Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35986212
PubMed Central
PMC9391438
DOI
10.1038/s42003-022-03793-z
PII: 10.1038/s42003-022-03793-z
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie MeSH
- kapsida metabolismus MeSH
- Totivirus * chemie genetika MeSH
- virové plášťové proteiny metabolismus MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny MeSH
L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Biochemistry and Molecular Biology Vilnius University 10257 Vilnius Lithuania
Life Science Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Zobrazit více v PubMed
Poulos BT, Tang KFJ, Pantoja CR, Bonami JR, Lightner DV. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J. Gen. Virol. 2006;87:987–996. PubMed
Zhai Y, et al. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J. Gen. Virol. 2010;91:2836–2845. PubMed
Løvoll M, et al. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS) Virol. J. 2010;7:309. PubMed PMC
Tengs T, Böckerman I. A strain of piscine myocarditis virus infecting Atlantic argentine, Argentina silus (Ascanius) J. Fish. Dis. 2012;35:545–547. PubMed
Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479–480:356–368. PubMed
Miller RL, Wang AL, Wang CC. Identification of Giardia lamblia isolates susceptible and resistant to infection by the double-stranded RNA virus. Exp. Parasitol. 1988;66:118–123. PubMed
Okamoto K, et al. The infectious particle of insect-borne totivirus-like Omono River virus has raised ridges and lacks fibre complexes. Sci. Rep. 2016;6:33170. PubMed PMC
Bang Jensen B, Nylund S, Svendsen JC, Ski P-MR, Takle H. Indications for a vertical transmission pathway of piscine myocarditis virus in Atlantic salmon (Salmo salar L.) J. Fish. Dis. 2019;42:825–833. PubMed PMC
Field LJ, Bobek LA, Brennan VE, Reilly JD, Bruenn JA. There are at least two yeast viral double-stranded RNAs of the same size: an explanation for viral exclusion. Cell. 1982;31:193–200. PubMed
Wickner RB, Fujimura T, Esteban R. Viruses and prions of Saccharomyces cerevisiae. Adv. Virus Res. 2013;86:1–36. PubMed PMC
Kast A, et al. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression. PLoS Genet. 2015;11:e1005005. PubMed PMC
Becker B, Schmitt MJ. Yeast killer toxin K28: Biology and unique strategy of host cell intoxication and killing. Toxins. 2017;9:E333. PubMed PMC
Rodríguez-Cousiño N, Esteban R. Relationships and evolution of double-stranded RNA totiviruses of yeasts inferred from analysis of L-A-2 and L-BC variants in wine yeast strain populations. Appl. Environ. Microbiol. 2017;83:e02991–16. PubMed PMC
Rodríguez-Cousiño N, Gómez P, Esteban R. L-A-lus, a new variant of the L-A totivirus found in wine yeasts with Klus killer toxin-encoding Mlus double-stranded RNA: possible role of killer toxin-encoding satellite RNAs in the evolution of their helper viruses. Appl. Environ. Microbiol. 2013;79:4661–4674. PubMed PMC
Sommer SS, Wickner RB. Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell. 1982;31:429–441. PubMed
Naitow H, Tang J, Canady M, Wickner RB, Johnson JE. L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat. Struct. Biol. 2002;9:725–728. PubMed
Tang J, et al. Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes. Proc. Natl Acad. Sci. USA. 2008;105:17526–17531. PubMed PMC
Dunn SE, et al. Three-dimensional structure of victorivirus HvV190S suggests coat proteins in most totiviruses share a conserved core. PLoS Pathog. 2013;9:e1003225. PubMed PMC
Parent KN, et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. mBio. 2013;4:e00056–13. PubMed PMC
Janssen MEW, et al. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia. J. Virol. 2015;89:1182–1194. PubMed PMC
Procházková M, et al. Capsid structure of Leishmania RNA virus 1. J. Virol. 2021;95:e01957–20. PubMed PMC
Stevens A, Muratore K, Cui Y, Johnson PJ, Zhou ZH. Atomic Structure of the Trichomonas vaginalis Double-Stranded RNA Virus 2. mBio. 2021;12:e02924–20. PubMed PMC
Shao Q, et al. Cryo-EM reveals a previously unrecognized structural protein of a dsRNA virus implicated in its extracellular transmission. PLoS Pathog. 2021;17:e1009396. PubMed PMC
Luque D, Mata CP, Suzuki N, Ghabrial SA, Castón JR. Capsid structure of dsRNA fungal viruses. Viruses. 2018;10:E481. PubMed PMC
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv. Virus Res. 2020;108:213–247. PubMed
Estrozi LF, et al. Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J. Mol. Biol. 2013;425:124–132. PubMed PMC
Zhang X, et al. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature. 2015;527:531–534. PubMed PMC
Wang X, et al. Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly. Proc. Natl Acad. Sci. USA. 2018;115:7344–7349. PubMed PMC
He Y, et al. In situ structures of RNA-dependent RNA polymerase inside bluetongue virus before and after uncoating. Proc. Natl Acad. Sci. USA. 2019;116:16535–16540. PubMed PMC
Ding K, et al. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat. Commun. 2019;10:2216. PubMed PMC
Cui Y, Zhang Y, Zhou K, Sun J, Zhou ZH. Conservative transcription in three steps visualized in a double-stranded RNA virus. Nat. Struct. Mol. Biol. 2019;26:1023–1034. PubMed PMC
Sen A, et al. Initial location of the RNA-dependent RNA polymerase in the bacteriophage Phi6 procapsid determined by cryo-electron microscopy. J. Biol. Chem. 2008;283:12227–12231. PubMed PMC
Ilca SL, et al. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat. Commun. 2015;6:8843. PubMed PMC
Cheng RH, et al. Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J. Mol. Biol. 1994;244:255–258. PubMed
Yang C, et al. Cryo-EM structure of a transcribing cypovirus. Proc. Natl Acad. Sci. USA. 2012;109:6118–6123. PubMed PMC
Dinman JD, Icho T, Wickner RB. A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc. Natl Acad. Sci. USA. 1991;88:174–178. PubMed PMC
Stuart KD, Weeks R, Guilbride L, Myler PJ. Molecular organization of Leishmania RNA virus 1. Proc. Natl Acad. Sci. USA. 1992;89:8596–8600. PubMed PMC
Wang AL, Yang HM, Shen KA, Wang CC. Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift. Proc. Natl Acad. Sci. USA. 1993;90:8595–8599. PubMed PMC
Bessarab IN, Liu HW, Ip CF, Tai JH. The complete cDNA sequence of a type II Trichomonas vaginalis virus. Virology. 2000;267:350–359. PubMed
Dinman JD, Wickner RB. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 1992;66:3669–3676. PubMed PMC
Esteban R, Fujimura T, Wickner RB. Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. EMBO J. 1989;8:947–954. PubMed PMC
Fujimura T, Esteban R, Esteban LM, Wickner RB. Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell. 1990;62:819–828. PubMed
Ribas JC, Fujimura T, Wickner RB. Essential RNA binding and packaging domains of the Gag-Pol fusion protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. J. Biol. Chem. 1994;269:28420–28428. PubMed
Ribas JC, Wickner RB. The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae. J. Biol. Chem. 1998;273:9306–9311. PubMed
Fujimura T, Esteban R. Yeast double-stranded RNA virus L-A deliberately synthesizes RNA transcripts with 5’-diphosphate. J. Biol. Chem. 2010;285:22911–22918. PubMed PMC
Rowley PA, Ho B, Bushong S, Johnson A, Sawyer SL. XRN1 is a species-specific virus restriction factor in yeasts. PLoS Pathog. 2016;12:e1005890. PubMed PMC
Blanc A, Goyer C, Sonenberg N. The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA. Mol. Cell Biol. 1992;12:3390–3398. PubMed PMC
Masison DC, et al. Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)- mRNA surveillance by a yeast antiviral system. Mol. Cell Biol. 1995;15:2763–2771. PubMed PMC
Fujimura T, Esteban R. Cap-snatching mechanism in yeast L-A double-stranded RNA virus. Proc. Natl Acad. Sci. USA. 2011;108:17667–17671. PubMed PMC
Fujimura T, Esteban R. Cap snatching in yeast L-BC double-stranded RNA totivirus. J. Biol. Chem. 2013;288:23716–23724. PubMed PMC
Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 2005;15:655–663. PubMed
Pan J, et al. Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc. Natl Acad. Sci. USA. 2009;106:4225–4230. PubMed PMC
Taylor DJ, Ballinger MJ, Bowman SM, Bruenn JA. Virus-host co-evolution under a modified nuclear genetic code. PeerJ. 2013;1:e50. PubMed PMC
Fujimura T, Wickner RB. Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J. Biol. Chem. 1988;263:454–460. PubMed
Grimes JM, et al. The atomic structure of the bluetongue virus core. Nature. 1998;395:470–478. PubMed
Mertens PPC, Diprose J. The bluetongue virus core: A nano-scale transcription machine. Virus Res. 2004;101:29–43. PubMed
Kar AK, Ghosh M, Roy P. Mapping the assembly pathway of Bluetongue virus scaffolding protein VP3. Virology. 2004;324:387–399. PubMed
Lourenco S, Roy P. In vitro reconstitution of Bluetongue virus infectious cores. Proc. Natl Acad. Sci. USA. 2011;108:13746–13751. PubMed PMC
Roy P. Bluetongue virus structure and assembly. Curr. Opin. Virol. 2017;24:115–123. PubMed
Borodavka A, Desselberger U, Patton JT. Genome packaging in multi-segmented dsRNA viruses: Distinct mechanisms with similar outcomes. Curr. Opin. Virol. 2018;33:106–112. PubMed PMC
Mata CP, et al. The RNA-binding protein of a double-stranded RNA virus acts like a scaffold protein. J. Virol. 2018;92:e00968–18. PubMed PMC
Zhou ZH, Zhang H, Jakana J, Lu X-Y, Zhang J-Q. Cytoplasmic polyhedrosis virus structure at 8 A by electron cryomicroscopy: Structural basis of capsid stability and mRNA processing regulation. Structure. 2003;11:651–663. PubMed
Luque D, et al. Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage. Proc. Natl Acad. Sci. USA. 2014;111:7641–7646. PubMed PMC
Zheng SQ, et al. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. PubMed PMC
Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. PubMed PMC
Wagner T, et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. PubMed PMC
Scheres SHW. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. PubMed PMC
Zivanov J, et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018;7:e42166. PubMed PMC
Ramírez-Aportela E, et al. Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics. 2020;36:765–772. PubMed PMC
Rosenthal PB, Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 2003;333:721–745. PubMed
Pettersen EF, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Källberg M, et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 2012;7:1511–1522. PubMed PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta. Crystallogr. D. Biol. Crystallogr. 2010;66:486–501. PubMed PMC
Adams PD, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D. Biol. Crystallogr. 2010;66:213–221. PubMed PMC
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. Biol. Crystallogr. 1997;53:240–255. PubMed
Williams CJ, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC
Pettersen EF, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. PubMed PMC
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007;372:774–797. PubMed
Henderson R, et al. Outcome of the first electron microscopy validation task force meeting. Structure. 2012;20:205–214. PubMed PMC
Scheres SHW, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods. 2012;9:853–854. PubMed PMC