Capsid Structure of Leishmania RNA Virus 1
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33208443
PubMed Central
PMC7925086
DOI
10.1128/jvi.01957-20
PII: JVI.01957-20
Knihovny.cz E-zdroje
- Klíčová slova
- CAP-4, LRV1, Leishmania, RNA, Totiviridae, Viannia, capsid, cryo-electron microscopy, decapping, genome, leishmaniasis, mRNA, parasite, structure, uncoating, virion, virus,
- MeSH
- elektronová kryomikroskopie MeSH
- genom virový MeSH
- kapsida chemie metabolismus MeSH
- Leishmaniavirus chemie genetika metabolismus MeSH
- RNA virová genetika metabolismus MeSH
- virové plášťové proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA virová MeSH
- virové plášťové proteiny MeSH
Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5' end, by virus RNA polymerases. To protect viral RNAs from degradation, capsid proteins of the L-A totivirus cleave the 5' caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5' cap of Leishmania mRNAs. The putative RNA binding site of LRV1 is distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative decapping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of LeishmaniaIMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is caused predominantly by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus, L-A virus, protect viral RNAs from degradation by cleaving the 5' caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for mucocutaneous leishmaniasis.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Condensed Matter Physics Faculty of Science Masaryk University Brno Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
World Health Organization. 2020. Leishmaniasis. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis. Accessed 24 November 2020.
Bruschi F, Gradoni L (ed). 2018. The leishmaniases: old neglected tropical diseases. Springer Nature, Cham, Switzerland. doi:10.1007/978-3-319-72386-0. DOI
Akhoundi M, Kuhls K, Cannet A, Votypka J, Marty P, Delaunay P, Sereno D. 2016. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 10:e0004349. doi:10.1371/journal.pntd.0004349. PubMed DOI PMC
Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R. 2008. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310. doi:10.1172/JCI33945. PubMed DOI PMC
de Oliveira Ramos Pereira L, Maretti-Mira AC, Rodrigues KM, Lima RB, de Oliveira-Neto MP, Cupolillo E, Pirmez C, Pereira de Oliveira M. 2013. Severity of tegumentary leishmaniasis is not exclusively associated with Leishmania RNA virus 1 infection in Brazil. Mem Inst Oswaldo Cruz 108:665–667. doi:10.1590/0074-0276108052013021. PubMed DOI PMC
Grybchuk D, Kostygov AY, Macedo DH, d'Avila-Levy CM, Yurchenko V. 2018. RNA viruses in trypanosomatid parasites: a historical overview. Mem Inst Oswaldo Cruz 113:e170487. doi:10.1590/0074-02760170487. PubMed DOI PMC
Kuhlmann FM, Robinson JI, Bluemling GR, Ronet C, Fasel N, Beverley SM. 2017. Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor. Proc Natl Acad Sci U S A 114:E811–E819. doi:10.1073/pnas.1619114114. PubMed DOI PMC
Hartley M-A, Ronet C, Zangger H, Beverley SM, Fasel N. 2012. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2:99. doi:10.3389/fcimb.2012.00099. PubMed DOI PMC
Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, Zangger H, Revaz-Breton M, Lye L-F, Hickerson SM, Beverley SM, Acha-Orbea H, Launois P, Fasel N, Masina S. 2011. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331:775–778. doi:10.1126/science.1199326. PubMed DOI PMC
Adaui V, Lye LF, Akopyants NS, Zimic M, Llanos-Cuentas A, Garcia L, Maes I, De Doncker S, Dobson DE, Arevalo J, Dujardin JC, Beverley SM. 2016. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by leishmania braziliensis in Peru and Bolivia. J Infect Dis 213:112–121. doi:10.1093/infdis/jiv354. PubMed DOI PMC
Castiglioni P, Hartley MA, Rossi M, Prevel F, Desponds C, Utzschneider DT, Eren RO, Zangger H, Brunner L, Collin N, Zehn D, Kuhlmann FM, Beverley SM, Fasel N, Ronet C. 2017. Exacerbated leishmaniasis caused by a viral endosymbiont can be prevented by immunization with its viral capsid. PLoS Negl Trop Dis 11:e0005240. doi:10.1371/journal.pntd.0005240. PubMed DOI PMC
Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL. 1989. Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci U S A 86:5979–5982. doi:10.1073/pnas.86.15.5979. PubMed DOI PMC
Robinson JI, Beverley SM. 2018. Concentration of 2'C-methyladenosine triphosphate by Leishmania guyanensis enables specific inhibition of Leishmania RNA virus 1 via its RNA polymerase. J Biol Chem 293:6460–6469. doi:10.1074/jbc.RA117.001515. PubMed DOI PMC
Reference deleted.
Blanc A, Goyer C, Sonenberg N. 1992. The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA. Mol Cell Biol 12:3390–3398. doi:10.1128/MCB.12.8.3390. PubMed DOI PMC
Icho T, Wickner RB. 1989. The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem 264:6716–6723.https://www.jbc.org/content/264/12/6716.long. PubMed
Castón JR, Trus BL, Booy FP, Wickner RB, Wall JS, Steven AC. 1997. Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. J Cell Biol 138:975–985. doi:10.1083/jcb.138.5.975. PubMed DOI PMC
Naitow H, Tang J, Canady M, Wickner RB, Johnson JE. 2002. L-A virus at 3.4 Å resolution reveals particle architecture and mRNA decapping mechanism. Nat Struct Biol 9:725–728. doi:10.1038/nsb844. PubMed DOI
Janssen MEW, Takagi Y, Parent KN, Cardone G, Nibert ML, Baker TS. 2015. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia. J Virol 89:1182–1194. doi:10.1128/JVI.02745-14. PubMed DOI PMC
Poulos BT, Tang KFJ, Pantoja CR, Bonami JR, Lightner DV. 2006. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J Gen Virol 87:987–996. doi:10.1099/vir.0.81127-0. PubMed DOI
Parent KN, Takagi Y, Cardone G, Olson NH, Ericsson M, Yang M, Lee Y, Asara JM, Fichorova RN, Baker TS, Nibert ML. 2013. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. mBio 4:e00056-13. doi:10.1128/mBio.00056-13. PubMed DOI PMC
Dunn SE, Li H, Cardone G, Nibert ML, Ghabrial SA, Baker TS. 2013. Three-dimensional structure of victorivirus HvV190S suggests coat proteins in most totiviruses share a conserved core. PLoS Pathog 9:e1003225. doi:10.1371/journal.ppat.1003225. PubMed DOI PMC
Luque D, Mata CP, Suzuki N, Ghabrial SA, Caston JR. 2018. Capsid structure of dsRNA fungal viruses. Viruses 10:481. doi:10.3390/v10090481. PubMed DOI PMC
Stuart KD, Weeks R, Guilbride L, Myler PJ. 1992. Molecular organization of Leishmania RNA virus 1. Proc Natl Acad Sci U S A 89:8596–8600. doi:10.1073/pnas.89.18.8596. PubMed DOI PMC
Kim SN, Choi JH, Park MW, Jeong SJ, Han KS, Kim HJ. 2005. Identification of the +1 ribosomal frameshifting site of LRV1–4 by mutational analysis. Arch Pharm Res 28:956–962. doi:10.1007/BF02973883. PubMed DOI
Lee SE, Suh JM, Scheffter S, Patterson JL, Chung IK. 1996. Identification of a ribosomal frameshift in Leishmania RNA virus 1-4. J Biochem 120:22–25. doi:10.1093/oxfordjournals.jbchem.a021387. PubMed DOI
Ribas JC, Wickner RB. 1998. The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae. J Biol Chem 273:9306–9311. doi:10.1074/jbc.273.15.9306. PubMed DOI
International Committee on Taxonomy of Viruses. 2012. Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Academic Press, London, United Kingdom.
Narayanan K, Makino S. 2013. Interplay between viruses and host mRNA degradation. Biochim Biophys Acta 1829:732–741. doi:10.1016/j.bbagrm.2012.12.003. PubMed DOI PMC
Wilusz CJ, Wormington M, Peltz SW. 2001. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246. doi:10.1038/35067025. PubMed DOI
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukes J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146:1–27. doi:10.1017/S0031182018000951. PubMed DOI
Sobotková K, Parker W, Levá J, Růžková J, Lukeš J, Jirků Pomajbíková K. 2019. Helminth therapy—from the parasite perspective. Trends Parasitol 35:501–515. doi:10.1016/j.pt.2019.04.009. PubMed DOI
Bangs JD, Crain PF, Hashizume T, McCloskey JA, Boothroyd JC. 1992. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem 267:9805–9815. PubMed
Lewdorowicz M, Yoffe Y, Zuberek J, Jemielity J, Stepinski J, Kierzek R, Stolarski R, Shapira M, Darzynkiewicz E. 2004. Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. RNA 10:1469–1478. doi:10.1261/rna.7510504. PubMed DOI PMC
Michaeli S. 2011. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 6:459–474. doi:10.2217/fmb.11.20. PubMed DOI
Blanc A, Ribas JC, Wickner RB, Sonenberg N. 1994. His-154 is involved in the linkage of the Saccharomyces cerevisiae L-A double-stranded RNA virus Gag protein to the cap structure of mRNAs and is essential for M1 satellite virus expression. Mol Cell Biol 14:2664–2674. doi:10.1128/MCB.14.4.2664. PubMed DOI PMC
Fujimura T, Esteban R. 2011. Cap-snatching mechanism in yeast L-A double-stranded RNA virus. Proc Natl Acad Sci U S A 108:17667–17671. doi:10.1073/pnas.1111900108. PubMed DOI PMC
Fujimura T, Esteban R. 2012. Cap snatching of yeast L-A double-stranded RNA virus can operate in trans and requires viral polymerase actively engaging in transcription. J Biol Chem 287:12797–12804. doi:10.1074/jbc.M111.327676. PubMed DOI PMC
Fujimura T, Esteban R. 2013. Cap snatching in yeast L-BC double-stranded RNA totivirus. J Biol Chem 288:23716–23724. doi:10.1074/jbc.M113.490953. PubMed DOI PMC
Fujimura T, Esteban R. 2019. The cap-snatching reaction of yeast L-A double-stranded RNA virus is reversible and the catalytic sites on both Gag and the Gag domain of Gag-Pol are active. Mol Microbiol 111:395–404. doi:10.1111/mmi.14161. PubMed DOI
Masison DC, Blanc A, Ribas JC, Carroll K, Sonenberg N, Wickner RB. 1995. Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)-mRNA surveillance by a yeast antiviral system. Mol Cell Biol 15:2763–2771. doi:10.1128/MCB.15.5.2763. PubMed DOI PMC
Hodel AE, Gershon PD, Quiocho FA. 1998. Structural basis for sequence-nonspecific recognition of 5 '-capped mRNA by a cap-modifying enzyme. Mol Cell 1:443–447. doi:10.1016/S1097-2765(00)80044-1. PubMed DOI
Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart DI. 1998. The atomic structure of the bluetongue virus core. Nature 395:470–478. doi:10.1038/26694. PubMed DOI
Sun Z, El Omari K, Sun X, Ilca SL, Kotecha A, Stuart DI, Poranen MM, Huiskonen JT. 2017. Double-stranded RNA virus outer shell assembly by bona fide domain-swapping. Nat Commun 8:14814. doi:10.1038/ncomms14814. PubMed DOI PMC
Pan J, Dong L, Lin L, Ochoa WF, Sinkovits RS, Havens WM, Nibert ML, Baker TS, Ghabrial SA, Tao YJ. 2009. Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc Natl Acad Sci U S A 106:4225–4230. doi:10.1073/pnas.0812071106. PubMed DOI PMC
Duquerroy S, Da Costa B, Henry C, Vigouroux A, Libersou S, Lepault J, Navaza J, Delmas B, Rey FA. 2009. The picobirnavirus crystal structure provides functional insights into virion assembly and cell entry. EMBO J 28:1655–1665. doi:10.1038/emboj.2009.109. PubMed DOI PMC
Speir JA, Johnson JE. 2012. Nucleic acid packaging in viruses. Curr Opin Struct Biol 22:65–71. doi:10.1016/j.sbi.2011.11.002. PubMed DOI PMC
Roos WH, Ivanovska IL, Evilevitch A, Wuite GJL. 2007. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 64:1484–1497. doi:10.1007/s00018-007-6451-1. PubMed DOI PMC
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. 2019. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Sci Adv 5:eaaw7414. doi:10.1126/sciadv.aaw7414. PubMed DOI PMC
Estrozi LF, Settembre EC, Goret G, McClain B, Zhang X, Chen JZ, Grigorieff N, Harrison SC. 2013. Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J Mol Biol 425:124–132. doi:10.1016/j.jmb.2012.10.011. PubMed DOI PMC
Miller SI, Landfear SM, Wirth DF. 1986. Cloning and characterization of a Leishmania gene encoding a RNA spliced leader sequence. Nucleic Acids Res 14:7341–7360. doi:10.1093/nar/14.18.7341. PubMed DOI PMC
Bayer TS, Booth LN, Knudsen SM, Ellington AD. 2005. Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA 11:1848–1857. doi:10.1261/rna.2167605. PubMed DOI PMC
Tang J, Naitow H, Gardner NA, Kolesar A, Tang L, Wickner RB, Johnson JE. 2005. The structural basis of recognition and removal of cellular mRNA 7-methyl G 'caps' by a viral capsid protein: a unique viral response to host defense. J Mol Recognit 18:158–168. doi:10.1002/jmr.724. PubMed DOI
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng YF, Agard DA. 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332. doi:10.1038/nmeth.4193. PubMed DOI PMC
Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ. 2007. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46. doi:10.1016/j.jsb.2006.05.009. PubMed DOI
Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221. doi:10.1016/j.jsb.2015.08.008. PubMed DOI PMC
Scheres SHW. 2012. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530. doi:10.1016/j.jsb.2012.09.006. PubMed DOI PMC
Scheres SH, Chen S. 2012. Prevention of overfitting in cryo-EM structure determination. Nat Methods 9:853–854. doi:10.1038/nmeth.2115. PubMed DOI PMC
Lewdorowicz M, Jemielity J, Kierzek R, Shapira M, Stepinski J, Darzynkiewicz E. 2007. Solid-supported synthesis of 5′-mRNA CAP-4 from trypanosomatids. Nucleosides Nucleotides Nucleic Acids 26:1329–1333. doi:10.1080/15257770701533065. PubMed DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869. DOI
Wang LL, Friesner RA, Berne BJ. 2011. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B 115:9431–9438. doi:10.1021/jp204407d. PubMed DOI PMC
Parrinello M, Rahman A. 1981. Polymorphic transitions in single-crystals—a new molecular-dynamics method. J Appl Phys 52:7182–7190. doi:10.1063/1.328693. DOI
Bussi G, Donadio D, Parrinello M. 2007. Canonical sampling through velocity rescaling. J Chem Phys 126:014101. doi:10.1063/1.2408420. PubMed DOI
Miyamoto S, Kollman PA. 1992. Settle—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962. doi:10.1002/jcc.540130805. DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. 1998. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Darden T, York D, Pedersen L. 1993. Particle mesh Ewald: an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. doi:10.1063/1.464397. DOI
Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. 2005. GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291. PubMed DOI
Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. 2013. PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613. doi:10.1016/j.cpc.2013.09.018. DOI
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD, Jr.. 2010. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. doi:10.1002/jcc.21367. PubMed DOI PMC
Vanommeslaeghe K, Raman EP, MacKerell AD. 2012. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168. doi:10.1021/ci3003649. PubMed DOI PMC
Yu WB, He XB, Vanommeslaeghe K, MacKerell AD. 2012. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468. doi:10.1002/jcc.23067. PubMed DOI PMC
Gutierrez IS, Lin FY, Vanommeslaeghe K, Lemkul JA, Armacost KA, Brooks CL, MacKerell AD. 2016. Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand-protein interactions. Bioorg Med Chem 24:4812–4825. doi:10.1016/j.bmc.2016.06.034. PubMed DOI PMC
Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD. 2011. Impact of 2 '-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM All-Atom Additive Force Field for RNA. J Comput Chem 32:1929–1943. doi:10.1002/jcc.21777. PubMed DOI PMC
Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE. 1999. Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240. doi:10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M. DOI
Yan YM, Zhang D, Zhou P, Li BT, Huang SY. 2017. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45:W365–W373. doi:10.1093/nar/gkx407. PubMed DOI PMC
Huang SY, Zou XQ. 2008. An iterative knowledge-based scoring function for protein-protein recognition. Proteins 72:557–579. doi:10.1002/prot.21949. PubMed DOI
Huang SY, Zou XQ. 2014. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res 42:e55. doi:10.1093/nar/gku077. PubMed DOI PMC
Yan YM, Wen ZY, Wang XX, Huang SY. 2017. Addressing recent docking challenges: a hybrid strategy to integrate template-based and free protein-protein docking. Proteins 85:497–512. doi:10.1002/prot.25234. PubMed DOI
Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC. 2011. Atomic model of an infectious rotavirus particle. EMBO J 30:408–416. doi:10.1038/emboj.2010.322. PubMed DOI PMC
Reinisch KM, Nibert ML, Harrison SC. 2000. Structure of the reovirus core at 3.6 A resolution. Nature 404:960–967. doi:10.1038/35010041. PubMed DOI
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania
Elimination of LRVs Elicits Different Responses in Leishmania spp
Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins