Dendritic cells and Brucella spp. interaction: the sentinel host and the stealthy pathogen

. 2020 Feb ; 65 (1) : 1-16. [epub] 20190219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30783994
Odkazy

PubMed 30783994
PubMed Central PMC7224029
DOI 10.1007/s12223-019-00691-6
PII: 10.1007/s12223-019-00691-6
Knihovny.cz E-zdroje

As dendritic cells (DCs) are among the first cells to encounter antigens, these cells trigger both innate and T cell responses, and are the most potent antigen-presenting cells. Brucella spp., which is an intracellular facultative and stealthy pathogen, is able to evade the bactericidal activities of professional phagocytes. Several studies have demonstrated that Brucella can survive and replicate intracellularly, thereby provoking impaired maturation of DCs. Therefore, the interaction between DCs and Brucella becomes an interesting model to study the immune response. In this review, we first will describe the most common techniques for DCs differentiation in vitro as well as general features of brucellosis. Then, the interaction of DCs and Brucella, including pathogen recognition, molecular mechanisms of bacterial pathogenesis, and intracellular trafficking of Brucella to subvert innate response, will be reviewed. Finally, we will debate diversity in immunological DC response and the controversial role of DC activation against Brucella infection.

Zobrazit více v PubMed

Ahmed W, Zheng K, Liu ZF. Establishment of chronic infection: Brucella’s stealth strategy. Front Cell Infect Microbiol. 2016;6:30. doi: 10.3389/fcimb.2016.00030. PubMed DOI PMC

Archambaud C, Salcedo SP, Lelouard H, Devilard E, de Bovis B, Van Rooijen N, Gorvel JP, Malissen B. Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection. Eur J Immunol. 2010;40(12):3458–3471. doi: 10.1002/eji.201040497. PubMed DOI

Avila-Calderón ED, Lopez-Merino A, Jain N, Peralta H, López-Villegas EO, Sriranganathan N, Boyle SM, Witonsky S, Contreras-Rodríguez A. Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin Dev Immunol. 2012;2012:352493. doi: 10.1155/2012/352493. PubMed DOI PMC

Baldwin CL, Goenka R. Host immune responses to the intracellular bacteria Brucella: does the bacteria instruct the host to facilitate chronic infection? Crit Rev Immunol. 2006;26(5):407–442. doi: 10.1615/CritRevImmunol.v26.i5.30. PubMed DOI

Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252. doi: 10.1038/32588. PubMed DOI

Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzmán-Verri C, Chacón-Díaz C, Rucavado A, Moriyón I, Moreno E. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One. 2007;2(7):e631. doi: 10.1371/journal.pone.0000631. PubMed DOI PMC

Benoit M, Barbarat B, Bernard A, Olive D, Mege JL. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol. 2008;38(4):1065–1070. doi: 10.1002/eji.200738067. PubMed DOI

Billard E, Dornand J, Gross A. Interaction of Brucella suis and Brucella abortus rough strains with human dendritic cells. Infect Immun. 2007;75:5916–5923. doi: 10.1128/IAI.00931-07. PubMed DOI PMC

Billard E, Dornand J, Gross A. Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion. Infect Immun. 2007;75(10):4980–4989. doi: 10.1128/IAI.00637-07. PubMed DOI PMC

Blasco JM. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev Vet Med. 1997;31:275–283. doi: 10.1016/S0167-5877(96)01110-5. PubMed DOI

Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 2000;96(9):3029–3039. doi: 10.1182/blood.V96.9.3029. PubMed DOI

Bystrom J, Taher TE, Muhyaddin MS, Clanchy FI, Mangat P, Jawad AS, Williams RO, Mageed RA. Harnessing the therapeutic potential of Th17 cells. Mediat Inflamm. 2015;2015:205156. doi: 10.1155/2015/205156. PubMed DOI PMC

Campos PC, Gomes MT, Guimarães ES, Guimarães G, Oliveira SC. TLR7 and TLR3 sense Brucella abortus RNA to induce proinflammatory cytokine production but they are dispensable for host control of infection. Front Immunol. 2017;8:28. doi: 10.3389/fimmu.2017.00028. PubMed DOI PMC

Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp. noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb Cell Factories. 2006;5(13):13. doi: 10.1186/1475-2859-5-13. PubMed DOI PMC

Carpenter CM. Bacterium abortem invasion of the tissues of calves from the ingestion of infected milk. Cornell Vet. 1924;14:16–31.

Castañeda-Roldán EI, Ouahrani-Bettache S, Saldaña Z, Avelino F, Rendón MA, Dornand J, Girón JA. Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol. 2006;8(12):1877–1887. doi: 10.1111/j.1462-5822.2006.00754.x. PubMed DOI

Chaudhary A, Ganguly K, Cabantous S, Waldo GS, Micheva-Viteva SN, Nag K, Hlavacek WS, Tung CS. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun. 2012;417(1):299–304. doi: 10.1016/j.bbrc.2011.11.104. PubMed DOI PMC

Cheville NF, Kunkle RA, Jensen AE, Palmer MV. Persistence of Brucella abortus in the livers of T cell-deficient nude mice. Lab Investig. 1995;73(1):96–102. PubMed

Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, Svanborg C, Miethke T. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med. 2008;14(4):399–406. doi: 10.1038/nm1734. PubMed DOI

Colonna M, Pulendran B, Iwasaki A. Dendritic cells at the host-pathogen interface. Nat Immunol. 2006;7(2):117–120. doi: 10.1038/ni0206-117. PubMed DOI

Conde-Álvarez R, Arce-Gorvel V, Iriarte M, Manček-Keber M, Barquero-Calvo E, Palacios-Chaves L, Chacón-Díaz C, Chaves-Olarte E, Martirosyan A, von Bargen K, Grilló MJ, Jerala R, Brandenburg K, Llobet E, Bengoechea JA, Moreno E, Moriyón I, Gorvel JP, Renée MT. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog. 2012;8(5):e1002675. doi: 10.1371/journal.ppat.1002675. PubMed DOI PMC

Corsetti PP, de Almeida LA, Carvalho NB, Azevedo V, Silva TM, Teixeira HC, Faria AC, Oliveira SC. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice. PLoS One. 2013;8(9):e74729. doi: 10.1371/journal.pone.0074729. PubMed DOI PMC

Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180(9):5771–5777. doi: 10.4049/jimmunol.180.9.5771. PubMed DOI

Czibener C, Ugalde JE. Identification of a unique gene cluster of Brucella spp. that mediates adhesion to host cells. Microbes Infect. 2012;14(1):79–85. doi: 10.1016/j.micinf.2011.08.012. PubMed DOI PMC

de Almeida LA, Macedo GC, Marinho FA, Gomes MT, Corsetti PP, Silva AM, Cassataro J, Giambartolomei GH, Oliveira SC. Toll-like receptor 6 plays an important role in host innate resistance to Brucella abortus infection in mice. Infect Immun. 2013;81(5):1654–1662. doi: 10.1128/IAI.01356-12. PubMed DOI PMC

de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. Am J Pathol. 2015;185(6):1505–1517. doi: 10.1016/j.ajpath.2015.03.003. PubMed DOI PMC

Dean AS, Crump L, Greter H, Hattendorf J, Schelling E, Zinsstag J. Clinical manifestations of human brucellosis: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2012;6(12):e1929. doi: 10.1371/journal.pntd.0001929. PubMed DOI PMC

del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Förster R. Development and functional specialization of CD103+ dendritic cells. Immunol Rev. 2010;234(1):268–281. doi: 10.1111/j.0105-2896.2009.00874.x. PubMed DOI

Elfaki MG, Al-Hokail AA. Transforming growth factor beta production correlates with depressed lymphocytes function in humans with chronic brucellosis. Microbes Infect. 2009;11(14–15):1089–1096. doi: 10.1016/j.micinf.2009.08.001. PubMed DOI

Elfaki MG, Alaidan AA, Al-Hokail AA. Host response to Brucella infection: review and future perspective. J Infect Dev Ctries. 2015;9(7):697–701. doi: 10.3855/jidc.6625. PubMed DOI

Enright FM, Araya LN, Elzer PH, Rowe GE, Winter AJ. Comparative histopathology in BALB/c mice infected with virulent and attenuated strains of Brucella abortus. Vet Immunol Immunopathol. 1990;26(2):171–182. doi: 10.1016/0165-2427(90)90065-Z. PubMed DOI

Fabrik I, Härtlova A, Rehulka P, Stulik J. Serving the new masters-dendritic cells as hosts for stealth intracellular bacteria. Cell Microbiol. 2013;15(9):1473–1483. doi: 10.1111/cmi.12160. PubMed DOI

Giambartolomei GH, Arriola Benitez PC, Delpino MV. Brucella and osteoarticular cell activation: partners in crime. Front Microbiol. 2017;8:256. doi: 10.3389/fmicb.2017.00256. PubMed DOI PMC

Goenka R, Guirnalda PD, Black SJ, Baldwin CL. B lymphocytes provide an infection niche for intracellular bacterium Brucella abortus. J Infect Dis. 2012;206(1):91–98. doi: 10.1093/infdis/jis310. PubMed DOI PMC

Gorvel JP, Moreno E, Moriyón I. Is Brucella an enteric pathogen? Nat Rev Microbiol. 2009;7(3):250. doi: 10.1038/nrmicro2012-c1. PubMed DOI

Gorvel L, Textoris J, Banchereau R, Ben Amara A, Tantibhedhyangkul W, von Bargen K, Ka MB, Capo C, Ghigo E, Gorvel JP, Mege JL. Intracellular bacteria interfere with dendritic cell functions: role of the type I interferon pathway. PLoS One. 2014;9(6):e99420. doi: 10.1371/journal.pone.0099420. PubMed DOI PMC

Grilló María-Jesús, Blasco José, Gorvel Jean, Moriyón Ignacio, Moreno Edgardo. What have we learned from brucellosis in the mouse model? Veterinary Research. 2012;43(1):29. doi: 10.1186/1297-9716-43-29. PubMed DOI PMC

Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–578. doi: 10.1038/nri3712. PubMed DOI PMC

Guzmán-Hernández RL, Contreras-Rodríguez A, Ávila-Calderón ED, Morales-García MR. Brucellosis: a zoonosis of importance in Mexico. Rev Chil Infectol. 2016;33(6):656–662. doi: 10.4067/S0716-10182016000600007. PubMed DOI

Hanot Mambres D, Machelart A, Vanderwinden JM, De Trez C, Ryffel B, Letesson JJ, Muraille E. In situ characterization of splenic Brucella melitensis reservoir cells during the chronic phase of infection in susceptible mice. PLoS One. 2015;10(9):e0137835. doi: 10.1371/journal.pone.0137835. PubMed DOI PMC

Heller MC, Watson JL, Blanchard MT, Jackson KA, Stott JL, Tsolis RM. Characterization of Brucella abortus infection of bovine monocyte-derived dendritic cells. Vet Immunol Immunopathol. 2012;149(3–4):255–261. doi: 10.1016/j.vetimm.2012.07.006. PubMed DOI

Hernández-Castro R, Verdugo-Rodríguez A, Puente JL, Suárez-Güemes F. The BMEI0216 gene of Brucella melitensis is required for internalization in HeLa cells. Microb Pathog. 2008;44(1):28–33. doi: 10.1016/j.micpath.2007.08.008. PubMed DOI

Hey YY, O'Neill HC. Murine spleen contains a diversity of myeloid and dendritic cells distinct in antigen presenting function. J Cell Mol Med. 2012;16(11):2611–2619. doi: 10.1111/j.1582-4934.2012.01608.x. PubMed DOI PMC

Hochrein H, O'Keeffe M, Luft T, Vandenabeele S, Grumont RJ, Maraskovsky E, Shortman K. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med. 2000;192(6):823–833. doi: 10.1084/jem.192.6.823. PubMed DOI PMC

Huang LY, Ishii KJ, Akira S, Aliberti J, Golding B. Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J Immunol. 2005;175(6):3964–3970. doi: 10.4049/jimmunol.175.6.3964. PubMed DOI

Iannino F, Ugalde JE, Iñón de Iannino N. Brucella abortus efp gene is required for an efficient internalization in HeLa cells. Microb Pathog. 2012;52(1):31–40. doi: 10.1016/j.micpath.2011.09.008. PubMed DOI

Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, Jenkins MK. Distinct dendritic cell populations sequentially present antigen to CD4+T cells and stimulate different aspects of cell-mediated immunity. Immunity. 2003;19(1):47–57. doi: 10.1016/S1074-7613(03)00175-4. PubMed DOI

Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359. PubMed DOI

Jiménez de Bagüés MP, Gross A, Terraza A, Dornand J. Regulation of the mitogen-activated protein kinases by Brucella spp. expressing a smooth and rough phenotype: relationship to pathogen invasiveness. Infect Immun. 2005;73(5):3178–3183. doi: 10.1128/IAI.73.5.3178-3183.2005. PubMed DOI PMC

Jubier-Maurin V, Boigegrain RA, Cloeckaert A, Gross A, Alvarez-Martinez MT, Terraza A, Liautard J, Kohler S, Rouot B, Dornand J, Liautard JP. Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor alpha production during infection of human macrophages. Infect Immun. 2001;69(8):4823–4830. doi: 10.1128/IAI.69.8.4823-4830.2001. PubMed DOI PMC

Kaisho T, Akira S. Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends Immunol. 2001;22(2):78–83. doi: 10.1016/S1471-4906(00)01811-1. PubMed DOI

Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32. doi: 10.1016/j.smim.2006.12.004. PubMed DOI

Knickelbein JE, Watkins SC, McMenamin PG, Hendricks RL. Stratification of antigen-presenting cells within the normal cornea. Ophthalmol Eye Dis. 2009;1:45–54. doi: 10.4137/OED.S2813. PubMed DOI PMC

Knickelbein JE, Buela KA, Hendricks RL. Antigen-presenting cells are stratified within normal human corneas and are rapidly mobilized during ex vivo viral infection human corneal antigen-presenting cells. Invest Ophthalmol Vis Sci. 2014;55(2):1118–1123. doi: 10.1167/iovs.13-13523. PubMed DOI PMC

Krummen M, Balkow S, Shen L, Heinz S, Loquai C, Probst HC, Grabbe S. Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy. J Leukoc Biol. 2010;88(1):189–199. doi: 10.1189/jlb.0408228. PubMed DOI

Lelouard H, Henri S, De Bovis B, Mugnier B, Chollat-Namy A, Malissen B, Méresse S, Gorvel JP. Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer’s patch dendritic cells that express lysozyme. Gastroenterology. 2010;138(1):173–184. doi: 10.1053/j.gastro.2009.09.051. PubMed DOI

Lelouard H, Fallet M, de Bovis B, Méresse S, Gorvel JP. Peyer’s patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology. 2012;142(3):592–601. doi: 10.1053/j.gastro.2011.11.039. PubMed DOI

Loiarro M, Gallo G, Fantò N, De Santis R, Carminati P, Ruggiero V, Sette C. Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases. J Biol Chem. 2009;284(41):28093–28103. doi: 10.1074/jbc.M109.004465. PubMed DOI PMC

Luo X, Zhang X, Wu X, Yang X, Han C, Wang Z, Du Q, Zhao X, Liu SL, Tong D, Huang Y. Brucella downregulates tumor necrosis factor-α to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages. Front Immunol. 2018;8:2013. doi: 10.3389/fimmu.2017.02013. PubMed DOI PMC

Lyadova IV, Panteleev AV. Th1 and Th17 cells in tuberculosis: protection, pathology, and biomarkers. Mediat Inflamm. 2015;2015(854507):1–13. doi: 10.1155/2015/854507. PubMed DOI PMC

Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC. Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J Immunol. 2008;180(2):1080–1087. doi: 10.4049/jimmunol.180.2.1080. PubMed DOI

Mantegazza Adriana R., Magalhaes Joao G., Amigorena Sebastian, Marks Michael S. Presentation of Phagocytosed Antigens by MHC Class I and II. Traffic. 2012;14(2):135–152. doi: 10.1111/tra.12026. PubMed DOI PMC

Marzetti S, Carranza C, Roncallo M, Escobar GI, Lucero NE. Recent trends in human Brucella canis infection. Comp Immunol Microbiol Infect Dis. 2013;36(1):55–61. doi: 10.1016/j.cimid.2012.09.002. PubMed DOI

Murphy EA, Parent M, Sathiyaseelan J, Jiang X, Baldwin CL. Immune control of Brucella abortus 2308 infections in BALB/c mice. FEMS Immunol Med Microbiol. 2001;32(1):85–88. doi: 10.1111/j.1574-695X.2001.tb00536.x. PubMed DOI

Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M, Lahoud MH, O'Keeffe M, Shao QX, Chen WF, Villadangos JA, Shortman K, Wu L. Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol. 2005;174(11):6592–6597. doi: 10.4049/jimmunol.174.11.6592. PubMed DOI

Oliveira FS, Carvalho NB, Brandão AP, Gomes MT, de Almeida LA, Oliveira SC. Interleukin-1 receptor-associated kinase 4 is essential for initial host control of Brucella abortus infection. Infect Immun. 2011;79(11):4688–4695. doi: 10.1128/IAI.05289-11. PubMed DOI PMC

Papadopoulos A, Gagnaire A, Degos C, de Chastellier C, Gorvel JP. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection. Virulence. 2016;7(1):33–44. doi: 10.1080/21505594.2015.1108516. PubMed DOI PMC

Pappas G. The changing Brucella ecology: novel reservoirs, new threats. Int J Antimicrob Agents. 2010;36(1):S8–S11. doi: 10.1016/j.ijantimicag.2010.06.013. PubMed DOI

Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006;6(2):91–99. doi: 10.1016/S1473-3099(06)70382-6. PubMed DOI

Poltorak MP, Schraml BU. Fate mapping of dendritic cells. Front Immunol. 2015;6:199. doi: 10.3389/fimmu.2015.00199. PubMed DOI PMC

Pujol M, Castillo F, Alvarez C, Rojas C, Borie C, Ferreira A, Vernal R. Variability in the response of canine and human dendritic cells stimulated with Brucella canis. Vet Res. 2017;48(1):72. doi: 10.1186/s13567-017-0476-8. PubMed DOI PMC

Pulendran B. Modulating Th1/Th2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res. 2004;29(1–3):187–196. doi: 10.1385/IR:29:1-3:187. PubMed DOI

Pulendran Bali, Ahmed Rafi. Immunological mechanisms of vaccination. Nature Immunology. 2011;12(6):509–517. doi: 10.1038/ni.2039. PubMed DOI PMC

Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct dendritic cells subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci. 1999;96:1036–1041. doi: 10.1073/pnas.96.3.1036. PubMed DOI PMC

Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science. 2001;293(5528):253–256. doi: 10.1126/science.1062060. PubMed DOI

Radhakrishnan GK, Yu Q, Harms JS, Splitter GA. Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem. 2009;284(15):9892–9898. doi: 10.1074/jbc.M805458200. PubMed DOI PMC

Rana RR, Zhang M, Spear AM, Atkins HS, Byrne B. Bacterial TIR-containing proteins and host innate immune system evasion. Med Microbiol Immunol. 2013;202(1):1–10. doi: 10.1007/s00430-012-0253-2. PubMed DOI

Rossetti CA, Drake KL, Siddavatam P, Lawhon SD, Nunes JE, Gull T, Khare S, Everts RE, Lewin HA, Adams LG. Systems biology analysis of Brucella infected Peyer’s patch reveals rapid invasion with modest transient perturbations of the host transcriptome. PLoS One. 2013;8(12):e81719. doi: 10.1371/journal.pone.0081719. PubMed DOI PMC

Saikh KU, Khan AS, Kissner T, Ulrich RG. IL-15-induced conversion of monocytes to mature dendritic cells. Clin Exp Immunol. 2001;126(3):447–455. doi: 10.1046/j.1365-2249.2001.01672.x. PubMed DOI PMC

Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque N, Demaria O, Alexopoulou L, Comerci DJ, Ugalde RA, Pierre P, Gorvel JP. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog. 2008;4(2):e21. doi: 10.1371/journal.ppat.0040021. PubMed DOI PMC

Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K, Lepidi H, Herrmann CK, Santos Lacerda TL, Imbert PR, Pierre P, Alexopoulou L, Letesson JJ, Comerci DJ, Gorvel JP. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front Cell Infect Microbiol. 2013;3:28. doi: 10.3389/fcimb.2013.00028. PubMed DOI PMC

Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin Cell Dev Biol. 2015;41:9–22. doi: 10.1016/j.semcdb.2015.03.011. PubMed DOI

Scholz HC, Hubalek Z, Sedlácek I, Vergnaud G, Tomaso H, Al Dahouk S, Melzer F, Kämpfer P, Neubauer H, Cloeckaert A, Maquart M, Zygmunt MS, Whatmore AM, Falsen E, Bahn P, Göllner C, Pfeffer M, Huber B, Busse HJ, Nöckler K. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol. 2008;58(2):375–382. doi: 10.1099/ijs.0.65356-0. PubMed DOI

Scholz HC, Nöckler K, Göllner C, Bahn P, Vergnaud G, Tomaso H, Al Dahouk S, Kämpfer P, Cloeckaert A, Maquart M, Zygmunt MS, Whatmore AM, Pfeffer M, Huber B, Busse HJ, De BK. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol. 2010;60(4):801–808. doi: 10.1099/ijs.0.011148-0. PubMed DOI

Scholz HC, Revilla-Fernández S, Al Dahouk S, Hammerl JA, Zygmunt MS, Cloeckaert A, Koylass M, Whatmore AM, Blom J, Vergnaud G, Witte A, Aistleitner K, Hofer E. Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes) Int J Syst Evol Microbiol. 2016;66(5):2090–2098. doi: 10.1099/ijsem.0.000998. PubMed DOI

Seillet C, Belz GT. Terminal differentiation of dendritic cells. Adv Immunol. 2013;120:185–210. doi: 10.1016/B978-0-12-417028-5.00007-7. PubMed DOI

Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonosis. Vet Microbiol. 2010;140(3–4):392–398. doi: 10.1016/j.vetmic.2009.06.021. PubMed DOI

Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, Nishikawa T, Park SG, Roop RM, 2nd, Ghosh S. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol. 2010;184(2):956–964. doi: 10.4049/jimmunol.0902008. PubMed DOI PMC

Smither SJ, Perkins SD, Davies C, Stagg AJ, Nelson M, Atkins HS. Development and characterization of mouse models of infection with aerosolized Brucella melitensis and Brucella suis. Clin Vaccine Immunol. 2009;16(5):779–783. doi: 10.1128/CVI.00029-09. PubMed DOI PMC

Soruri A, Zwirner J. Dendritic cells: limited potential in immunotherapy. Int J Biochem Cell Biol. 2005;37(2):241–245. doi: 10.1016/j.biocel.2004.07.003. PubMed DOI

Starr T, Ng TW, Wehrly TD, Knodler LA, Celli J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic. 2008;9(5):678–694. doi: 10.1111/j.1600-0854.2008.00718.x. PubMed DOI

Suraud V, Jacques I, Olivier M, Guilloteau LA. Acute infection by conjunctival route with Brucella melitensis induces IgG+ cells and IFN-gamma producing cells in peripheral and mucosal lymph nodes in sheep. Microbes Infect. 2008;10(12–13):1370–1378. doi: 10.1016/j.micinf.2008.08.003. PubMed DOI

Surendran N, Hiltbold EM, Heid B, Akira S, Standiford TJ, Sriranganathan N, Boyle SM, Zimmerman KL, Makris MR, Witonsky SG. Role of TLRs in Brucella mediated murine DC activation in vitro and clearance of pulmonary infection in vivo. Vaccine. 2012;30(8):1502–1512. doi: 10.1016/j.vaccine.2011.12.036. PubMed DOI

Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol. 2015;1(109):14.12.1–14.12.10. doi: 10.1002/0471142735.im1412s109. PubMed DOI

Tantibhedhyangkul W, Ben Amara A, Textoris J, Gorvel L, Ghigo E, Capo C, Mege JL. Orientia tsutsugamushi, the causative agent of scrub typhus, induces an inflammatory program in human macrophages. Microb Pathog. 2013;55:55–63. doi: 10.1016/j.micpath.2012.10.001. PubMed DOI

Traxler RM, Lehman MW, Bosserman EA, Guerra MA, Smith TL. A literature review of laboratory-acquired brucellosis. J Clin Microbiol. 2013;51(9):3055–3062. doi: 10.1128/JCM.00135-13. PubMed DOI PMC

Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol. 2002;14(1):103–110. doi: 10.1016/S0952-7915(01)00304-1. PubMed DOI

Velásquez LN, Delpino MV, Ibañez AE, Coria LM, Miraglia MC, Scian R, Cassataro J, Giambartolomei GH, Barrionuevo P. Brucella abortus induces apoptosis of human T lymphocytes. Microbes Infect. 2012;14(7–8):639–650. doi: 10.1016/j.micinf.2012.02.004. PubMed DOI

Vermaelen K, Pauwels R. Pulmonary dendritic cells. Am J Respir Crit Care Med. 2005;172(5):530–551. doi: 10.1164/rccm.200410-1384SO. PubMed DOI

von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev. 2012;36(3):533–562. doi: 10.1111/j.1574-6976.2012.00334.x. PubMed DOI

von Bargen K, Gagnaire A, Arce-Gorvel V, de Bovis B, Baudimont F, Chasson L, Bosilkovski M, Papadopoulos A, Martirosyan A, Henri S, Mège JL, Malissen B, Gorvel JP. Cervical lymph nodes as a selective niche for Brucella during oral infections. PLoS One. 2015;10(4):e0121790. doi: 10.1371/journal.pone.0121790. PubMed DOI PMC

Wanke MM. Canine brucellosis. Anim Reprod Sci. 2004;82-83:195–207. doi: 10.1016/j.anireprosci.2004.05.005. PubMed DOI

Wei P, Cui G, Lu Q, Yang L, Guan Z, Sun W, Zhao Y, Wang S, Peng Q. A20 promotes Brucella intracellular growth via inhibition of macrophage cell death and activation. Vet Microbiol. 2015;175(1):50–57. doi: 10.1016/j.vetmic.2014.11.006. PubMed DOI

Xavier MN, Winter MG, Spees AM, Nguyen K, Atluri VL, Silva TM, Bäumler AJ, Müller W, Santos RL, Tsolis RM. CD4+ T cell-derived IL-10 promotes Brucella abortus persistence via modulation of macrophage function. PLoS Pathog. 2013;9(6):e1003454. doi: 10.1371/journal.ppat.1003454. PubMed DOI PMC

Yamazaki S, Maruyama A, Okada K, Matsumoto M, Morita A, Seya T. Dendritic cells from oral cavity induce Foxp3+ regulatory T cells upon antigen stimulation. PLoS One. 2012;7(12):e51665. doi: 10.1371/journal.pone.0051665. PubMed DOI PMC

Yoneyama H, Ichida T. Recruitment of dendritic cells to pathological niches in inflamed liver. Med Mol Morphol. 2005;38(3):136–141. doi: 10.1007/s00795-005-0289-0. PubMed DOI

Zhan Y, Vega-Ramos J, Carrington EM, Villadangos JA, Lew AM, Xu Y. The inflammatory cytokine, GM-CSF, alters the developmental outcome of murine dendritic cells. Eur J Immunol. 2012;42(11):2889–2900. doi: 10.1002/eji.201242477. PubMed DOI

Zhan Y, Xu Y, Lew AM. The regulation of the development and function of dendritic cell subsets by GM-CSF: more than a hematopoietic growth factor. Mol Immunol. 2012;52(1):30–37. doi: 10.1016/j.molimm.2012.04.009. PubMed DOI

Zhang CY, Bai N, Zhang ZH, Liang N, Dong L, Xiang R, Liu CH. TLR2 signaling subpathways regulate TLR9 signaling for the effective induction of IL-12 upon stimulation by heat-killed Brucella abortus. Cell Mol Immunol. 2012;9(4):324–333. doi: 10.1038/cmi.2012.11. PubMed DOI PMC

Zhang Ke, Wang Hui, Guo Fei, Yuan Li, Zhang Wanjiang, Wang Yuanzhi, Chen Chuangfu. OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF-α. Experimental and Therapeutic Medicine. 2016;12(4):2783–2789. doi: 10.3892/etm.2016.3655. PubMed DOI PMC

Zhao Y, Hanniffy S, Arce-Gorvel V, Conde-Alvarez R, Oh S, Moriyón I, Mémet S, Gorvel JP. Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo. Virulence. 2018;2:0. doi: 10.1080/21505594.2017.1386831. PubMed DOI PMC

Zwerdling A, Delpino MV, Barrionuevo P, Cassataro J, Pasquevich KA, García Samartino C, Fossati CA, Giambartolomei GH. Brucella lipoproteins mimic dendritic cell maturation induced by Brucella abortus. Microbes Infect. 2008;10(12–13):1346–1354. doi: 10.1016/j.micinf.2008.07.035. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...