Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly

. 2022 Aug 20 ; 5 (1) : 847. [epub] 20220820

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35986212
Odkazy

PubMed 35986212
PubMed Central PMC9391438
DOI 10.1038/s42003-022-03793-z
PII: 10.1038/s42003-022-03793-z
Knihovny.cz E-zdroje

L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA.

Zobrazit více v PubMed

Poulos BT, Tang KFJ, Pantoja CR, Bonami JR, Lightner DV. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J. Gen. Virol. 2006;87:987–996. PubMed

Zhai Y, et al. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J. Gen. Virol. 2010;91:2836–2845. PubMed

Løvoll M, et al. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS) Virol. J. 2010;7:309. PubMed PMC

Tengs T, Böckerman I. A strain of piscine myocarditis virus infecting Atlantic argentine, Argentina silus (Ascanius) J. Fish. Dis. 2012;35:545–547. PubMed

Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479–480:356–368. PubMed

Miller RL, Wang AL, Wang CC. Identification of Giardia lamblia isolates susceptible and resistant to infection by the double-stranded RNA virus. Exp. Parasitol. 1988;66:118–123. PubMed

Okamoto K, et al. The infectious particle of insect-borne totivirus-like Omono River virus has raised ridges and lacks fibre complexes. Sci. Rep. 2016;6:33170. PubMed PMC

Bang Jensen B, Nylund S, Svendsen JC, Ski P-MR, Takle H. Indications for a vertical transmission pathway of piscine myocarditis virus in Atlantic salmon (Salmo salar L.) J. Fish. Dis. 2019;42:825–833. PubMed PMC

Field LJ, Bobek LA, Brennan VE, Reilly JD, Bruenn JA. There are at least two yeast viral double-stranded RNAs of the same size: an explanation for viral exclusion. Cell. 1982;31:193–200. PubMed

Wickner RB, Fujimura T, Esteban R. Viruses and prions of Saccharomyces cerevisiae. Adv. Virus Res. 2013;86:1–36. PubMed PMC

Kast A, et al. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression. PLoS Genet. 2015;11:e1005005. PubMed PMC

Becker B, Schmitt MJ. Yeast killer toxin K28: Biology and unique strategy of host cell intoxication and killing. Toxins. 2017;9:E333. PubMed PMC

Rodríguez-Cousiño N, Esteban R. Relationships and evolution of double-stranded RNA totiviruses of yeasts inferred from analysis of L-A-2 and L-BC variants in wine yeast strain populations. Appl. Environ. Microbiol. 2017;83:e02991–16. PubMed PMC

Rodríguez-Cousiño N, Gómez P, Esteban R. L-A-lus, a new variant of the L-A totivirus found in wine yeasts with Klus killer toxin-encoding Mlus double-stranded RNA: possible role of killer toxin-encoding satellite RNAs in the evolution of their helper viruses. Appl. Environ. Microbiol. 2013;79:4661–4674. PubMed PMC

Sommer SS, Wickner RB. Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell. 1982;31:429–441. PubMed

Naitow H, Tang J, Canady M, Wickner RB, Johnson JE. L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat. Struct. Biol. 2002;9:725–728. PubMed

Tang J, et al. Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes. Proc. Natl Acad. Sci. USA. 2008;105:17526–17531. PubMed PMC

Dunn SE, et al. Three-dimensional structure of victorivirus HvV190S suggests coat proteins in most totiviruses share a conserved core. PLoS Pathog. 2013;9:e1003225. PubMed PMC

Parent KN, et al. Structure of a protozoan virus from the human genitourinary parasite Trichomonas vaginalis. mBio. 2013;4:e00056–13. PubMed PMC

Janssen MEW, et al. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia. J. Virol. 2015;89:1182–1194. PubMed PMC

Procházková M, et al. Capsid structure of Leishmania RNA virus 1. J. Virol. 2021;95:e01957–20. PubMed PMC

Stevens A, Muratore K, Cui Y, Johnson PJ, Zhou ZH. Atomic Structure of the Trichomonas vaginalis Double-Stranded RNA Virus 2. mBio. 2021;12:e02924–20. PubMed PMC

Shao Q, et al. Cryo-EM reveals a previously unrecognized structural protein of a dsRNA virus implicated in its extracellular transmission. PLoS Pathog. 2021;17:e1009396. PubMed PMC

Luque D, Mata CP, Suzuki N, Ghabrial SA, Castón JR. Capsid structure of dsRNA fungal viruses. Viruses. 2018;10:E481. PubMed PMC

Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv. Virus Res. 2020;108:213–247. PubMed

Estrozi LF, et al. Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J. Mol. Biol. 2013;425:124–132. PubMed PMC

Zhang X, et al. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature. 2015;527:531–534. PubMed PMC

Wang X, et al. Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly. Proc. Natl Acad. Sci. USA. 2018;115:7344–7349. PubMed PMC

He Y, et al. In situ structures of RNA-dependent RNA polymerase inside bluetongue virus before and after uncoating. Proc. Natl Acad. Sci. USA. 2019;116:16535–16540. PubMed PMC

Ding K, et al. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat. Commun. 2019;10:2216. PubMed PMC

Cui Y, Zhang Y, Zhou K, Sun J, Zhou ZH. Conservative transcription in three steps visualized in a double-stranded RNA virus. Nat. Struct. Mol. Biol. 2019;26:1023–1034. PubMed PMC

Sen A, et al. Initial location of the RNA-dependent RNA polymerase in the bacteriophage Phi6 procapsid determined by cryo-electron microscopy. J. Biol. Chem. 2008;283:12227–12231. PubMed PMC

Ilca SL, et al. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat. Commun. 2015;6:8843. PubMed PMC

Cheng RH, et al. Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J. Mol. Biol. 1994;244:255–258. PubMed

Yang C, et al. Cryo-EM structure of a transcribing cypovirus. Proc. Natl Acad. Sci. USA. 2012;109:6118–6123. PubMed PMC

Dinman JD, Icho T, Wickner RB. A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc. Natl Acad. Sci. USA. 1991;88:174–178. PubMed PMC

Stuart KD, Weeks R, Guilbride L, Myler PJ. Molecular organization of Leishmania RNA virus 1. Proc. Natl Acad. Sci. USA. 1992;89:8596–8600. PubMed PMC

Wang AL, Yang HM, Shen KA, Wang CC. Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift. Proc. Natl Acad. Sci. USA. 1993;90:8595–8599. PubMed PMC

Bessarab IN, Liu HW, Ip CF, Tai JH. The complete cDNA sequence of a type II Trichomonas vaginalis virus. Virology. 2000;267:350–359. PubMed

Dinman JD, Wickner RB. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 1992;66:3669–3676. PubMed PMC

Esteban R, Fujimura T, Wickner RB. Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. EMBO J. 1989;8:947–954. PubMed PMC

Fujimura T, Esteban R, Esteban LM, Wickner RB. Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell. 1990;62:819–828. PubMed

Ribas JC, Fujimura T, Wickner RB. Essential RNA binding and packaging domains of the Gag-Pol fusion protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. J. Biol. Chem. 1994;269:28420–28428. PubMed

Ribas JC, Wickner RB. The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae. J. Biol. Chem. 1998;273:9306–9311. PubMed

Fujimura T, Esteban R. Yeast double-stranded RNA virus L-A deliberately synthesizes RNA transcripts with 5’-diphosphate. J. Biol. Chem. 2010;285:22911–22918. PubMed PMC

Rowley PA, Ho B, Bushong S, Johnson A, Sawyer SL. XRN1 is a species-specific virus restriction factor in yeasts. PLoS Pathog. 2016;12:e1005890. PubMed PMC

Blanc A, Goyer C, Sonenberg N. The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA. Mol. Cell Biol. 1992;12:3390–3398. PubMed PMC

Masison DC, et al. Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)- mRNA surveillance by a yeast antiviral system. Mol. Cell Biol. 1995;15:2763–2771. PubMed PMC

Fujimura T, Esteban R. Cap-snatching mechanism in yeast L-A double-stranded RNA virus. Proc. Natl Acad. Sci. USA. 2011;108:17667–17671. PubMed PMC

Fujimura T, Esteban R. Cap snatching in yeast L-BC double-stranded RNA totivirus. J. Biol. Chem. 2013;288:23716–23724. PubMed PMC

Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 2005;15:655–663. PubMed

Pan J, et al. Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc. Natl Acad. Sci. USA. 2009;106:4225–4230. PubMed PMC

Taylor DJ, Ballinger MJ, Bowman SM, Bruenn JA. Virus-host co-evolution under a modified nuclear genetic code. PeerJ. 2013;1:e50. PubMed PMC

Fujimura T, Wickner RB. Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J. Biol. Chem. 1988;263:454–460. PubMed

Grimes JM, et al. The atomic structure of the bluetongue virus core. Nature. 1998;395:470–478. PubMed

Mertens PPC, Diprose J. The bluetongue virus core: A nano-scale transcription machine. Virus Res. 2004;101:29–43. PubMed

Kar AK, Ghosh M, Roy P. Mapping the assembly pathway of Bluetongue virus scaffolding protein VP3. Virology. 2004;324:387–399. PubMed

Lourenco S, Roy P. In vitro reconstitution of Bluetongue virus infectious cores. Proc. Natl Acad. Sci. USA. 2011;108:13746–13751. PubMed PMC

Roy P. Bluetongue virus structure and assembly. Curr. Opin. Virol. 2017;24:115–123. PubMed

Borodavka A, Desselberger U, Patton JT. Genome packaging in multi-segmented dsRNA viruses: Distinct mechanisms with similar outcomes. Curr. Opin. Virol. 2018;33:106–112. PubMed PMC

Mata CP, et al. The RNA-binding protein of a double-stranded RNA virus acts like a scaffold protein. J. Virol. 2018;92:e00968–18. PubMed PMC

Zhou ZH, Zhang H, Jakana J, Lu X-Y, Zhang J-Q. Cytoplasmic polyhedrosis virus structure at 8 A by electron cryomicroscopy: Structural basis of capsid stability and mRNA processing regulation. Structure. 2003;11:651–663. PubMed

Luque D, et al. Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage. Proc. Natl Acad. Sci. USA. 2014;111:7641–7646. PubMed PMC

Zheng SQ, et al. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. PubMed PMC

Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. PubMed PMC

Wagner T, et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. PubMed PMC

Scheres SHW. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. PubMed PMC

Zivanov J, et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018;7:e42166. PubMed PMC

Ramírez-Aportela E, et al. Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics. 2020;36:765–772. PubMed PMC

Rosenthal PB, Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 2003;333:721–745. PubMed

Pettersen EF, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed

Källberg M, et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 2012;7:1511–1522. PubMed PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta. Crystallogr. D. Biol. Crystallogr. 2010;66:486–501. PubMed PMC

Adams PD, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D. Biol. Crystallogr. 2010;66:213–221. PubMed PMC

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. Biol. Crystallogr. 1997;53:240–255. PubMed

Williams CJ, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC

Pettersen EF, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. PubMed PMC

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007;372:774–797. PubMed

Henderson R, et al. Outcome of the first electron microscopy validation task force meeting. Structure. 2012;20:205–214. PubMed PMC

Scheres SHW, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods. 2012;9:853–854. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...