Interleukin-6 contributes to initiation of neuronal regeneration program in the remote dorsal root ganglia neurons after sciatic nerve injury

. 2019 Aug ; 152 (2) : 109-117. [epub] 20190329

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30927067

Grantová podpora
16-08508S Grantová Agentura České Republiky

Odkazy

PubMed 30927067
DOI 10.1007/s00418-019-01779-3
PII: 10.1007/s00418-019-01779-3
Knihovny.cz E-zdroje

To assess the potential role of IL-6 in sciatic nerve injury-induced activation of a pro-regenerative state in remote dorsal root ganglia (DRG) neurons, we compared protein levels of SCG-10 and activated STAT3, as well as axon regeneration in IL-6 knockout (IL-6ko) mice and their wild-type (WT) counterparts. Unilateral sciatic nerve compression and transection upregulated SCG-10 protein levels and activated STAT3 in DRG neurons not only in lumbar but also in cervical segments of WT mice. A pro-regenerative state induced by prior sciatic nerve lesion in cervical DRG neurons of WT mice was also shown by testing for axon regeneration in crushed ulnar nerve. DRG neurons from IL-6ko mice also displayed bilaterally increased levels of SCG-10 and STAT3 in both lumbar and cervical segments after sciatic nerve lesions. However, levels of SCG-10 protein in lumbar and cervical DRG of IL-6ko mice were significantly lower than those of their WT counterparts. Sciatic nerve injury induced a lower level of SCG-10 in cervical DRG of IL-6ko than WT mice, and this correlates with significantly shorter regeneration of axons distal to the crushed ulnar nerve. These results suggest that IL-6 contributes, at the very least, to initiation of the neuronal regeneration program in remote DRG neurons after unilateral sciatic nerve injury.

Zobrazit více v PubMed

Cell Tissue Res. 1976 Apr 9;167(4):563-7 PubMed

J Neurosci. 2001 Sep 15;21(18):7161-70 PubMed

Science. 2002 May 31;296(5573):1653-5 PubMed

Histochem Cell Biol. 2002 Jun;117(6):473-80 PubMed

Mol Cell Neurosci. 2002 Aug;20(4):595-615 PubMed

J Neurosci. 2004 May 5;24(18):4432-43 PubMed

J Neurosci. 2005 Feb 16;25(7):1645-53 PubMed

J Neurosci. 2006 May 17;26(20):5565-73 PubMed

Rev Neurosci. 2008;19(4-5):341-61 PubMed

J Neurosci Methods. 2010 Apr 30;188(1):71-5 PubMed

J Biol Chem. 2010 Sep 3;285(36):28034-43 PubMed

Mol Cell Neurosci. 2011 Jan;46(1):32-44 PubMed

Annu Rev Neurosci. 2011;34:131-52 PubMed

Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6282-7 PubMed

Eur J Cell Biol. 2012 Jun-Jul;91(6-7):486-95 PubMed

Front Mol Neurosci. 2012 Jan 20;4:62 PubMed

Exp Neurol. 2012 Dec;238(2):101-6 PubMed

Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):E3696-705 PubMed

J Neuroinflammation. 2013 May 01;10:55 PubMed

Mol Pain. 2013 Aug 16;9:42 PubMed

Exp Neurol. 2014 Feb;252:1-11 PubMed

J Neurosci. 2014 Sep 24;34(39):13222-33 PubMed

J Reconstr Microsurg. 2015 Sep;31(7):508-15 PubMed

Mol Neurobiol. 2016 Sep;53(7):4596-605 PubMed

Ann Anat. 2016 May;205:9-15 PubMed

Histochem Cell Biol. 2018 Jul;150(1):37-47 PubMed

Anat Rec (Hoboken). 2018 Oct;301(10):1618-1627 PubMed

Neural Regen Res. 2019 Jun;14(6):939-947 PubMed

Front Cell Neurosci. 2019 Feb 04;13:11 PubMed

J Neurosci. 1995 Jul;15(7 Pt 2):5130-8 PubMed

Brain Res Dev Brain Res. 1995 Dec 21;90(1-2):73-91 PubMed

Eur J Neurosci. 1996 Oct;8(10):2213-20 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...