Capsid Structure of Leishmania RNA Virus 1

. 2021 Jan 13 ; 95 (3) : . [epub] 20210113

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33208443

Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5' end, by virus RNA polymerases. To protect viral RNAs from degradation, capsid proteins of the L-A totivirus cleave the 5' caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5' cap of Leishmania mRNAs. The putative RNA binding site of LRV1 is distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative decapping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of LeishmaniaIMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is caused predominantly by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus, L-A virus, protect viral RNAs from degradation by cleaving the 5' caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for mucocutaneous leishmaniasis.

Zobrazit více v PubMed

World Health Organization. 2020. Leishmaniasis. https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis. Accessed 24 November 2020.

Bruschi F, Gradoni L (ed). 2018. The leishmaniases: old neglected tropical diseases. Springer Nature, Cham, Switzerland. doi:10.1007/978-3-319-72386-0. DOI

Akhoundi M, Kuhls K, Cannet A, Votypka J, Marty P, Delaunay P, Sereno D. 2016. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 10:e0004349. doi:10.1371/journal.pntd.0004349. PubMed DOI PMC

Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R. 2008. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310. doi:10.1172/JCI33945. PubMed DOI PMC

de Oliveira Ramos Pereira L, Maretti-Mira AC, Rodrigues KM, Lima RB, de Oliveira-Neto MP, Cupolillo E, Pirmez C, Pereira de Oliveira M. 2013. Severity of tegumentary leishmaniasis is not exclusively associated with Leishmania RNA virus 1 infection in Brazil. Mem Inst Oswaldo Cruz 108:665–667. doi:10.1590/0074-0276108052013021. PubMed DOI PMC

Grybchuk D, Kostygov AY, Macedo DH, d'Avila-Levy CM, Yurchenko V. 2018. RNA viruses in trypanosomatid parasites: a historical overview. Mem Inst Oswaldo Cruz 113:e170487. doi:10.1590/0074-02760170487. PubMed DOI PMC

Kuhlmann FM, Robinson JI, Bluemling GR, Ronet C, Fasel N, Beverley SM. 2017. Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor. Proc Natl Acad Sci U S A 114:E811–E819. doi:10.1073/pnas.1619114114. PubMed DOI PMC

Hartley M-A, Ronet C, Zangger H, Beverley SM, Fasel N. 2012. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2:99. doi:10.3389/fcimb.2012.00099. PubMed DOI PMC

Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, Zangger H, Revaz-Breton M, Lye L-F, Hickerson SM, Beverley SM, Acha-Orbea H, Launois P, Fasel N, Masina S. 2011. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331:775–778. doi:10.1126/science.1199326. PubMed DOI PMC

Adaui V, Lye LF, Akopyants NS, Zimic M, Llanos-Cuentas A, Garcia L, Maes I, De Doncker S, Dobson DE, Arevalo J, Dujardin JC, Beverley SM. 2016. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by leishmania braziliensis in Peru and Bolivia. J Infect Dis 213:112–121. doi:10.1093/infdis/jiv354. PubMed DOI PMC

Castiglioni P, Hartley MA, Rossi M, Prevel F, Desponds C, Utzschneider DT, Eren RO, Zangger H, Brunner L, Collin N, Zehn D, Kuhlmann FM, Beverley SM, Fasel N, Ronet C. 2017. Exacerbated leishmaniasis caused by a viral endosymbiont can be prevented by immunization with its viral capsid. PLoS Negl Trop Dis 11:e0005240. doi:10.1371/journal.pntd.0005240. PubMed DOI PMC

Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL. 1989. Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci U S A 86:5979–5982. doi:10.1073/pnas.86.15.5979. PubMed DOI PMC

Robinson JI, Beverley SM. 2018. Concentration of 2'C-methyladenosine triphosphate by Leishmania guyanensis enables specific inhibition of Leishmania RNA virus 1 via its RNA polymerase. J Biol Chem 293:6460–6469. doi:10.1074/jbc.RA117.001515. PubMed DOI PMC

Reference deleted.

Blanc A, Goyer C, Sonenberg N. 1992. The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA. Mol Cell Biol 12:3390–3398. doi:10.1128/MCB.12.8.3390. PubMed DOI PMC

Icho T, Wickner RB. 1989. The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem 264:6716–6723.https://www.jbc.org/content/264/12/6716.long. PubMed

Castón JR, Trus BL, Booy FP, Wickner RB, Wall JS, Steven AC. 1997. Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. J Cell Biol 138:975–985. doi:10.1083/jcb.138.5.975. PubMed DOI PMC

Naitow H, Tang J, Canady M, Wickner RB, Johnson JE. 2002. L-A virus at 3.4 Å resolution reveals particle architecture and mRNA decapping mechanism. Nat Struct Biol 9:725–728. doi:10.1038/nsb844. PubMed DOI

Janssen MEW, Takagi Y, Parent KN, Cardone G, Nibert ML, Baker TS. 2015. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia. J Virol 89:1182–1194. doi:10.1128/JVI.02745-14. PubMed DOI PMC

Poulos BT, Tang KFJ, Pantoja CR, Bonami JR, Lightner DV. 2006. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J Gen Virol 87:987–996. doi:10.1099/vir.0.81127-0. PubMed DOI

Parent KN, Takagi Y, Cardone G, Olson NH, Ericsson M, Yang M, Lee Y, Asara JM, Fichorova RN, Baker TS, Nibert ML. 2013. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. mBio 4:e00056-13. doi:10.1128/mBio.00056-13. PubMed DOI PMC

Dunn SE, Li H, Cardone G, Nibert ML, Ghabrial SA, Baker TS. 2013. Three-dimensional structure of victorivirus HvV190S suggests coat proteins in most totiviruses share a conserved core. PLoS Pathog 9:e1003225. doi:10.1371/journal.ppat.1003225. PubMed DOI PMC

Luque D, Mata CP, Suzuki N, Ghabrial SA, Caston JR. 2018. Capsid structure of dsRNA fungal viruses. Viruses 10:481. doi:10.3390/v10090481. PubMed DOI PMC

Stuart KD, Weeks R, Guilbride L, Myler PJ. 1992. Molecular organization of Leishmania RNA virus 1. Proc Natl Acad Sci U S A 89:8596–8600. doi:10.1073/pnas.89.18.8596. PubMed DOI PMC

Kim SN, Choi JH, Park MW, Jeong SJ, Han KS, Kim HJ. 2005. Identification of the +1 ribosomal frameshifting site of LRV1–4 by mutational analysis. Arch Pharm Res 28:956–962. doi:10.1007/BF02973883. PubMed DOI

Lee SE, Suh JM, Scheffter S, Patterson JL, Chung IK. 1996. Identification of a ribosomal frameshift in Leishmania RNA virus 1-4. J Biochem 120:22–25. doi:10.1093/oxfordjournals.jbchem.a021387. PubMed DOI

Ribas JC, Wickner RB. 1998. The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae. J Biol Chem 273:9306–9311. doi:10.1074/jbc.273.15.9306. PubMed DOI

International Committee on Taxonomy of Viruses. 2012. Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Academic Press, London, United Kingdom.

Narayanan K, Makino S. 2013. Interplay between viruses and host mRNA degradation. Biochim Biophys Acta 1829:732–741. doi:10.1016/j.bbagrm.2012.12.003. PubMed DOI PMC

Wilusz CJ, Wormington M, Peltz SW. 2001. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246. doi:10.1038/35067025. PubMed DOI

Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukes J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146:1–27. doi:10.1017/S0031182018000951. PubMed DOI

Sobotková K, Parker W, Levá J, Růžková J, Lukeš J, Jirků Pomajbíková K. 2019. Helminth therapy—from the parasite perspective. Trends Parasitol 35:501–515. doi:10.1016/j.pt.2019.04.009. PubMed DOI

Bangs JD, Crain PF, Hashizume T, McCloskey JA, Boothroyd JC. 1992. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem 267:9805–9815. PubMed

Lewdorowicz M, Yoffe Y, Zuberek J, Jemielity J, Stepinski J, Kierzek R, Stolarski R, Shapira M, Darzynkiewicz E. 2004. Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. RNA 10:1469–1478. doi:10.1261/rna.7510504. PubMed DOI PMC

Michaeli S. 2011. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 6:459–474. doi:10.2217/fmb.11.20. PubMed DOI

Blanc A, Ribas JC, Wickner RB, Sonenberg N. 1994. His-154 is involved in the linkage of the Saccharomyces cerevisiae L-A double-stranded RNA virus Gag protein to the cap structure of mRNAs and is essential for M1 satellite virus expression. Mol Cell Biol 14:2664–2674. doi:10.1128/MCB.14.4.2664. PubMed DOI PMC

Fujimura T, Esteban R. 2011. Cap-snatching mechanism in yeast L-A double-stranded RNA virus. Proc Natl Acad Sci U S A 108:17667–17671. doi:10.1073/pnas.1111900108. PubMed DOI PMC

Fujimura T, Esteban R. 2012. Cap snatching of yeast L-A double-stranded RNA virus can operate in trans and requires viral polymerase actively engaging in transcription. J Biol Chem 287:12797–12804. doi:10.1074/jbc.M111.327676. PubMed DOI PMC

Fujimura T, Esteban R. 2013. Cap snatching in yeast L-BC double-stranded RNA totivirus. J Biol Chem 288:23716–23724. doi:10.1074/jbc.M113.490953. PubMed DOI PMC

Fujimura T, Esteban R. 2019. The cap-snatching reaction of yeast L-A double-stranded RNA virus is reversible and the catalytic sites on both Gag and the Gag domain of Gag-Pol are active. Mol Microbiol 111:395–404. doi:10.1111/mmi.14161. PubMed DOI

Masison DC, Blanc A, Ribas JC, Carroll K, Sonenberg N, Wickner RB. 1995. Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)-mRNA surveillance by a yeast antiviral system. Mol Cell Biol 15:2763–2771. doi:10.1128/MCB.15.5.2763. PubMed DOI PMC

Hodel AE, Gershon PD, Quiocho FA. 1998. Structural basis for sequence-nonspecific recognition of 5 '-capped mRNA by a cap-modifying enzyme. Mol Cell 1:443–447. doi:10.1016/S1097-2765(00)80044-1. PubMed DOI

Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart DI. 1998. The atomic structure of the bluetongue virus core. Nature 395:470–478. doi:10.1038/26694. PubMed DOI

Sun Z, El Omari K, Sun X, Ilca SL, Kotecha A, Stuart DI, Poranen MM, Huiskonen JT. 2017. Double-stranded RNA virus outer shell assembly by bona fide domain-swapping. Nat Commun 8:14814. doi:10.1038/ncomms14814. PubMed DOI PMC

Pan J, Dong L, Lin L, Ochoa WF, Sinkovits RS, Havens WM, Nibert ML, Baker TS, Ghabrial SA, Tao YJ. 2009. Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc Natl Acad Sci U S A 106:4225–4230. doi:10.1073/pnas.0812071106. PubMed DOI PMC

Duquerroy S, Da Costa B, Henry C, Vigouroux A, Libersou S, Lepault J, Navaza J, Delmas B, Rey FA. 2009. The picobirnavirus crystal structure provides functional insights into virion assembly and cell entry. EMBO J 28:1655–1665. doi:10.1038/emboj.2009.109. PubMed DOI PMC

Speir JA, Johnson JE. 2012. Nucleic acid packaging in viruses. Curr Opin Struct Biol 22:65–71. doi:10.1016/j.sbi.2011.11.002. PubMed DOI PMC

Roos WH, Ivanovska IL, Evilevitch A, Wuite GJL. 2007. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 64:1484–1497. doi:10.1007/s00018-007-6451-1. PubMed DOI PMC

Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. 2019. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Sci Adv 5:eaaw7414. doi:10.1126/sciadv.aaw7414. PubMed DOI PMC

Estrozi LF, Settembre EC, Goret G, McClain B, Zhang X, Chen JZ, Grigorieff N, Harrison SC. 2013. Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J Mol Biol 425:124–132. doi:10.1016/j.jmb.2012.10.011. PubMed DOI PMC

Miller SI, Landfear SM, Wirth DF. 1986. Cloning and characterization of a Leishmania gene encoding a RNA spliced leader sequence. Nucleic Acids Res 14:7341–7360. doi:10.1093/nar/14.18.7341. PubMed DOI PMC

Bayer TS, Booth LN, Knudsen SM, Ellington AD. 2005. Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA 11:1848–1857. doi:10.1261/rna.2167605. PubMed DOI PMC

Tang J, Naitow H, Gardner NA, Kolesar A, Tang L, Wickner RB, Johnson JE. 2005. The structural basis of recognition and removal of cellular mRNA 7-methyl G 'caps' by a viral capsid protein: a unique viral response to host defense. J Mol Recognit 18:158–168. doi:10.1002/jmr.724. PubMed DOI

Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng YF, Agard DA. 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332. doi:10.1038/nmeth.4193. PubMed DOI PMC

Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ. 2007. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46. doi:10.1016/j.jsb.2006.05.009. PubMed DOI

Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221. doi:10.1016/j.jsb.2015.08.008. PubMed DOI PMC

Scheres SHW. 2012. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530. doi:10.1016/j.jsb.2012.09.006. PubMed DOI PMC

Scheres SH, Chen S. 2012. Prevention of overfitting in cryo-EM structure determination. Nat Methods 9:853–854. doi:10.1038/nmeth.2115. PubMed DOI PMC

Lewdorowicz M, Jemielity J, Kierzek R, Shapira M, Stepinski J, Darzynkiewicz E. 2007. Solid-supported synthesis of 5′-mRNA CAP-4 from trypanosomatids. Nucleosides Nucleotides Nucleic Acids 26:1329–1333. doi:10.1080/15257770701533065. PubMed DOI

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869. DOI

Wang LL, Friesner RA, Berne BJ. 2011. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B 115:9431–9438. doi:10.1021/jp204407d. PubMed DOI PMC

Parrinello M, Rahman A. 1981. Polymorphic transitions in single-crystals—a new molecular-dynamics method. J Appl Phys 52:7182–7190. doi:10.1063/1.328693. DOI

Bussi G, Donadio D, Parrinello M. 2007. Canonical sampling through velocity rescaling. J Chem Phys 126:014101. doi:10.1063/1.2408420. PubMed DOI

Miyamoto S, Kollman PA. 1992. Settle—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962. doi:10.1002/jcc.540130805. DOI

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. 1998. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Darden T, York D, Pedersen L. 1993. Particle mesh Ewald: an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. doi:10.1063/1.464397. DOI

Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. 2005. GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291. PubMed DOI

Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. 2013. PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613. doi:10.1016/j.cpc.2013.09.018. DOI

Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD, Jr.. 2010. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. doi:10.1002/jcc.21367. PubMed DOI PMC

Vanommeslaeghe K, Raman EP, MacKerell AD. 2012. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168. doi:10.1021/ci3003649. PubMed DOI PMC

Yu WB, He XB, Vanommeslaeghe K, MacKerell AD. 2012. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468. doi:10.1002/jcc.23067. PubMed DOI PMC

Gutierrez IS, Lin FY, Vanommeslaeghe K, Lemkul JA, Armacost KA, Brooks CL, MacKerell AD. 2016. Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand-protein interactions. Bioorg Med Chem 24:4812–4825. doi:10.1016/j.bmc.2016.06.034. PubMed DOI PMC

Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD. 2011. Impact of 2 '-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM All-Atom Additive Force Field for RNA. J Comput Chem 32:1929–1943. doi:10.1002/jcc.21777. PubMed DOI PMC

Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE. 1999. Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240. doi:10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M. DOI

Yan YM, Zhang D, Zhou P, Li BT, Huang SY. 2017. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45:W365–W373. doi:10.1093/nar/gkx407. PubMed DOI PMC

Huang SY, Zou XQ. 2008. An iterative knowledge-based scoring function for protein-protein recognition. Proteins 72:557–579. doi:10.1002/prot.21949. PubMed DOI

Huang SY, Zou XQ. 2014. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res 42:e55. doi:10.1093/nar/gku077. PubMed DOI PMC

Yan YM, Wen ZY, Wang XX, Huang SY. 2017. Addressing recent docking challenges: a hybrid strategy to integrate template-based and free protein-protein docking. Proteins 85:497–512. doi:10.1002/prot.25234. PubMed DOI

Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC. 2011. Atomic model of an infectious rotavirus particle. EMBO J 30:408–416. doi:10.1038/emboj.2010.322. PubMed DOI PMC

Reinisch KM, Nibert ML, Harrison SC. 2000. Structure of the reovirus core at 3.6 A resolution. Nature 404:960–967. doi:10.1038/35010041. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...