The Intrinsic Neuronal Activation of the CXCR4 Signaling Axis Is Associated with a Pro-Regenerative State in Cervical Primary Sensory Neurons Conditioned by a Sciatic Nerve Lesion

. 2024 Dec 29 ; 26 (1) : . [epub] 20241229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39796050

Grantová podpora
16-08508S The Czech Science Foundation
MUNI/A/1563/2023 MUNI

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion. Intrathecal application of the CXCR4 inhibitor AMD3100 following CSNT reduced CXCL12 and CXCR4 protein levels in cervical DRG neurons, as well as the length of afferent axons regenerated distal to the ulnar nerve crush. Furthermore, treatment with the CXCR4 inhibitor decreased levels of activated Signal Transducer and Activator of Transcription 3 (STAT3), a critical transforming factor in the neuronal regeneration program. Administration of IL-6 increased CXCR4 levels, whereas the JAK2-dependent STAT3 phosphorylation inhibitor (AG490) conversely decreased CXCR4 levels. This indicates a link between the CXCL12/CXCR4 signaling axis and IL-6-induced activation of STAT3 in the sciatic nerve injury-induced pro-regenerative state of cervical DRG neurons. The role of CXCR4 signaling in the axon-promoting state of DRG neurons was confirmed through in vitro cultivation of primary sensory neurons in a medium supplemented with CXCL12, with or without AMD3100. The potential involvement of conditioned cervical DRG neurons in the induction of neuropathic pain is discussed.

Zobrazit více v PubMed

Mahar M., Cavalli V. Intrinsic Mechanisms of Neuronal Axon Regeneration. Nat. Rev. Neurosci. 2018;19:323–337. doi: 10.1038/s41583-018-0001-8. PubMed DOI PMC

Zhang Y., Zhao Q., Chen Q., Xu L., Yi S. Transcriptional Control of Peripheral Nerve Regeneration. Mol. Neurobiol. 2023;60:329–341. doi: 10.1007/s12035-022-03090-0. PubMed DOI

Zigmond R.E. Gp130 Cytokines Are Positive Signals Triggering Changes in Gene Expression and Axon Outgrowth in Peripheral Neurons Following Injury. Front. Mol. Neurosci. 2012;4:62. doi: 10.3389/fnmol.2011.00062. PubMed DOI PMC

Dubovy P., Klusakova I., Hradilova-Svizenska I., Joukal M. Expression of Regeneration-Associated Proteins in Primary Sensory Neurons and Regenerating Axons After Nerve Injury—An Overview. Anat. Rec.-Adv. Integr. Anat. Evol. Biol. 2018;301:1618–1627. doi: 10.1002/ar.23843. PubMed DOI

Neumann S., Woolf C.J. Regeneration of Dorsal Column Fibers into and beyond the Lesion Site Following Adult Spinal Cord Injury. Neuron. 1999;23:83–91. doi: 10.1016/S0896-6273(00)80755-2. PubMed DOI

Dubový P., Brázda V., Klusáková I., Hradilová-Svíženská I. Bilateral Elevation of Interleukin-6 Protein and mRNA in Both Lumbar and Cervical Dorsal Root Ganglia Following Unilateral Chronic Compression Injury of the Sciatic Nerve. J. Neuroinflamm. 2013;10:824. doi: 10.1186/1742-2094-10-55. PubMed DOI PMC

Dubový P., Hradilová-Svíženská I., Klusáková I., Brázda V., Joukal M. Interleukin-6 Contributes to Initiation of Neuronal Regeneration Program in the Remote Dorsal Root Ganglia Neurons after Sciatic Nerve Injury. Histochem. Cell Biol. 2019;152:109–117. doi: 10.1007/s00418-019-01779-3. PubMed DOI

Dubovy P., Klusakova I., Hradilova-Svizenska I., Brazda V., Kohoutkova M., Joukal M. A Conditioning Sciatic Nerve Lesion Triggers a Pro-Regenerative State in Primary Sensory Neurons Also of Dorsal Root Ganglia Non-Associated With the Damaged Nerve. Front. Cell. Neurosci. 2019;13:11. doi: 10.3389/fncel.2019.00011. PubMed DOI PMC

Bacon K.B., Harrison J.K. Chemokines and Their Receptors in Neurobiology: Perspectives in Physiology and Homeostasis. J. Neuroimmunol. 2000;104:92–97. doi: 10.1016/S0165-5728(99)00266-0. PubMed DOI

Hughes C.E., Nibbs R.J.B. A Guide to Chemokines and Their Receptors. FEBS J. 2018;285:2944–2971. doi: 10.1111/febs.14466. PubMed DOI PMC

White F.A., Jung H., Miller R.J. Chemokines and the Pathophysiology of Neuropathic Pain. Proc. Natl. Acad. Sci. USA. 2007;104:20151–20158. doi: 10.1073/pnas.0709250104. PubMed DOI PMC

Pawlik K., Mika J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules. 2023;28:5766. doi: 10.3390/molecules28155766. PubMed DOI PMC

Bleul C.C., Fuhlbrigge R.C., Casasnovas J.M., Aiuti A., Springer T.A. A Highly Efficacious Lymphocyte Chemoattractant, Stromal Cell-Derived Factor 1 (SDF-1) J. Exp. Med. 1996;184:1101–1109. doi: 10.1084/jem.184.3.1101. PubMed DOI PMC

Bianchi M.E., Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front. Immunol. 2020;11:2109. doi: 10.3389/fimmu.2020.02109. PubMed DOI PMC

Dubový P., Klusáková I., Svíženská I., Brázda V. Spatio-Temporal Changes of SDF1 and Its CXCR4 Receptor in the Dorsal Root Ganglia Following Unilateral Sciatic Nerve Injury as a Model of Neuropathic Pain. Histochem. Cell Biol. 2010;133:323–337. doi: 10.1007/s00418-010-0675-0. PubMed DOI

Reaux-Le Goazigo A., Rivat C., Kitabgi P., Pohl M., Melik Parsadaniantz S. Cellular and Subcellular Localization of CXCL12 and CXCR4 in Rat Nociceptive Structures: Physiological Relevance: Distribution of CXCL12/CXCR4 in Sensory Neurons. Eur. J. Neurosci. 2012;36:2619–2631. doi: 10.1111/j.1460-9568.2012.08179.x. PubMed DOI

Bai L., Wang X., Li Z., Kong C., Zhao Y., Qian J.-L., Kan Q., Zhang W., Xu J.-T. Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats. Neurosci. Bull. 2016;32:27–40. doi: 10.1007/s12264-015-0007-4. PubMed DOI PMC

Dubový P., Hradilová-Svíženská I., Klusáková I., Kokošová V., Brázda V., Joukal M. Bilateral Activation of STAT3 by Phosphorylation at the Tyrosine-705 (Y705) and Serine-727 (S727) Positions and Its Nuclear Translocation in Primary Sensory Neurons Following Unilateral Sciatic Nerve Injury. Histochem. Cell Biol. 2018;150:37–47. doi: 10.1007/s00418-018-1656-y. PubMed DOI

Yang F., Luo W.-J., Sun W., Wang Y., Wang J.-L., Yang F., Li C.-L., Wei N., Wang X.-L., Guan S.-M., et al. SDF1-CXCR4 Signaling Maintains Central Post-Stroke Pain through Mediation of Glial-Neuronal Interactions. Front. Mol. Neurosci. 2017;10:226. doi: 10.3389/fnmol.2017.00226. PubMed DOI PMC

Rotshenker S. Wallerian Degeneration: The Innate-Immune Response to Traumatic Nerve Injury. J. Neuroinflamm. 2011;8:109. doi: 10.1186/1742-2094-8-109. PubMed DOI PMC

Dubový P. Wallerian Degeneration and Peripheral Nerve Conditions for Both Axonal Regeneration and Neuropathic Pain Induction. Ann. Anat.-Anat. Anz. 2011;193:267–275. doi: 10.1016/j.aanat.2011.02.011. PubMed DOI

Brázda V., Klusáková I., Svíženská I., Veselková Z., Dubový P. Bilateral Changes in IL-6 Protein, but Not in Its Receptor Gp130, in Rat Dorsal Root Ganglia Following Sciatic Nerve Ligature. Cell. Mol. Neurobiol. 2009;29:1053–1062. doi: 10.1007/s10571-009-9396-0. PubMed DOI PMC

Donzella G.A., Schols D., Lin S.W., Esté J.A., Nagashima K.A., Maddon P.J., Allaway G.P., Sakmar T.P., Henson G., De Clercq E., et al. AMD3100, a Small Molecule Inhibitor of HIV-1 Entry via the CXCR4 Co-Receptor. Nat. Med. 1998;4:72–77. doi: 10.1038/nm0198-072. PubMed DOI

Hatse S., Princen K., Bridger G., De Clercq E., Schols D. Chemokine Receptor Inhibition by AMD3100 Is Strictly Confined to CXCR4. FEBS Lett. 2002;527:255–262. doi: 10.1016/S0014-5793(02)03143-5. PubMed DOI

Spinello I., Quaranta M.T., Riccioni R., Riti V., Pasquini L., Boe A., Pelosi E., Vitale A., Foà R., Testa U., et al. MicroRNA-146a and AMD3100, Two Ways to Control CXCR4 Expression in Acute Myeloid Leukemias. Blood Cancer J. 2011;1:e26. doi: 10.1038/bcj.2011.24. PubMed DOI PMC

Song J.S., Kang C.M., Kang H.H., Yoon H.K., Kim Y.K., Kim K.H., Moon H.S., Park S.H. Inhibitory Effect of CXC Chemokine Receptor 4 Antagonist AMD3100 on Bleomycin Induced Murine Pulmonary Fibrosis. Exp. Mol. Med. 2010;42:465–476. doi: 10.3858/emm.2010.42.6.048. PubMed DOI PMC

Opatz J., Kuery P., Schiwy N., Jaerve A., Estrada V., Brazda N., Bosse F., Mueller H.W. SDF-1 Stimulates Neurite Growth on Inhibitory CNS Myelin. Mol. Cell. Neurosci. 2009;40:293–300. doi: 10.1016/j.mcn.2008.11.002. PubMed DOI

Heskamp A., Leibinger M., Andreadaki A., Gobrecht P., Diekmann H., Fischer D. CXCL12/SDF-1 Facilitates Optic Nerve Regeneration. Neurobiol. Dis. 2013;55:76–86. doi: 10.1016/j.nbd.2013.04.001. PubMed DOI

Xie L., Cen L.-P., Li Y., Gilbert H.-Y., Strelko O., Berlinicke C., Stavarache M.A., Ma M., Wang Y., Cui Q., et al. Monocyte-Derived SDF1 Supports Optic Nerve Regeneration and Alters Retinal Ganglion Cells’ Response to Pten Deletion. Proc. Natl. Acad. Sci. USA. 2022;119:e2113751119. doi: 10.1073/pnas.2113751119. PubMed DOI PMC

Wu D., Zhang Y., Bo X., Huang W., Xiao F., Zhang X., Miao T., Magoulas C., Subang M.C., Richardson P.M. Actions of Neuropoietic Cytokines and Cyclic AMP in Regenerative Conditioning of Rat Primary Sensory Neurons. Exp. Neurol. 2007;204:66–76. doi: 10.1016/j.expneurol.2006.09.017. PubMed DOI

Smith R.P., Lerch-Haner J.K., Pardinas J.R., Buchser W.J., Bixby J.L., Lemmon V.P. Transcriptional Profiling of Intrinsic PNS Factors in the Postnatal Mouse. Mol. Cell. Neurosci. 2011;46:32–44. doi: 10.1016/j.mcn.2010.07.015. PubMed DOI PMC

Bareyre F.M., Garzorz N., Lang C., Misgeld T., Büning H., Kerschensteiner M. In Vivo Imaging Reveals a Phase-Specific Role of STAT3 during Central and Peripheral Nervous System Axon Regeneration. Proc. Natl. Acad. Sci. USA. 2011;108:6282–6287. doi: 10.1073/pnas.1015239108. PubMed DOI PMC

Zigmond R.E. Cytokines That Promote Nerve Regeneration. Exp. Neurol. 2012;238:101–106. doi: 10.1016/j.expneurol.2012.08.017. PubMed DOI PMC

Vila-Coro A.J., Rodriguez-Frade J.M., De Ana A.M., Moreno-Ortiz M.C., Martinez C., Mellado M. The Chemokine SDF-1 Alpha Triggers CXCR4 Receptor Dimerization and Activates the JAK/STAT Pathway. FASEB J. 1999;13:1699–1710. doi: 10.1096/fasebj.13.13.1699. PubMed DOI

Ahr B., Denizot M., Robert-Hebmann W., Brelot A., Biard-Piechaczyk M. Identification of the Cytoplasmic Domains of CXCR4 Involved in Jak2 and STAT3 Phosphorylation. J. Biol. Chem. 2005;280:6692–6700. doi: 10.1074/jbc.M408481200. PubMed DOI

Pfeiffer M., Hartmann T.N., Leick M., Catusse J., Schmitt-Graeff A., Burger M. Alternative Implication of CXCR4 in JAK2/STAT3 Activation in Small Cell Lung Cancer. Br. J. Cancer. 2009;100:1949–1956. doi: 10.1038/sj.bjc.6605068. PubMed DOI PMC

Liu X., Xiao Q., Bai X., Yu Z., Sun M., Zhao H., Mi X., Wang E., Yao W., Jin F., et al. Activation of STAT3 Is Involved in Malignancy Mediated by CXCL12-CXCR4 Signaling in Human Breast Cancer. Oncol. Rep. 2014;32:2760–2768. doi: 10.3892/or.2014.3536. PubMed DOI

Oh S., Jeong H., Park H., Choi K.-A., Hwang I., Lee J., Cho J., Hong S. Activation of CXCL12-CXCR4 Signalling Induces Conversion of Immortalised Embryonic Kidney Cells into Cancer Stem-like Cells. Artif. Cells Nanomed. Biotechnol. 2020;48:1303–1313. doi: 10.1080/21691401.2020.1841783. PubMed DOI

Teixidó J., Martínez-Moreno M., Díaz-Martínez M., Sevilla-Movilla S. The Good and Bad Faces of the CXCR4 Chemokine Receptor. Int. J. Biochem. Cell Biol. 2018;95:121–131. doi: 10.1016/j.biocel.2017.12.018. PubMed DOI

Leibinger M., Andreadaki A., Fischer D. Role of mTOR in Neuroprotection and Axon Regeneration after Inflammatory Stimulation. Neurobiol. Dis. 2012;46:314–324. doi: 10.1016/j.nbd.2012.01.004. PubMed DOI

Zanetti G., Negro S., Megighian A., Mattarei A., Lista F., Fillo S., Rigoni M., Pirazzini M., Montecucco C. A CXCR4 Receptor Agonist Strongly Stimulates Axonal Regeneration after Damage. Ann. Clin. Transl. Neurol. 2019;6:2395–2402. doi: 10.1002/acn3.50926. PubMed DOI PMC

Negro S., Zanetti G., Mattarei A., Valentini A., Megighian A., Tombesi G., Zugno A., Dianin V., Pirazzini M., Fillo S., et al. An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells. 2019;8:1183. doi: 10.3390/cells8101183. PubMed DOI PMC

Lieberam I., Agalliu D., Nagasawa T., Ericson J., Jessell T.M. A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines the Initial Trajectory of Mammalian Motor Axons. Neuron. 2005;47:667–679. doi: 10.1016/j.neuron.2005.08.011. PubMed DOI

Bhangoo S.K., Ren D., Miller R.J., Chan D.M., Ripsch M.S., Weiss C., McGinnis C., White F.A. CXCR4 Chemokine Receptor Signaling Mediates Pain Hypersensitivity in Association with Antiretroviral Toxic Neuropathy. Brain Behav. Immun. 2007;21:581–591. doi: 10.1016/j.bbi.2006.12.003. PubMed DOI PMC

White F.A., Wilson N.M. Chemokines as Pain Mediators and Modulators. Curr. Opin. Anaesthesiol. 2008;21:580–585. doi: 10.1097/ACO.0b013e32830eb69d. PubMed DOI PMC

Abbadie C., Bhangoo S., De Koninck Y., Malcangio M., Melik-Parsadaniantz S., White F.A. Chemokines and Pain Mechanisms. Brain Res. Rev. 2009;60:125–134. doi: 10.1016/j.brainresrev.2008.12.002. PubMed DOI PMC

Jayaraj N.D., Bhattacharyya B.J., Belmadani A.A., Ren D., Rathwell C.A., Hackelberg S., Hopkins B.E., Gupta H.R., Miller R.J., Menichella D.M. Reducing CXCR4-Mediated Nociceptor Hyperexcitability Reverses Painful Diabetic Neuropathy. J. Clin. Investig. 2018;128:2205–2225. doi: 10.1172/JCI92117. PubMed DOI PMC

Testa L., Dotta S., Vercelli A., Marvaldi L. Communicating Pain: Emerging Axonal Signaling in Peripheral Neuropathic Pain. Front. Neuroanat. 2024;18:1398400. doi: 10.3389/fnana.2024.1398400. PubMed DOI PMC

Smith P.A. Neuropathic Pain; What We Know and What We Should Do about, It. Front. Pain. Res. 2023;4:1220034. doi: 10.3389/fpain.2023.1220034. PubMed DOI PMC

Yang F., Sun W., Yang Y., Wang Y., Li C.-L., Fu H., Wang X.-L., Yang F., He T., Chen J. SDF1-CXCR4 Signaling Contributes to Persistent Pain and Hypersensitivity via Regulating Excitability of Primary Nociceptive Neurons: Involvement of ERK-Dependent Nav1.8 up-Regulation. J. Neuroinflamm. 2015;12:219. doi: 10.1186/s12974-015-0441-2. PubMed DOI PMC

Pitake S., Middleton L.J., Abdus-Saboor I., Mishra S.K. Inflammation Induced Sensory Nerve Growth and Pain Hypersensitivity Requires the N-Type Calcium Channel Cav2.2. Front. Neurosci. 2019;13:1009. doi: 10.3389/fnins.2019.01009. PubMed DOI PMC

Bernal L., Cisneros E., Roza C. Activation of the Regeneration-Associated Gene STAT3 and Functional Changes in Intact Nociceptors after Peripheral Nerve Damage in Mice. Eur. J. Pain. Lond. Engl. 2021;25:886–901. doi: 10.1002/ejp.1718. PubMed DOI

Tran E.L., Crawford L.K. Revisiting PNS Plasticity: How Uninjured Sensory Afferents Promote Neuropathic Pain. Front. Cell. Neurosci. 2020;14:612982. doi: 10.3389/fncel.2020.612982. PubMed DOI PMC

Roza C., Bernal L. Electrophysiological Characterization of Ectopic Spontaneous Discharge in Axotomized and Intact Fibers upon Nerve Transection: A Role in Spontaneous Pain? Pflugers Arch.-Eur. J. Physiol. 2022;474:387–396. doi: 10.1007/s00424-021-02655-7. PubMed DOI

Joukal M., Klusáková I., Dubový P. Direct Communication of the Spinal Subarachnoid Space with the Rat Dorsal Root Ganglia. Ann. Anat. 2016;205:9–15. doi: 10.1016/j.aanat.2016.01.004. PubMed DOI

Jimenez-Andrade J.M., Herrera M.B., Ghilardi J.R., Vardanyan M., Melemedjian O.K., Mantyh P.W. Vascularization of the Dorsal Root Ganglia and Peripheral Nerve of the Mouse: Implications for Chemical-Induced Peripheral Sensory Neuropathies. Mol. Pain. 2008;4:10. doi: 10.1186/1744-8069-4-10. PubMed DOI PMC

Hylden J.L.K., Wilcox G.L. Intrathecal Morphine in Mice: A New Technique. Eur. J. Pharmacol. 1980;67:313–316. doi: 10.1016/0014-2999(80)90515-4. PubMed DOI

Zamboni L., Demartin C. Buffered Picric Acid-Formaldehyde—A New Rapid Fixative for Electron Microscopy. J. Cell Biol. 1967;35:A148

Ronchi G., Nicolino S., Raimondo S., Tos P., Battiston B., Papalia I., Varejão A.S.P., Giacobini-Robecchi M.G., Perroteau I., Geuna S. Functional and Morphological Assessment of a Standardized Crush Injury of the Rat Median Nerve. J. Neurosci. Methods. 2009;179:51–57. doi: 10.1016/j.jneumeth.2009.01.011. PubMed DOI

Abe N., Borson S.H., Gambello M.J., Wang F., Cavalli V. Mammalian Target of Rapamycin (mTOR) Activation Increases Axonal Growth Capacity of Injured Peripheral Nerves. J. Biol. Chem. 2010;285:28034–28043. doi: 10.1074/jbc.M110.125336. PubMed DOI PMC

Christie K.J., Webber C.A., Martinez J.A., Singh B., Zochodne D.W. PTEN Inhibition to Facilitate Intrinsic Regenerative Outgrowth of Adult Peripheral Axons. J. Neurosci. 2010;30:9306–9315. doi: 10.1523/JNEUROSCI.6271-09.2010. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...