Elimination of LRVs Elicits Different Responses in Leishmania spp

. 2022 Aug 31 ; 7 (4) : e0033522. [epub] 20220809

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Intramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid35943162

Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCE Leishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.

Zobrazit více v PubMed

WHO. 2020. Leishmaniasis. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis. Accessed July 02, 2022.

Bruschi F, Gradoni L. 2018. The leishmaniases: old neglected tropical diseases. Springer, Cham, Switzerland. doi: 10.1007/978-3-319-72386-0. DOI

Kaye P, Scott P. 2011. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9:604–615. doi: 10.1038/nrmicro2608. PubMed DOI

Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 2015. 50-plus years of fungal viruses. Virology 479-480:356–368. doi: 10.1016/j.virol.2015.02.034. PubMed DOI

Poulos BT, Tang KF, Pantoja CR, Bonami JR, Lightner DV. 2006. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J Gen Virol 87:987–996. doi: 10.1099/vir.0.81127-0. PubMed DOI

Zhai Y, Attoui H, Mohd Jaafar F, Wang HQ, Cao YX, Fan SP, Sun YX, Liu LD, Mertens PP, Meng WS, Wang D, Liang G. 2010. Isolation and full-length sequence analysis of PubMed DOI

Løvoll M, Wiik-Nielsen J, Grove S, Wiik-Nielsen CR, Kristoffersen AB, Faller R, Poppe T, Jung J, Pedamallu CS, Nederbragt AJ, Meyerson M, Rimstad E, Tengs T. 2010. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon ( PubMed DOI PMC

Xin C, Wu B, Li J, Gong P, Yang J, Li H, Cai X, Zhang X. 2016. Complete genome sequence and evolution analysis of PubMed DOI

Janssen ME, Takagi Y, Parent KN, Cardone G, Nibert ML, Baker TS. 2015. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen PubMed DOI PMC

Grybchuk D, Kostygov AY, Macedo DH, d'Avila-Levy CM, Yurchenko V. 2018. RNA viruses in trypanosomatid parasites: a historical overview. Mem Inst Oswaldo Cruz 113:e170487. PubMed PMC

Wang AL, Wang CC. 1986. Discovery of a specific double-stranded RNA virus in PubMed DOI

Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N. 2012. PubMed DOI PMC

Brettmann EA, Shaik JS, Zangger H, Lye LF, Kuhlmann FM, Akopyants NS, Oschwald DM, Owens KL, Hickerson SM, Ronet C, Fasel N, Beverley SM. 2016. Tilting the balance between RNA interference and replication eradicates PubMed DOI PMC

Cantanhêde LM, Mata-Somarribas C, Chourabi K, Pereira da Silva G, Dias das Chagas B, de Oliveira RPL, Cortes Boite M, Cupolillo E. 2021. The maze pathway of coevolution: a critical review over the PubMed DOI PMC

Grybchuk D, Kostygov AY, Macedo DH, Votypka J, Lukes J, Yurchenko V. 2018. RNA viruses in PubMed DOI PMC

Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, Zangger H, Revaz-Breton M, Lye LF, Hickerson SM, Beverley SM, Acha-Orbea H, Launois P, Fasel N, Masina S. 2011. PubMed DOI PMC

Rossi M, Castiglioni P, Hartley MA, Eren RO, Prevel F, Desponds C, Utzschneider DT, Zehn D, Cusi MG, Kuhlmann FM, Beverley SM, Ronet C, Fasel N. 2017. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc Natl Acad Sci USA 114:4987–4992. doi: 10.1073/pnas.1621447114. PubMed DOI PMC

Hartley MA, Bourreau E, Rossi M, Castiglioni P, Eren RO, Prevel F, Couppie P, Hickerson SM, Launois P, Beverley SM, Ronet C, Fasel N. 2016. PubMed DOI PMC

Barrow P, Dujardin JC, Fasel N, Greenwood AD, Osterrieder K, Lomonossoff G, Fiori PL, Atterbury R, Rossi M, Lalle M. 2020. Viruses of protozoan parasites and viral therapy: is the time now right? Virol J 17:142. doi: 10.1186/s12985-020-01410-1. PubMed DOI PMC

Widmer G, Dooley S. 1995. Phylogenetic analysis of PubMed DOI PMC

Kostygov AY, Grybchuk D, Kleschenko Y, Chistyakov DS, Lukashev AN, Gerasimov ES, Yurchenko V. 2021. Analyses of PubMed DOI PMC

Scheffter S, Widmer G, Patterson JL. 1994. Complete sequence of PubMed DOI

Scheffter SM, Ro YT, Chung IK, Patterson JL. 1995. The complete sequence of PubMed DOI

Adaui V, Lye LF, Akopyants NS, Zimic M, Llanos-Cuentas A, Garcia L, Maes I, De Doncker S, Dobson DE, Arevalo J, Dujardin JC, Beverley SM. 2016. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by PubMed DOI PMC

Abtahi M, Eslami G, Cavallero S, Vakili M, Hosseini SS, Ahmadian S, Boozhmehrani MJ, Khamesipour A. 2020. Relationship of PubMed DOI PMC

Bourreau E, Ginouves M, Prevot G, Hartley MA, Gangneux JP, Robert-Gangneux F, Dufour J, Sainte-Marie D, Bertolotti A, Pratlong F, Martin R, Schutz F, Couppie P, Fasel N, Ronet C. 2016. Presence of PubMed DOI

Ro YT, Scheffter SM, Patterson JL. 1997. Hygromycin B resistance mediates elimination of PubMed DOI PMC

Lye LF, Owens K, Shi H, Murta SM, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM. 2010. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6:e1001161. doi: 10.1371/journal.ppat.1001161. PubMed DOI PMC

Kuhlmann FM, Robinson JI, Bluemling GR, Ronet C, Fasel N, Beverley SM. 2017. Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA PubMed DOI PMC

Robinson JI, Beverley SM. 2018. Concentration of 2'C-methyladenosine triphosphate by PubMed DOI PMC

Widmer G. 1995. Suppression of PubMed DOI PMC

Herskowitz I. 1987. Functional inactivation of genes by dominant negative mutations. Nature 329:219–222. doi: 10.1038/329219a0. PubMed DOI

Castiglioni P, Hartley MA, Rossi M, Prevel F, Desponds C, Utzschneider DT, Eren RO, Zangger H, Brunner L, Collin N, Zehn D, Kuhlmann FM, Beverley SM, Fasel N, Ronet C. 2017. Exacerbated leishmaniasis caused by a viral endosymbiont can be prevented by immunization with its viral capsid. PLoS Negl Trop Dis 11:e0005240. doi: 10.1371/journal.pntd.0005240. PubMed DOI PMC

Lukša J, Ravoitytė B, Konovalovas A, Aitmanaitė L, Butenko A, Yurchenko V, Serva S, Servienė E. 2017. Different metabolic pathways are involved in response of PubMed DOI PMC

Aitmanaitė L, Konovalovas A, Medvedevas P, Servienė E, Serva S. 2021. Specificity determination in PubMed DOI PMC

Yao W, Bruenn JA. 1995. Interference with replication of two double-stranded RNA viruses by production of N-terminal fragments of capsid polypeptides. Virology 214:215–221. doi: 10.1006/viro.1995.9938. PubMed DOI

Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. 2022. PubMed DOI PMC

Ishemgulova A, Kraeva N, Hlaváčová J, Zimmer SL, Butenko A, Podešvová L, Leštinová T, Lukeš J, Kostygov A, Votýpka J, Volf P, Yurchenko V. 2017. A putative ATP/GTP binding protein affects PubMed DOI PMC

Eren RO, Reverte M, Rossi M, Hartley MA, Castiglioni P, Prevel F, Martin R, Desponds C, Lye LF, Drexler SK, Reith W, Beverley SM, Ronet C, Fasel N. 2016. Mammalian innate immune response to a PubMed DOI PMC

Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, Dobson DE, Ronet C, Ghalib H, Beverley SM, Fasel N. 2014. PubMed DOI PMC

Dinman JD, Wickner RB. 1992. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J Virol 66:3669–3676. doi: 10.1128/JVI.66.6.3669-3676.1992. PubMed DOI PMC

Procházková M, Füzik T, Grybchuk D, Falginella FL, Podešvová L, Yurchenko V, Vácha R, Plevka P. 2021. Capsid structure of PubMed DOI PMC

de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, Silva ALN, da Silva PF, Frantz FG, Lorenzon LB, Souza MM, Almeida F, Cantanhede LM, Ferreira RGM, Cruz AK, Zamboni DS. 2019. PubMed DOI PMC

Saberi R, Fakhar M, Hajjaran H, Ataei-Pirkooh A, Mohebali M, Taghipour N, Ziaei Hezarjaribi H, Moghadam Y, Bagheri A. 2020. Presence and diversity of PubMed DOI

Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL. 1989. Characterization of a RNA virus from the parasite PubMed DOI PMC

Yurchenko V, Lukeš J, Xu X, Maslov DA. 2006. An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of PubMed DOI

Ishemgulova A, Hlaváčová J, Majerová K, Butenko A, Lukeš J, Votýpka J, Volf P, Yurchenko V. 2018. CRISPR/Cas9 in PubMed DOI PMC

Lee SE, Suh JM, Scheffter S, Patterson JL, Chung IK. 1996. Identification of a ribosomal frameshift in PubMed DOI

Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J, Vesteg M. 2014. A small portion of plastid transcripts is polyadenylated in the flagellate PubMed DOI

Basu R, Bhaumik S, Basu JM, Naskar K, De T, Roy S. 2005. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of PubMed DOI

Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V. 2014. Tetracycline-inducible gene expression system in PubMed DOI

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ, Jr., Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H. 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38:D457–62. doi: 10.1093/nar/gkp851. PubMed DOI PMC

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...