H., Marcoux J., Nguyen T., Dowse T., Sdicu A.M., Bussey H. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics. 2003;163:875–894. doi: 10.1016/s0092-8674(00)81659-1. PubMed DOI PMC
Carroll S.Y., Stirling P.C., Stimpson H.E.M., Gießelmann E., Schmitt M.J., Drubin D.G. A Yeast killer toxin screen provides insights into A/B toxin entry, trafficking, and killing mechanisms. Dev. Cell. 2009;17:552–560. doi: 10.1016/j.devcel.2009.08.006. PubMed DOI PMC
Serviene E., Luksa J., Orentaite I., Lafontaine D.L.J., Urbonavicius J. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. PLoS ONE. 2012;7:e50779. doi: 10.1371/journal.pone.0050779. PubMed DOI PMC
Pieczynska M.D., de Visser J.A.G.M., Korona R. Incidence of symbiotic dsRNA “killer” viruses in wild and domesticated yeast. FEMS Yeast Res. 2013;13:856–859. doi: 10.1111/1567-1364.12086. PubMed DOI
Pieczynska M.D., Korona R., De Visser J.A.G.M. Experimental tests of host-virus coevolution in natural killer yeast strains. J. Evol. Biol. 2017;30:773–781. doi: 10.1111/jeb.13044. PubMed DOI
Veses-Garcia M., Liu X., Rigden D.J., Kenny J.G., McCarthy A.J., Allison H.E. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl. Environ. Microbiol. 2015;81:8118–8125. doi: 10.1128/AEM.02034-15. PubMed DOI PMC
Lin X., Ding H., Zeng Q. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions. Environ. Microbiol. 2016;18:450–460. doi: 10.1111/1462-2920.13104. PubMed DOI
Hillung J., Garcia-Garcia F., Dopazo J., Cuevas J.M., Elena S.F. The transcriptomics of an experimentally evolved plant-virus interaction. Sci. Rep. 2016;6:24901. doi: 10.1038/srep24901. PubMed DOI PMC
Castorena K.M., Stapleford K.A., Miller D.J. Complementary transcriptomic, lipidomic, and targeted functional genetic analyses in cultured Drosophila cells highlight the role of glycerophospholipid metabolism in Flock House virus RNA replication. BMC Genom. 2010;11:183. doi: 10.1186/1471-2164-11-183. PubMed DOI PMC
Martinez-Rubio L., Evensen O., Krasnov A., Jorgensen S.M., Wadsworth S., Ruohonen K., Vecino J.L.G., Tocher D.R. Effects of functional feeds on the lipid composition, transcriptomic responses and pathology in heart of Atlantic salmon (Salmo salar L.) before and after experimental challenge with Piscine Myocarditis Virus (PMCV) BMC Genom. 2014;15:462. doi: 10.1186/1471-2164-15-462. PubMed DOI PMC
Yen J.Y., Garamszegi S., Geisbert J.B., Rubins K.H., Geisbert T.W., Honko A., Xia Y., Connor J.H., Hensley L.E. Therapeutics of Ebola hemorrhagic fever: Whole-genome transcriptional analysis of successful disease mitigation. J. Infect. Dis. 2011;204(Suppl. 3):S1043–S1052. doi: 10.1093/infdis/jir345. PubMed DOI
Tsuge M., Oka T., Yamashita N., Saito Y., Fujii Y., Nagaoka Y., Yashiro M., Tsukahara H., Morishima T. Gene expression analysis in children with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. J. Neurovirol. 2014;20:73–84. doi: 10.1007/s13365-013-0231-5. PubMed DOI
Allen T.D., Nuss D.L. Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J. Virol. 2004;78:4145–4155. doi: 10.1128/JVI.78.8.4145-4155.2004. PubMed DOI PMC
Cho W.K., Yu J., Lee K.-M., Son M., Min K., Lee Y.-W., Kim K.-H. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genom. 2012;13:173. doi: 10.1186/1471-2164-13-173. PubMed DOI PMC
Eusebio-Cope A., Sun L., Tanaka T., Chiba S., Kasahara S., Suzuki N. The chestnut blight fungus for studies on virus/host and virus/virus interactions: From a natural to a model host. Virology. 2015;477:164–175. doi: 10.1016/j.virol.2014.09.024. PubMed DOI
Mcbride R.C., Boucher N., Park D.S., Turner P.E., Townsend J.P. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res. 2013;13:162–179. doi: 10.1111/1567-1364.12019. PubMed DOI
Milewski S., Gabriel I., Olchowy J. Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast. 2006;23:1–14. doi: 10.1002/yea.1337. PubMed DOI
Wickner R.B., Leibowitz M.J. Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: The killer character of yeast. J. Mol. Biol. 1976;105:427–443. doi: 10.1016/0022-2836(76)90102-9. PubMed DOI
Toh-E A., Wickner R.B. “Superkiller” mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1980;77:527–530. doi: 10.1073/pnas.77.1.527. PubMed DOI PMC
Icho T., Wickner R.B. The MAK11 protein is essential for cell growth and replication of M double-stranded RNA and is apparently a membrane-associated protein. J. Biol. Chem. 1988;263:1467–1475. PubMed
Coelho P.S. R., Bryan A.C., Kumar A., Shadel G.S., Snyder M. A novel mitochondrial protein, Tar1p, is encoded on the antisense strand of the nuclear 25S rDNA. Genes Dev. 2002;16:2755–2760. doi: 10.1101/gad.1035002. PubMed DOI PMC
Wang Z., Gerstein M., Snyder M. RNA-Seq.: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63. doi: 10.1038/nrg2484. PubMed DOI PMC
Ellahi A., Thurtle D.M., Rine J. The chromatin and transcriptional landscape of native Saccharomyces cerevisiae telomeres and subtelomeric domains. Genetics. 2015;200:505–521. doi: 10.1534/genetics.115.175711. PubMed DOI PMC
Bendjilali N., MacLeon S., Kalra G., Willis S.D., Hossian A.K. M.N., Avery E., Wojtowicz O., Hickman M.J. Time-course analysis of gene expression during the Saccharomyces cerevisiae hypoxic response. G3 Genes Genomes Genet. 2017;7:221–231. doi: 10.1534/g3.116.034991. PubMed DOI PMC
Ball S.G., Tirtiaux C., Wickner R.B. Genetic control of L-A and L-(BC) dsRNA copy number in killer systems of Saccharomyces cerevisiae. Genetics. 1984;107:199–217. PubMed PMC
Ohtake Y., Wickner R.B. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 1995;15:2772–2781. doi: 10.1128/MCB.15.5.2772. PubMed DOI PMC
Naumova G.I., Naumova T.I. Comparative genetics of yeasts. XIII, Comparative study of Saccharomycetes-killers from different collections. Genetika. 1973;9:140–145. (In Russian) PubMed
Citavicius D., Inge-Vectomov S.G. Saccharomyces cerevisiae multiple mutants: I. construction and general characterization. Genetika (Moscow) 1972;1:95–102. (In Russian)
Aitmanaitė L., Konovalovas A., Servienė E., Serva S. Healing yeast from L-A virus. unpublished work.
Gulbiniene G., Kondratiene L., Jokantaite T., Serviene E., Melvydas V., Petkuniene G. Occurrence of killer yeast strains in fruit and berry wine yeast populations. Food Technol. Biotechnol. 2004;42:159–163.
Drinnenberg I.A., Fink G.R., Bartel D.P. Compatibility with killer explains the rise of RNAi-deficient fungi. Science. 2011;333:1592. doi: 10.1126/science.1209575. PubMed DOI PMC
Boyle E.I., Weng S., Gollub J., Jin H., Botstein D., Cherry J.M., Sherlock G. GO: TermFinder open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–3715. doi: 10.1093/bioinformatics/bth456. PubMed DOI PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC
Killcoyne S., Carter G.W., Smith J., Boyle J. Cytoscape: A community-based framework for network modeling. Methods Mol. Biol. 2009;563:219–239. doi: 10.1007/978-1-60761-175-2_12. PubMed DOI
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC
Wong M.L., Medrano J.F. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39:75–85. doi: 10.2144/05391RV01. PubMed DOI
Elimination of LRVs Elicits Different Responses in Leishmania spp