A Conditioning Sciatic Nerve Lesion Triggers a Pro-regenerative State in Primary Sensory Neurons Also of Dorsal Root Ganglia Non-associated With the Damaged Nerve
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30778286
PubMed Central
PMC6369159
DOI
10.3389/fncel.2019.00011
Knihovny.cz E-zdroje
- Klíčová slova
- GAP-43, IL-6, SCG-10, neurite outgrowth assay, primary sensory neurons, pro-regenerative state, ulnar nerve crush, unilateral nerve injury,
- Publikační typ
- časopisecké články MeSH
The primary sensory neurons of dorsal root ganglia (DRG) are a very useful model to study the neuronal regenerative program that is a prerequisite for successful axon regeneration after peripheral nerve injury. Seven days after a unilateral sciatic nerve injury by compression or transection, we detected a bilateral increase in growth-associated protein-43 (GAP-43) and superior cervical ganglion-10 (SCG-10) mRNA and protein levels not only in DRG neurons of lumbar spinal cord segments (L4-L5) associated with injured nerve, but also in remote cervical segments (C6-C8). The increase in regeneration-associated proteins in the cervical DRG neurons was associated with the greater length of regenerated axons 1 day after ulnar nerve crush following prior sciatic nerve injury as compared to controls with only ulnar nerve crush. The increased axonal regeneration capacity of cervical DRG neurons after a prior conditioning sciatic nerve lesion was confirmed by neurite outgrowth assay of in vitro cultivated DRG neurons. Intrathecal injection of IL-6 or a JAK2 inhibitor (AG490) revealed a role for the IL-6 signaling pathway in activating the pro-regenerative state in remote DRG neurons. Our results suggest that the pro-regenerative state induced in the DRG neurons non-associated with the injured nerve reflects a systemic reaction of these neurons to unilateral sciatic nerve injury.
Zobrazit více v PubMed
Abe N., Borson S. H., Gambello M. J., Wang F., Cavalli V. (2010). Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J. Biol. Chem. 285, 28034–28043. 10.1074/jbc.m110.125336 PubMed DOI PMC
Al-Ali H., Beckerman S. R., Bixby J. L., Lemmon V. P. (2017). In vitro models of axon regeneration. Exp. Neurol. 287, 423–434. 10.1016/j.expneurol.2016.01.020 PubMed DOI PMC
Bareyre F. M., Garzorz N., Lang C., Misgeld T., Buning H., Kerschensteiner M. (2011). In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc. Natl. Acad. Sci. U S A 108, 6282–6287. 10.1073/pnas.1015239108 PubMed DOI PMC
Bonilla I. E., Tanabe K., Strittmatter S. M. (2002). Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. J. Neurosci. 22, 1303–1315. 10.1523/jneurosci.22-04-01303.2002 PubMed DOI PMC
Brázda V., Klusáková I., Svíženská I. H., Dubovy P. (2013). Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain. Mol. Pain 9:42. 10.1186/1744-8069-9-42 PubMed DOI PMC
Brazda V., Muller P., Brozkova K., Vojtesek B. (2006). Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem. Biophys. Res. Commun. 351, 499–506. 10.1016/j.bbrc.2006.10.065 PubMed DOI
Cafferty W. B. J., Gardiner N. J., Gavazzi I., Powell J., McMahon S. B., Heath J. K., et al. . (2001). Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J. Neurosci. 21, 7161–7170. 10.1523/jneurosci.21-18-07161.2001 PubMed DOI PMC
Cao Z. X., Gao Y., Bryson J. B., Hou J. W., Chaudhry N., Siddiq M., et al. . (2006). The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J. Neurosci. 26, 5565–5573. 10.1523/jneurosci.0815-06.2006 PubMed DOI PMC
Chandran V., Coppola G., Nawabi H., Omura T., Versano R., Huebner E. A., et al. . (2016). A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89, 956–970. 10.1016/j.neuron.2016.01.034 PubMed DOI PMC
Christie K. J., Webber C. A., Martinez J. A., Singh B., Zochodne D. W. (2010). PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J. Neurosci. 30, 9306–9315. 10.1523/jneurosci.6271-09.2010 PubMed DOI PMC
Dubovy P., Aldskogius H. (1996). Growth-associated protein (GAP-43) in terminal Schwann cells of rat Pacinian corpuscles. Neuroreport 7, 2147–2150. 10.1097/00001756-199609020-00017 PubMed DOI
Dubový P., Brázda V., Klusáková I., Hradilová-Svíženská I. (2013). Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J. Neuroinflammation 10:55. 10.1186/1742-2094-10-55 PubMed DOI PMC
Dubový P., Hradilová-Svíženská I., Klusáková I., Kokošová V., Brázda V., Joukal M. (2018a). Bilateral activation of STAT3 by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and its nuclear translocation in primary sensory neurons following unilateral sciatic nerve injury. Histochem. Cell Biol. 150, 37–47. 10.1007/s00418-018-1656-y PubMed DOI
Dubový P., Klusáková I., Hradilová-Svíženská I., Joukal M. (2018b). Expression of regeneration-associated proteins in primary sensory neurons and regenerating axons after nerve injury—An overview. Anat. Rec. 301, 1618–1627. 10.1002/ar.23843 PubMed DOI
Dubový P., Klusáková I., Svízenská I. (2002). A quantitative immunohistochemical study of the endoneurium in the rat dorsal and ventral spinal roots. Histochem. Cell Biol. 117, 473–480. 10.1007/s00418-002-0411-5 PubMed DOI
Eulenfeld R., Dittrich A., Khouri C., Muller P. J., Mutze B., Wolf A., et al. . (2012). Interleukin-6 signalling: More than Jaks and STATs. Eur. J. Cell Biol. 91, 486–495. 10.1016/j.ejcb.2011.09.010 PubMed DOI
Frey E., Valakh V., Karney-Grobe S., Shi Y., Milbrandt J., DiAntonio A. (2015). An in vitro assay to study induction of the regenerative state in sensory neurons. Exp. Neurol. 263, 350–363. 10.1016/j.expneurol.2014.10.012 PubMed DOI PMC
Heumann R., Lindholm D., Bandtlow C., Meyer M., Radeke M. J., Misko T. P., et al. . (1987). Differential regulation of messenger-rna encoding nerve growth-factor and its receptor in rat sciatic-nerve during development, degeneration and regeneration - role of macrophages. Proc. Natl. Acad. Sci. U S A 84, 8735–8739. 10.1073/pnas.84.23.8735 PubMed DOI PMC
Hylden J. L. K., Wilcox G. L. (1980). Intrathecal morphine in mice: a new technique. Eur. J. Pharmacol. 67, 313–316. 10.1016/0014-2999(80)90515-4 PubMed DOI
Itoh A., Horiuchi M., Bannerman P., Pleasure D., Itoh T. (2009). Impaired regenerative response of primary sensory neurons in ZPK/DLK gene-trap mice. Biochem. Biophys. Res. Commun. 383, 258–262. 10.1016/j.bbrc.2009.04.009 PubMed DOI
Joukal M., Klusáková I., Dubový P. (2016). Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia. Ann. Anat. 205, 9–15. 10.1016/j.aanat.2016.01.004 PubMed DOI
Law V., Dong S., Rosaless J. L., Jeong M. Y., Zochodne D., Lee K. Y. (2016). Enhancement of peripheral nerve regrowth by the purine nucleoside analog and cell cycle inhibitor, Roscovitine. Front. Cell. Neurosci. 10:238. 10.3389/fncel.2016.00238 PubMed DOI PMC
Lawson S. N. (2002). Phenotype and function of somatic primary afferent nociceptive neurones with C-, Aδ- or A α/β-fibres. Exp. Physiol. 87, 239–244. 10.1113/eph8702350 PubMed DOI
Lawson S. N., Caddy K. W. T., Biscoe T. J. (1974). Development of rat dorsal root ganglion neurons. Studies of cell birthdays and changes in mean cell diameter. Cell Tissue Res. 153, 399–413. 10.1007/bf00229167 PubMed DOI
Leclere P. G., Norman E., Groutsi F., Coffin R., Mayer U., Pizzey J., et al. . (2007). Impaired axonal regeneration by isolectin B4-binding dorsal root ganglion neurons in vitro. J. Neurosci. 27, 1190–1199. 10.1523/jneurosci.5089-06.2007 PubMed DOI PMC
Liabotis S., Schreyer D. J. (1995). Magnitude of GAP-43 induction following peripheral axotomy of adult-rat dorsal-root ganglion neurons is independent of lesion distance. Exp. Neurol. 135, 28–35. 10.1006/exnr.1995.1063 PubMed DOI
Liu K., Tedeschi A., Park K. K., He Z. (2011). Neuronal intrinsic mechanisms of axon regeneration. Ann. Rev. Neurosci. 34, 131–152. 10.1146/annurev-neuro-061010-113723 PubMed DOI
Ma T. C., Willis D. E. (2015). What makes a RAG regeneration associated? Front. Mol. Neurosci. 8:43. 10.3389/fnmol.2015.00043 PubMed DOI PMC
Mar F. M., Bonni A., Sousa M. M. (2014). Cell intrinsic control of axon regeneration. EMBO Rep. 15, 254–263. 10.1002/embr.201337723 PubMed DOI PMC
Mason M. R. J., Lieberman A. R., Grenningloh G., Anderson P. N. (2002). Transcriptional upregulation of SCG10 and CAP-23 is correlated with regeneration of the axons of peripheral and central neurons in vivo. Mol. Cell. Neurosci. 20, 595–615. 10.1006/mcne.2002.1140 PubMed DOI
Miao T., Wu D. S., Zhang Y., Bo X. N., Subang M. C., Wang P., et al. . (2006). Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. J. Neurosci. 26, 9512–9519. 10.1523/jneurosci.2160-06.2006 PubMed DOI PMC
Murphy P. G., Grondin J., Altares M., Richardson P. M. (1995). Induction of interleukin-6 in axotomized sensory neurons. J. Neurosci. 15, 5130–5138. 10.1523/jneurosci.15-07-05130.1995 PubMed DOI PMC
Neumann S., Woolf C. J. (1999). Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91. 10.1016/s0896-6273(00)80755-2 PubMed DOI
Ng Y. P., Cheung Z. H., Ip N. Y. (2006). STAT3 as a downstream mediator of Trk signaling and functions. J. Biol. Chem. 281, 15636–15644. 10.1074/jbc.m601863200 PubMed DOI
Niemi J. P., DeFrancesco-Lisowitz A., Cregg J. M., Howarth M., Zigmond R. E. (2016). Overexpression of the monocyte chemokine CCL2 in dorsal root ganglion neurons causes a conditioning-like increase in neurite outgrowth and does so via a STAT3 dependent mechanism. Exp. Neurol. 275, 25–37. 10.1016/j.expneurol.2015.09.018 PubMed DOI PMC
Nix P., Hisamoto N., Matsumoto K., Bastiani M. (2011). Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc. Natl. Acad. Sci. U S A 108, 10738–10743. 10.1073/pnas.1104830108 PubMed DOI PMC
Patodia S., Raivich G. (2012). Role of transcription factors in peripheral nerve regeneration. Cell Tissue Res. 5:8. 10.3389/fnmol.2012.00008 PubMed DOI PMC
Pellegrino M. J., Habecker B. A. (2013). STAT3 integrates cytokine and neurotrophin signals to promote sympathetic axon regeneration. Mol. Cell. Neurosci. 56, 272–282. 10.1016/j.mcn.2013.06.005 PubMed DOI PMC
Plantinga L. C., Verhaagen J., Edwards P. M., Hol E. M., Bär P. R., Gispen W. H. (1993). The expression of B-50/GAP-43 in Schwann-cells is up-regulated in degenerating peripheral-nerve stumps following nerve injury. Brain Res. 602, 69–76. 10.1016/0006-8993(93)90243-g PubMed DOI
Pool M., Thiemann J., Bar-Or A., Fournier A. E. (2008). NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. J. Neurosci. Methods 168, 134–139. 10.1016/j.jneumeth.2007.08.029 PubMed DOI
Qiu J., Cafferty W. B. J., McMahon S. B., Thompson S. W. N. (2005). Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J. Neurosci. 25, 1645–1653. 10.1523/JNEUROSCI.3269-04.2005 PubMed DOI PMC
Raivich G., Bohatschek M., Da Costa C., Iwata O., Galiano M., Hristova M., et al. . (2004). The AP-1 transcription factor c-jun is required for efficient axonal regeneration. Neuron 43, 57–67. 10.1016/j.neuron.2004.06.005 PubMed DOI
Rishal I., Fainzilber M. (2014). Axon-soma communication in neuronal injury. Nat. Rev. Neurosci. 15, 32–42. 10.1038/nrn3609 PubMed DOI
Ronchi G., Nicolino S., Raimondo S., Tos P., Battiston B., Papalia B., et al. . (2009). Functional and morphological assessment of a standardized crush injury of the rat median nerve. J. Neurosci. Methods 179, 51–57. 10.1016/j.jneumeth.2009.01.011 PubMed DOI
Ruohonen S., Jagodi M., Khademi M., Taskinen H. S., Ojala P., Olsson T., et al. . (2002). Contralateral non-operated nerve to transected rat sciatic nerve shows increased expression of IL-1β, TGF-β 1, TNF-α, and IL-10. J. Neuroimmunol. 132, 11–17. 10.1016/s0165-5728(02)00281-3 PubMed DOI
Ryoke K., Ochi M., Iwata A., Uchio Y., Yamamoto S., Yamaguchi H. (2000). A conditioning lesion promotes in vivo nerve regeneration in the contralateral sciatic nerve of rats. Biochem. Biophys. Res. Commun. 267, 715–718. 10.1006/bbrc.1999.2017 PubMed DOI
Sar Shalom H., Yaron A. (2014). Marking axonal growth in sensory neurons: SCG10. Exp. Neurol. 254, 68–69. 10.1016/j.expneurol.2014.01.014 PubMed DOI
Schmid A. B., Coppieters M. W., Ruitenberg M. J., McLachlan E. M. (2013). Local and remote immune-mediated inflammation after mild peripheral nerve compression in rats. J. Neuropathol. Exp. Neurol. 72, 662–680. 10.1097/nen.0b013e318298de5b PubMed DOI
Schreyer D. J., Skene J. H. P. (1993). Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal-root ganglion neurons. J. Neurobiol. 24, 959–970. 10.1002/neu.480240709 PubMed DOI
Schwaiger F. W., Hager G., Schmitt A. B., Horvat A., Streif R., Spitzer C., et al. . (2000). Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur. J. Neurosci. 12, 1165–1176. 10.1046/j.1460-9568.2000.00005.x PubMed DOI
Sheu J. Y., Kulhanek D. J., Eckenstein F. P. (2000). Differential patterns of ERK and STAT3 phosphorylation after sciatic nerve transection in the rat. Exp. Neurol. 166, 392–402. 10.1006/exnr.2000.7508 PubMed DOI
Shin J. E., Cho Y. (2017). Epigenetic regulation of axon regeneration after neural injury. Mol. Cells 40, 10–16. 10.14348/molcells.2017.2311 PubMed DOI PMC
Shin J. E., Geisler S., DiAntonio A. (2014). Dynamic regulation of SCG10 in regenerating axons after injury. Exp. Neurol. 252, 1–11. 10.1016/j.expneurol.2013.11.007 PubMed DOI PMC
Shin J. E., Miller B. R., Babetto E., Cho Y., Sasaki Y., Qayum S., et al. . (2012). SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl. Acad. Sci. U S A 109, E3696–E3705. 10.1073/pnas.1216204109 PubMed DOI PMC
Skene J. H. P., Willard M. (1981). Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J. Cell Biol. 89, 96–103. 10.1083/jcb.89.1.96 PubMed DOI PMC
Stewart H. J. S., Cowen T., Curtis R., Wilkin G. P., Mirsky R., Jessen K. R. (1992). GAP-43 immunoreactivity is widespread in the autonomic neurons and sensory neurons of the rat. Neuroscience 47, 673–684. 10.1016/0306-4522(92)90175-2 PubMed DOI
Sugiura Y., Mori N. (1995). SCG10 expresses growth-associated manner in developing rat brain, but shows a different pattern to p19 stathmin or GAP-43. Dev. Brain Res. 90, 73–91. 10.1016/0165-3806(96)83488-2 PubMed DOI
Tararuk T., Ostman N., Li W. R., Björkblom B., Padzik A., Zdrojewska J., et al. . (2006). JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265–277. 10.1083/jcb.200511055 PubMed DOI PMC
Temporin K., Tanaka H., Kuroda Y., Okada K., Yachi K., Moritomo H., et al. . (2008). IL-1β promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway. Biochem. Biophys. Res. Commun. 365, 375–380. 10.1016/j.bbrc.2007.10.198 PubMed DOI
Tsai S. Y., Yang L. Y., Wu C. H., Chang S. F., Hsu C. Y., Wei C. P., et al. . (2007). Injury-induced janus kinase/protein kinase C-dependent phosphorylation of growth-associated protein 43 and signal transducer and activator of transcription 3 for neurite growth in dorsal root ganglion. J. Neurosci. Res. 85, 321–331. 10.1002/jnr.21119 PubMed DOI
Valakh V., Frey E., Babetto E., Walker L. J., DiAntonio A. (2015). Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol. Dis. 77, 13–25. 10.1016/j.nbd.2015.02.014 PubMed DOI PMC
Verma P., Chierzi S., Codd A. M., Campbell D. S., Meyer R. L., Holt C. E., et al. . (2005). Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331–342. 10.1523/JNEUROSCI.3073-04.2005 PubMed DOI PMC
Wells M. R., Vaidya U., Schwartz J. P. (1994). Bilateral phasic increases in dorsal-root ganglia nerve growth-factor synthesis after unilateral sciatic-nerve crush. Exp. Brain Res. 101, 53–58. 10.1007/bf00243216 PubMed DOI
Yamaguchi H., Ochi M., Mori R., Ryoke K., Yamamoto S., Iwata A., et al. . (1999). Unilateral sciatic nerve injury stimulates contralateral nerve regeneration. Neuroreport 10, 1359–1362. 10.1097/00001756-199904260-00037 PubMed DOI
Zamboni L., Demartin C. (1967). Buffered picric acid-formaldehyde—a new rapid fixative for electron microscopy. J. Cell Biol. 35:A148.
Zigmond R. E. (2011). gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front. Mol. Neurosci. 4:62. 10.3389/fnmol.2011.00062 PubMed DOI PMC
Zigmond R. E. (2012). Cytokines that promote nerve regeneration. Exp. Neurol. 238, 101–106. 10.1016/j.expneurol.2012.08.017 PubMed DOI PMC