Toll-Like Receptor 9-Mediated Neuronal Innate Immune Reaction Is Associated with Initiating a Pro-Regenerative State in Neurons of the Dorsal Root Ganglia Non-Associated with Sciatic Nerve Lesion
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-08508S
Grantová Agentura České Republiky
PubMed
34299065
PubMed Central
PMC8304752
DOI
10.3390/ijms22147446
PII: ijms22147446
Knihovny.cz E-zdroje
- Klíčová slova
- axon regeneration, compression, early endosomes, mitochondrial DNA, sciatic nerve, the endoplasmic reticulum, transection,
- MeSH
- krysa rodu Rattus MeSH
- nemoci sedacího nervu imunologie metabolismus patologie terapie MeSH
- neurony cytologie imunologie MeSH
- potkani Wistar MeSH
- přirozená imunita imunologie MeSH
- spinální ganglia cytologie MeSH
- toll-like receptor 9 genetika metabolismus MeSH
- transkripční faktor STAT3 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Stat3 protein, rat MeSH Prohlížeč
- Tlr9 protein, rat MeSH Prohlížeč
- toll-like receptor 9 MeSH
- transkripční faktor STAT3 MeSH
One of the changes brought about by Wallerian degeneration distal to nerve injury is disintegration of axonal mitochondria and consequent leakage of mitochondrial DNA (mtDNA)-the natural ligand for the toll-like receptor 9 (TLR9). RT-PCR and immunohistochemical or Western blot analyses were used to detect TLR9 mRNA and protein respectively in the lumbar (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) ipsilateral and contralateral to a sterile unilateral sciatic nerve compression or transection. The unilateral sciatic nerve lesions led to bilateral increases in levels of both TLR9 mRNA and protein not only in the lumbar but also in the remote cervical DRG compared with naive or sham-operated controls. This upregulation of TLR9 was linked to activation of the Nuclear Factor kappa B (NFκB) and nuclear translocation of the Signal Transducer and Activator of Transcription 3 (STAT3), implying innate neuronal immune reaction and a pro-regenerative state in uninjured primary sensory neurons of the cervical DRG. The relationship of TLR9 to the induction of a pro-regenerative state in the cervical DRG neurons was confirmed by the shorter lengths of regenerated axons distal to ulnar nerve crush following a previous sciatic nerve lesion and intrathecal chloroquine injection compared with control rats. The results suggest that a systemic innate immune reaction not only triggers the regenerative state of axotomized DRG neurons but also induces a pro-regenerative state further along the neural axis after unilateral nerve injury.
Zobrazit více v PubMed
Dubovy P., Klusakova I., Hradilova-Svizenska I., Joukal M. Expression of regeneration-associated proteins in primary sensory neurons and regenerating axons after nerve injury—An overview. Anat. Rec. 2018;301:1618–1627. doi: 10.1002/ar.23843. PubMed DOI
Liu H.-H., Jan Y.-N. Mechanisms of neurite repair. Curr. Opin. Neurobiol. 2020;63:53–58. doi: 10.1016/j.conb.2020.02.010. PubMed DOI PMC
Neumann S., Woolf C.J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron. 1999;23:83–91. doi: 10.1016/S0896-6273(00)80755-2. PubMed DOI
Schwaiger F.W., Hager G., Schmitt A.B., Horvat A., Hager G., Streif R., Spitzer C., Gamal S., Breuer S., Brook G.A., et al. Peripheral but not central axotomy induces changes in janus kinases (JAK) and signal transducers and activators of transcription (STAT) Eur. J. Neurosci. 2000;12:1165–1176. doi: 10.1046/j.1460-9568.2000.00005.x. PubMed DOI
Qiu J., Cafferty W.B.J., McMahon S.B., Thompson S.W.N. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J. Neurosci. 2005;25:1645–1653. doi: 10.1523/JNEUROSCI.3269-04.2005. PubMed DOI PMC
Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann. Anat. 2011;193:267–275. doi: 10.1016/j.aanat.2011.02.011. PubMed DOI
Court F.A., Coleman M.P. Mitochondria as a central sensor for axonal degenerative stimuli. TINS. 2012;35:364–372. doi: 10.1016/j.tins.2012.04.001. PubMed DOI
Coleman M. Axon degeneration mechanisms: Commonality amid diversity. Nat. Rev. Neurosci. 2005;6:889–898. doi: 10.1038/nrn1788. PubMed DOI
Gaudet A.D., Popovich P.G., Ramer M.S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflamm. 2011;8:110. doi: 10.1186/1742-2094-8-110. PubMed DOI PMC
Barrientos S.A., Martinez N.W., Yoo S., Jara J.S., Zamorano S., Hetz C., Twiss J.L., Alvarez J., Court F.A. Axonal degeneration is mediated by the mitochondrial permeability transition pore. J. Neurosci. 2011;31:966–978. doi: 10.1523/JNEUROSCI.4065-10.2011. PubMed DOI PMC
Freeman M.R. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 2014;27:224–231. doi: 10.1016/j.conb.2014.05.001. PubMed DOI PMC
Catenaccio A., Hurtado M.L., Diaz P., Lamont D.J., Wishart T.M., Court F.A. Molecular analysis of axonal-intrinsic and glial-associated co-regulation of axon degeneration. Cell Death Dis. 2017;8:e3166. doi: 10.1038/cddis.2017.489. PubMed DOI PMC
Zindel J., Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu. Rev. Pathol. Mech. Dis. 2020;15:493–518. doi: 10.1146/annurev-pathmechdis-012419-032847. PubMed DOI
Riley J.S., Tait S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21 doi: 10.15252/embr.201949799. PubMed DOI PMC
Arancibia S.A., Beltrán C.J., Aguirre I.M., Silva P., Peralta A.L., Malinarich F., Hermoso M.A. Toll-like receptors are key participants in innate immune responses. Biol. Res. 2007;40 doi: 10.4067/S0716-97602007000200001. PubMed DOI
Wang Q., Zhang S., Liu T., Wang H., Liu K., Wang Q., Zeng W. Sarm1/Myd88-5 regulates neuronal intrinsic immune response to traumatic axonal injuries. Cell Rep. 2018;23:716–724. doi: 10.1016/j.celrep.2018.03.071. PubMed DOI
Dubový P., Hradilová-Svíženská I., Klusáková I., Kokošová V., Brázda V., Joukal M. Bilateral activation of STAT3 by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and its nuclear translocation in primary sensory neurons following unilateral sciatic nerve injury. Histochem. Cell Biol. 2018;150:37–47. doi: 10.1007/s00418-018-1656-y. PubMed DOI
Dubový P., Hradilová-Svíženská I., Klusáková I., Brázda V., Joukal M. Interleukin-6 contributes to initiation of neuronal regeneration program in the remote dorsal root ganglia neurons after sciatic nerve injury. Histochem. Cell Biol. 2019;152:109–117. doi: 10.1007/s00418-019-01779-3. PubMed DOI
Dubovy P., Klusakova I., Hradilova-Svizenska I., Brazda V., Kohoutkova M., Joukal M. A conditioning sciatic nerve lesion triggers a pro-regenerative state in primary sensory neurons also of dorsal root ganglia non-associated with the damaged nerve. Front. Cell. Neurosci. 2019;13:11. doi: 10.3389/fncel.2019.00011. PubMed DOI PMC
Boivin A., Pineau I., Barrette B., Filali M., Vallières N., Rivest S., Lacroix S. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J. Neurosci. 2007;27:12565–12576. doi: 10.1523/JNEUROSCI.3027-07.2007. PubMed DOI PMC
Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–107. doi: 10.1038/nature08780. PubMed DOI PMC
Weerasuriya A., Mizisin A.P. The blood-nerve barrier: Structure and functional significance. In: Nag S., editor. Blood-Brain and Other Neural Barriers: Reviews and Protocols. Volume 686. Humana Press Inc.; Totowa, NJ, USA: 2011. pp. 149–173. PubMed
Arvidson B. Distribution of intravenously injected protein tracers in peripheral ganglia of adult mice. Exp. Neurol. 1979;63:388–410. doi: 10.1016/0014-4886(79)90134-1. PubMed DOI
Jacobs J.M., Macfarlane R.M., Cavanagh J.B. Vascular leakage in the dorsal root ganglia of the rat, studied with horseradish peroxidase. J. Neurol. Sci. 1976;29:95–107. doi: 10.1016/0022-510X(76)90083-6. PubMed DOI
Zhang J.-Z., Liu Z., Liu J., Ren J.-X., Sun T.-S. Mitochondrial DNA induces inflammation and increases TLR9/NF-kB expression in lung tissue. Int. J. Mol. Med. 2014;33:817–824. doi: 10.3892/ijmm.2014.1650. PubMed DOI PMC
Fang C., Wei X., Wei Y. Mitochondrial DNA in the regulation of innate immune responses. Protein Cell. 2016;7:11–16. doi: 10.1007/s13238-015-0222-9. PubMed DOI PMC
Goethals S., Ydens E., Timmerman V., Janssens S. Toll-like receptor expression in the peripheral nerve. Glia. 2010;58:1701–1709. doi: 10.1002/glia.21041. PubMed DOI
Qi J., Buzas K., Fan H., Cohen J.I., Wang K., Mont E., Klinman D., Oppenheim J.J., Howard O.M.Z. Painful pathways induced by Toll-like receptor stimulation of dorsal root ganglion neurons. J. Immunol. 2011;186:6417–6426. doi: 10.4049/jimmunol.1001241. PubMed DOI PMC
Latz E., Schoenemeyer A., Visintin A., Fitzgerald K.A., Monks B.G., Knetter C.F., Lien E., Nilsen N.J., Espevik T., Golenbock D.T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 2004;5:190–198. doi: 10.1038/ni1028. PubMed DOI
Wang M., Ye R., Barron E., Baumeister P., Mao C., Luo S., Fu Y., Luo B., Dubeau L., Hinton D.R., et al. Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ. 2010;17:488–498. doi: 10.1038/cdd.2009.144. PubMed DOI PMC
Dong L., Odeleye A.O., Jordan-Sciutto K.L., Winkelstein B.A. Painful facet joint injury induces neuronal stress activation in the drg: Implications for cellular mechanisms of pain. Neurosci. Lett. 2008;443:90–94. doi: 10.1016/j.neulet.2008.07.059. PubMed DOI PMC
Chockalingam A., Brooks J.C., Cameron J.L., Blum L.K., Leifer C.A. TLR9 traffics through the golgi complex to localize to endolysosomes and respond to CpG DNA. Immunol. Cell Biol. 2009;87:209–217. doi: 10.1038/icb.2008.101. PubMed DOI PMC
Dubový P., Klusáková I., Svíženská I., Brázda V. Spatio-temporal changes of sdf1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain. Histochem. Cell Biol. 2010;133:323–337. doi: 10.1007/s00418-010-0675-0. PubMed DOI
Dubový P., Brázda V., Klusáková I., Hradilová-Svíženská I. Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J. Neuroinflamm. 2013;10:824. doi: 10.1186/1742-2094-10-55. PubMed DOI PMC
Dziennis S., Alkayed N.J. Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration. Rev. Neurosci. 2008;19:341–361. doi: 10.1515/REVNEURO.2008.19.4-5.341. PubMed DOI PMC
Bareyre F.M., Garzorz N., Lang C., Misgeld T., Büning H., Kerschensteiner M. In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc. Natl. Acad. Sci. USA. 2011;108:6282–6287. doi: 10.1073/pnas.1015239108. PubMed DOI PMC
Zigmond R.E. Gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front. Mol. Neurosci. 2012;4:62. doi: 10.3389/fnmol.2011.00062. PubMed DOI PMC
Sanjuan M.A., Rao N., Lai K.T., Gu Y., Sun S., Fuchs A., Fung-Leung W.P., Colonna M., Karlsson L. CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J. Cell Biol. 2006;172:1057–1068. doi: 10.1083/jcb.200508058. PubMed DOI PMC
Rutz M., Metzger J., Gellert T., Luppa P., Lipford G.B., Wagner H., Bauer S. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 2004;34:2541–2550. doi: 10.1002/eji.200425218. PubMed DOI
Yue D., Zhang D., Shi X., Liu S., Li A., Wang D., Qin G., Ping Y., Qiao Y., Chen X., et al. Chloroquine inhibits stemness of esophageal squamous cell carcinoma cells through targeting CXCR4-STAT3 pathway. Front. Oncol. 2020;10 doi: 10.3389/fonc.2020.00311. PubMed DOI PMC
Merrell M.A., Ilvesaro J.M., Lehtonen N., Sorsa T., Gehrs B., Rosenthal E., Chen D., Shackley B., Harris K.W., Selander K.S. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol. Cancer Res. 2006;4:437–447. doi: 10.1158/1541-7786.MCR-06-0007. PubMed DOI
Herrmann A., Cherryholmes G., Schroeder A., Phallen J., Alizadeh D., Xin H., Wang T., Lee H., Lahtz C., Swiderski P., et al. TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res. 2014;74:5218–5228. doi: 10.1158/0008-5472.CAN-14-1151. PubMed DOI PMC
Yang S., Qiang L., Sample A., Shah P., He Y.-Y. NF-ΚB signaling activation induced by chloroquine requires autophagosome, P62 protein, and c-jun N-terminal kinase (JNK) signaling and promotes tumor cell resistance. J. Biol. Chem. 2017;292:3379–3388. doi: 10.1074/jbc.M116.756536. PubMed DOI PMC
Zhang Y., Li Y., Li Y., Li R., Ma Y., Wang H., Wang Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like Receptor 9/Nuclear Factor Kappa B signaling pathway. Mol. Med. Rep. 2015;11:1366–1371. doi: 10.3892/mmr.2014.2839. PubMed DOI
Korimová A., Klusáková I., Hradilová-Svíženská I., Kohoutková M., Joukal M., Dubový P. Mitochondrial damage-associated molecular patterns of injured axons induce outgrowth of Schwann cell processes. Front. Cell. Neurosci. 2018;12 doi: 10.3389/fncel.2018.00457. PubMed DOI PMC
Kaul D., Habbel P., Derkow K., Krüger C., Franzoni E., Wulczyn F.G., Bereswill S., Nitsch R., Schott E., Veh R., et al. Expression of Toll-like receptors in the developing brain. PLoS ONE. 2012;7:e37767. doi: 10.1371/journal.pone.0037767. PubMed DOI PMC
Schmid A.B., Coppieters M.W., Ruitenberg M.J., McLachlan E.M. Local and remote immune-mediated inflammation after mild peripheral nerve compression in rats. J. Neuropathol. Exp. Neurol. 2013;72:662–680. doi: 10.1097/NEN.0b013e318298de5b. PubMed DOI
Zamboni L., Demartin C. Buffered picric acid-formaldehyde—A new rapid fixative for electron microscopy. J. Cell. Biol. 1967;35:A148.
Swett J.E., Torigoe Y., Elie V.R., Bourassa C.M., Miller P.G. Sensory neurons of the rat sciatic nerve. Exp. Neurol. 1991;114:82–103. doi: 10.1016/0014-4886(91)90087-S. PubMed DOI
Hanani M. Satellite glial cells in sensory ganglia: From form to function. Brain Res. Rev. 2005;48:457–476. doi: 10.1016/j.brainresrev.2004.09.001. PubMed DOI
Poteryaev D., Datta S., Ackema K., Zerial M., Spang A. Identification of the switch in early-to-late endosome transition. Cell. 2010;141:497–508. doi: 10.1016/j.cell.2010.03.011. PubMed DOI
Girard E., Chmiest D., Fournier N., Johannes L., Paul J.-L., Vedie B., Lamaze C. Rab7 is functionally required for selective cargo sorting at the early endosome. Traffic. 2014;15:309–326. doi: 10.1111/tra.12143. PubMed DOI
Lee A.S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods. 2005;35:373–381. doi: 10.1016/j.ymeth.2004.10.010. PubMed DOI
Ronchi G., Nicolino S., Raimondo S., Tos P., Battiston B., Papalia I., Varejão A.S.P., Giacobini-Robecchi M.G., Perroteau I., Geuna S. Functional and morphological assessment of a standardized crush injury of the rat median nerve. J. Neurosci. Meth. 2009;179:51–57. doi: 10.1016/j.jneumeth.2009.01.011. PubMed DOI
Hylden J.L.K., Wilcox G.L. Intrathecal morphine in mice: A new technique. Eur. J. Pharmacol. 1980;67:313–316. doi: 10.1016/0014-2999(80)90515-4. PubMed DOI
Abe N., Borson S.H., Gambello M.J., Wang F., Cavalli V. Mammalian Target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J. Biol. Chem. 2010;285:28034–28043. doi: 10.1074/jbc.M110.125336. PubMed DOI PMC