The Intrinsic Neuronal Activation of the CXCR4 Signaling Axis Is Associated with a Pro-Regenerative State in Cervical Primary Sensory Neurons Conditioned by a Sciatic Nerve Lesion
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-08508S
The Czech Science Foundation
MUNI/A/1563/2023
MUNI
PubMed
39796050
PubMed Central
PMC11720091
DOI
10.3390/ijms26010193
PII: ijms26010193
Knihovny.cz E-zdroje
- Klíčová slova
- AMD3100, IL-6, STAT3, axon regeneration, pre-conditioning, sciatic nerve, transection,
- MeSH
- benzylaminy MeSH
- chemokin CXCL12 * metabolismus MeSH
- cyklamy farmakologie MeSH
- heterocyklické sloučeniny farmakologie MeSH
- interleukin-6 metabolismus MeSH
- krysa rodu Rattus MeSH
- nemoci sedacího nervu metabolismus MeSH
- nervové receptory * metabolismus MeSH
- nervus ischiadicus * zranění metabolismus MeSH
- potkani Sprague-Dawley MeSH
- receptory CXCR4 * metabolismus MeSH
- regenerace nervu * MeSH
- signální transdukce * MeSH
- spinální ganglia * metabolismus MeSH
- transkripční faktor STAT3 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzylaminy MeSH
- chemokin CXCL12 * MeSH
- CXCL12 protein, rat MeSH Prohlížeč
- Cxcr4 protein, rat MeSH Prohlížeč
- cyklamy MeSH
- heterocyklické sloučeniny MeSH
- interleukin-6 MeSH
- plerixafor MeSH Prohlížeč
- receptory CXCR4 * MeSH
- Stat3 protein, rat MeSH Prohlížeč
- transkripční faktor STAT3 * MeSH
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion. Intrathecal application of the CXCR4 inhibitor AMD3100 following CSNT reduced CXCL12 and CXCR4 protein levels in cervical DRG neurons, as well as the length of afferent axons regenerated distal to the ulnar nerve crush. Furthermore, treatment with the CXCR4 inhibitor decreased levels of activated Signal Transducer and Activator of Transcription 3 (STAT3), a critical transforming factor in the neuronal regeneration program. Administration of IL-6 increased CXCR4 levels, whereas the JAK2-dependent STAT3 phosphorylation inhibitor (AG490) conversely decreased CXCR4 levels. This indicates a link between the CXCL12/CXCR4 signaling axis and IL-6-induced activation of STAT3 in the sciatic nerve injury-induced pro-regenerative state of cervical DRG neurons. The role of CXCR4 signaling in the axon-promoting state of DRG neurons was confirmed through in vitro cultivation of primary sensory neurons in a medium supplemented with CXCL12, with or without AMD3100. The potential involvement of conditioned cervical DRG neurons in the induction of neuropathic pain is discussed.
Zobrazit více v PubMed
Mahar M., Cavalli V. Intrinsic Mechanisms of Neuronal Axon Regeneration. Nat. Rev. Neurosci. 2018;19:323–337. doi: 10.1038/s41583-018-0001-8. PubMed DOI PMC
Zhang Y., Zhao Q., Chen Q., Xu L., Yi S. Transcriptional Control of Peripheral Nerve Regeneration. Mol. Neurobiol. 2023;60:329–341. doi: 10.1007/s12035-022-03090-0. PubMed DOI
Zigmond R.E. Gp130 Cytokines Are Positive Signals Triggering Changes in Gene Expression and Axon Outgrowth in Peripheral Neurons Following Injury. Front. Mol. Neurosci. 2012;4:62. doi: 10.3389/fnmol.2011.00062. PubMed DOI PMC
Dubovy P., Klusakova I., Hradilova-Svizenska I., Joukal M. Expression of Regeneration-Associated Proteins in Primary Sensory Neurons and Regenerating Axons After Nerve Injury—An Overview. Anat. Rec.-Adv. Integr. Anat. Evol. Biol. 2018;301:1618–1627. doi: 10.1002/ar.23843. PubMed DOI
Neumann S., Woolf C.J. Regeneration of Dorsal Column Fibers into and beyond the Lesion Site Following Adult Spinal Cord Injury. Neuron. 1999;23:83–91. doi: 10.1016/S0896-6273(00)80755-2. PubMed DOI
Dubový P., Brázda V., Klusáková I., Hradilová-Svíženská I. Bilateral Elevation of Interleukin-6 Protein and mRNA in Both Lumbar and Cervical Dorsal Root Ganglia Following Unilateral Chronic Compression Injury of the Sciatic Nerve. J. Neuroinflamm. 2013;10:824. doi: 10.1186/1742-2094-10-55. PubMed DOI PMC
Dubový P., Hradilová-Svíženská I., Klusáková I., Brázda V., Joukal M. Interleukin-6 Contributes to Initiation of Neuronal Regeneration Program in the Remote Dorsal Root Ganglia Neurons after Sciatic Nerve Injury. Histochem. Cell Biol. 2019;152:109–117. doi: 10.1007/s00418-019-01779-3. PubMed DOI
Dubovy P., Klusakova I., Hradilova-Svizenska I., Brazda V., Kohoutkova M., Joukal M. A Conditioning Sciatic Nerve Lesion Triggers a Pro-Regenerative State in Primary Sensory Neurons Also of Dorsal Root Ganglia Non-Associated With the Damaged Nerve. Front. Cell. Neurosci. 2019;13:11. doi: 10.3389/fncel.2019.00011. PubMed DOI PMC
Bacon K.B., Harrison J.K. Chemokines and Their Receptors in Neurobiology: Perspectives in Physiology and Homeostasis. J. Neuroimmunol. 2000;104:92–97. doi: 10.1016/S0165-5728(99)00266-0. PubMed DOI
Hughes C.E., Nibbs R.J.B. A Guide to Chemokines and Their Receptors. FEBS J. 2018;285:2944–2971. doi: 10.1111/febs.14466. PubMed DOI PMC
White F.A., Jung H., Miller R.J. Chemokines and the Pathophysiology of Neuropathic Pain. Proc. Natl. Acad. Sci. USA. 2007;104:20151–20158. doi: 10.1073/pnas.0709250104. PubMed DOI PMC
Pawlik K., Mika J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules. 2023;28:5766. doi: 10.3390/molecules28155766. PubMed DOI PMC
Bleul C.C., Fuhlbrigge R.C., Casasnovas J.M., Aiuti A., Springer T.A. A Highly Efficacious Lymphocyte Chemoattractant, Stromal Cell-Derived Factor 1 (SDF-1) J. Exp. Med. 1996;184:1101–1109. doi: 10.1084/jem.184.3.1101. PubMed DOI PMC
Bianchi M.E., Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front. Immunol. 2020;11:2109. doi: 10.3389/fimmu.2020.02109. PubMed DOI PMC
Dubový P., Klusáková I., Svíženská I., Brázda V. Spatio-Temporal Changes of SDF1 and Its CXCR4 Receptor in the Dorsal Root Ganglia Following Unilateral Sciatic Nerve Injury as a Model of Neuropathic Pain. Histochem. Cell Biol. 2010;133:323–337. doi: 10.1007/s00418-010-0675-0. PubMed DOI
Reaux-Le Goazigo A., Rivat C., Kitabgi P., Pohl M., Melik Parsadaniantz S. Cellular and Subcellular Localization of CXCL12 and CXCR4 in Rat Nociceptive Structures: Physiological Relevance: Distribution of CXCL12/CXCR4 in Sensory Neurons. Eur. J. Neurosci. 2012;36:2619–2631. doi: 10.1111/j.1460-9568.2012.08179.x. PubMed DOI
Bai L., Wang X., Li Z., Kong C., Zhao Y., Qian J.-L., Kan Q., Zhang W., Xu J.-T. Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats. Neurosci. Bull. 2016;32:27–40. doi: 10.1007/s12264-015-0007-4. PubMed DOI PMC
Dubový P., Hradilová-Svíženská I., Klusáková I., Kokošová V., Brázda V., Joukal M. Bilateral Activation of STAT3 by Phosphorylation at the Tyrosine-705 (Y705) and Serine-727 (S727) Positions and Its Nuclear Translocation in Primary Sensory Neurons Following Unilateral Sciatic Nerve Injury. Histochem. Cell Biol. 2018;150:37–47. doi: 10.1007/s00418-018-1656-y. PubMed DOI
Yang F., Luo W.-J., Sun W., Wang Y., Wang J.-L., Yang F., Li C.-L., Wei N., Wang X.-L., Guan S.-M., et al. SDF1-CXCR4 Signaling Maintains Central Post-Stroke Pain through Mediation of Glial-Neuronal Interactions. Front. Mol. Neurosci. 2017;10:226. doi: 10.3389/fnmol.2017.00226. PubMed DOI PMC
Rotshenker S. Wallerian Degeneration: The Innate-Immune Response to Traumatic Nerve Injury. J. Neuroinflamm. 2011;8:109. doi: 10.1186/1742-2094-8-109. PubMed DOI PMC
Dubový P. Wallerian Degeneration and Peripheral Nerve Conditions for Both Axonal Regeneration and Neuropathic Pain Induction. Ann. Anat.-Anat. Anz. 2011;193:267–275. doi: 10.1016/j.aanat.2011.02.011. PubMed DOI
Brázda V., Klusáková I., Svíženská I., Veselková Z., Dubový P. Bilateral Changes in IL-6 Protein, but Not in Its Receptor Gp130, in Rat Dorsal Root Ganglia Following Sciatic Nerve Ligature. Cell. Mol. Neurobiol. 2009;29:1053–1062. doi: 10.1007/s10571-009-9396-0. PubMed DOI PMC
Donzella G.A., Schols D., Lin S.W., Esté J.A., Nagashima K.A., Maddon P.J., Allaway G.P., Sakmar T.P., Henson G., De Clercq E., et al. AMD3100, a Small Molecule Inhibitor of HIV-1 Entry via the CXCR4 Co-Receptor. Nat. Med. 1998;4:72–77. doi: 10.1038/nm0198-072. PubMed DOI
Hatse S., Princen K., Bridger G., De Clercq E., Schols D. Chemokine Receptor Inhibition by AMD3100 Is Strictly Confined to CXCR4. FEBS Lett. 2002;527:255–262. doi: 10.1016/S0014-5793(02)03143-5. PubMed DOI
Spinello I., Quaranta M.T., Riccioni R., Riti V., Pasquini L., Boe A., Pelosi E., Vitale A., Foà R., Testa U., et al. MicroRNA-146a and AMD3100, Two Ways to Control CXCR4 Expression in Acute Myeloid Leukemias. Blood Cancer J. 2011;1:e26. doi: 10.1038/bcj.2011.24. PubMed DOI PMC
Song J.S., Kang C.M., Kang H.H., Yoon H.K., Kim Y.K., Kim K.H., Moon H.S., Park S.H. Inhibitory Effect of CXC Chemokine Receptor 4 Antagonist AMD3100 on Bleomycin Induced Murine Pulmonary Fibrosis. Exp. Mol. Med. 2010;42:465–476. doi: 10.3858/emm.2010.42.6.048. PubMed DOI PMC
Opatz J., Kuery P., Schiwy N., Jaerve A., Estrada V., Brazda N., Bosse F., Mueller H.W. SDF-1 Stimulates Neurite Growth on Inhibitory CNS Myelin. Mol. Cell. Neurosci. 2009;40:293–300. doi: 10.1016/j.mcn.2008.11.002. PubMed DOI
Heskamp A., Leibinger M., Andreadaki A., Gobrecht P., Diekmann H., Fischer D. CXCL12/SDF-1 Facilitates Optic Nerve Regeneration. Neurobiol. Dis. 2013;55:76–86. doi: 10.1016/j.nbd.2013.04.001. PubMed DOI
Xie L., Cen L.-P., Li Y., Gilbert H.-Y., Strelko O., Berlinicke C., Stavarache M.A., Ma M., Wang Y., Cui Q., et al. Monocyte-Derived SDF1 Supports Optic Nerve Regeneration and Alters Retinal Ganglion Cells’ Response to Pten Deletion. Proc. Natl. Acad. Sci. USA. 2022;119:e2113751119. doi: 10.1073/pnas.2113751119. PubMed DOI PMC
Wu D., Zhang Y., Bo X., Huang W., Xiao F., Zhang X., Miao T., Magoulas C., Subang M.C., Richardson P.M. Actions of Neuropoietic Cytokines and Cyclic AMP in Regenerative Conditioning of Rat Primary Sensory Neurons. Exp. Neurol. 2007;204:66–76. doi: 10.1016/j.expneurol.2006.09.017. PubMed DOI
Smith R.P., Lerch-Haner J.K., Pardinas J.R., Buchser W.J., Bixby J.L., Lemmon V.P. Transcriptional Profiling of Intrinsic PNS Factors in the Postnatal Mouse. Mol. Cell. Neurosci. 2011;46:32–44. doi: 10.1016/j.mcn.2010.07.015. PubMed DOI PMC
Bareyre F.M., Garzorz N., Lang C., Misgeld T., Büning H., Kerschensteiner M. In Vivo Imaging Reveals a Phase-Specific Role of STAT3 during Central and Peripheral Nervous System Axon Regeneration. Proc. Natl. Acad. Sci. USA. 2011;108:6282–6287. doi: 10.1073/pnas.1015239108. PubMed DOI PMC
Zigmond R.E. Cytokines That Promote Nerve Regeneration. Exp. Neurol. 2012;238:101–106. doi: 10.1016/j.expneurol.2012.08.017. PubMed DOI PMC
Vila-Coro A.J., Rodriguez-Frade J.M., De Ana A.M., Moreno-Ortiz M.C., Martinez C., Mellado M. The Chemokine SDF-1 Alpha Triggers CXCR4 Receptor Dimerization and Activates the JAK/STAT Pathway. FASEB J. 1999;13:1699–1710. doi: 10.1096/fasebj.13.13.1699. PubMed DOI
Ahr B., Denizot M., Robert-Hebmann W., Brelot A., Biard-Piechaczyk M. Identification of the Cytoplasmic Domains of CXCR4 Involved in Jak2 and STAT3 Phosphorylation. J. Biol. Chem. 2005;280:6692–6700. doi: 10.1074/jbc.M408481200. PubMed DOI
Pfeiffer M., Hartmann T.N., Leick M., Catusse J., Schmitt-Graeff A., Burger M. Alternative Implication of CXCR4 in JAK2/STAT3 Activation in Small Cell Lung Cancer. Br. J. Cancer. 2009;100:1949–1956. doi: 10.1038/sj.bjc.6605068. PubMed DOI PMC
Liu X., Xiao Q., Bai X., Yu Z., Sun M., Zhao H., Mi X., Wang E., Yao W., Jin F., et al. Activation of STAT3 Is Involved in Malignancy Mediated by CXCL12-CXCR4 Signaling in Human Breast Cancer. Oncol. Rep. 2014;32:2760–2768. doi: 10.3892/or.2014.3536. PubMed DOI
Oh S., Jeong H., Park H., Choi K.-A., Hwang I., Lee J., Cho J., Hong S. Activation of CXCL12-CXCR4 Signalling Induces Conversion of Immortalised Embryonic Kidney Cells into Cancer Stem-like Cells. Artif. Cells Nanomed. Biotechnol. 2020;48:1303–1313. doi: 10.1080/21691401.2020.1841783. PubMed DOI
Teixidó J., Martínez-Moreno M., Díaz-Martínez M., Sevilla-Movilla S. The Good and Bad Faces of the CXCR4 Chemokine Receptor. Int. J. Biochem. Cell Biol. 2018;95:121–131. doi: 10.1016/j.biocel.2017.12.018. PubMed DOI
Leibinger M., Andreadaki A., Fischer D. Role of mTOR in Neuroprotection and Axon Regeneration after Inflammatory Stimulation. Neurobiol. Dis. 2012;46:314–324. doi: 10.1016/j.nbd.2012.01.004. PubMed DOI
Zanetti G., Negro S., Megighian A., Mattarei A., Lista F., Fillo S., Rigoni M., Pirazzini M., Montecucco C. A CXCR4 Receptor Agonist Strongly Stimulates Axonal Regeneration after Damage. Ann. Clin. Transl. Neurol. 2019;6:2395–2402. doi: 10.1002/acn3.50926. PubMed DOI PMC
Negro S., Zanetti G., Mattarei A., Valentini A., Megighian A., Tombesi G., Zugno A., Dianin V., Pirazzini M., Fillo S., et al. An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells. 2019;8:1183. doi: 10.3390/cells8101183. PubMed DOI PMC
Lieberam I., Agalliu D., Nagasawa T., Ericson J., Jessell T.M. A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines the Initial Trajectory of Mammalian Motor Axons. Neuron. 2005;47:667–679. doi: 10.1016/j.neuron.2005.08.011. PubMed DOI
Bhangoo S.K., Ren D., Miller R.J., Chan D.M., Ripsch M.S., Weiss C., McGinnis C., White F.A. CXCR4 Chemokine Receptor Signaling Mediates Pain Hypersensitivity in Association with Antiretroviral Toxic Neuropathy. Brain Behav. Immun. 2007;21:581–591. doi: 10.1016/j.bbi.2006.12.003. PubMed DOI PMC
White F.A., Wilson N.M. Chemokines as Pain Mediators and Modulators. Curr. Opin. Anaesthesiol. 2008;21:580–585. doi: 10.1097/ACO.0b013e32830eb69d. PubMed DOI PMC
Abbadie C., Bhangoo S., De Koninck Y., Malcangio M., Melik-Parsadaniantz S., White F.A. Chemokines and Pain Mechanisms. Brain Res. Rev. 2009;60:125–134. doi: 10.1016/j.brainresrev.2008.12.002. PubMed DOI PMC
Jayaraj N.D., Bhattacharyya B.J., Belmadani A.A., Ren D., Rathwell C.A., Hackelberg S., Hopkins B.E., Gupta H.R., Miller R.J., Menichella D.M. Reducing CXCR4-Mediated Nociceptor Hyperexcitability Reverses Painful Diabetic Neuropathy. J. Clin. Investig. 2018;128:2205–2225. doi: 10.1172/JCI92117. PubMed DOI PMC
Testa L., Dotta S., Vercelli A., Marvaldi L. Communicating Pain: Emerging Axonal Signaling in Peripheral Neuropathic Pain. Front. Neuroanat. 2024;18:1398400. doi: 10.3389/fnana.2024.1398400. PubMed DOI PMC
Smith P.A. Neuropathic Pain; What We Know and What We Should Do about, It. Front. Pain. Res. 2023;4:1220034. doi: 10.3389/fpain.2023.1220034. PubMed DOI PMC
Yang F., Sun W., Yang Y., Wang Y., Li C.-L., Fu H., Wang X.-L., Yang F., He T., Chen J. SDF1-CXCR4 Signaling Contributes to Persistent Pain and Hypersensitivity via Regulating Excitability of Primary Nociceptive Neurons: Involvement of ERK-Dependent Nav1.8 up-Regulation. J. Neuroinflamm. 2015;12:219. doi: 10.1186/s12974-015-0441-2. PubMed DOI PMC
Pitake S., Middleton L.J., Abdus-Saboor I., Mishra S.K. Inflammation Induced Sensory Nerve Growth and Pain Hypersensitivity Requires the N-Type Calcium Channel Cav2.2. Front. Neurosci. 2019;13:1009. doi: 10.3389/fnins.2019.01009. PubMed DOI PMC
Bernal L., Cisneros E., Roza C. Activation of the Regeneration-Associated Gene STAT3 and Functional Changes in Intact Nociceptors after Peripheral Nerve Damage in Mice. Eur. J. Pain. Lond. Engl. 2021;25:886–901. doi: 10.1002/ejp.1718. PubMed DOI
Tran E.L., Crawford L.K. Revisiting PNS Plasticity: How Uninjured Sensory Afferents Promote Neuropathic Pain. Front. Cell. Neurosci. 2020;14:612982. doi: 10.3389/fncel.2020.612982. PubMed DOI PMC
Roza C., Bernal L. Electrophysiological Characterization of Ectopic Spontaneous Discharge in Axotomized and Intact Fibers upon Nerve Transection: A Role in Spontaneous Pain? Pflugers Arch.-Eur. J. Physiol. 2022;474:387–396. doi: 10.1007/s00424-021-02655-7. PubMed DOI
Joukal M., Klusáková I., Dubový P. Direct Communication of the Spinal Subarachnoid Space with the Rat Dorsal Root Ganglia. Ann. Anat. 2016;205:9–15. doi: 10.1016/j.aanat.2016.01.004. PubMed DOI
Jimenez-Andrade J.M., Herrera M.B., Ghilardi J.R., Vardanyan M., Melemedjian O.K., Mantyh P.W. Vascularization of the Dorsal Root Ganglia and Peripheral Nerve of the Mouse: Implications for Chemical-Induced Peripheral Sensory Neuropathies. Mol. Pain. 2008;4:10. doi: 10.1186/1744-8069-4-10. PubMed DOI PMC
Hylden J.L.K., Wilcox G.L. Intrathecal Morphine in Mice: A New Technique. Eur. J. Pharmacol. 1980;67:313–316. doi: 10.1016/0014-2999(80)90515-4. PubMed DOI
Zamboni L., Demartin C. Buffered Picric Acid-Formaldehyde—A New Rapid Fixative for Electron Microscopy. J. Cell Biol. 1967;35:A148
Ronchi G., Nicolino S., Raimondo S., Tos P., Battiston B., Papalia I., Varejão A.S.P., Giacobini-Robecchi M.G., Perroteau I., Geuna S. Functional and Morphological Assessment of a Standardized Crush Injury of the Rat Median Nerve. J. Neurosci. Methods. 2009;179:51–57. doi: 10.1016/j.jneumeth.2009.01.011. PubMed DOI
Abe N., Borson S.H., Gambello M.J., Wang F., Cavalli V. Mammalian Target of Rapamycin (mTOR) Activation Increases Axonal Growth Capacity of Injured Peripheral Nerves. J. Biol. Chem. 2010;285:28034–28043. doi: 10.1074/jbc.M110.125336. PubMed DOI PMC
Christie K.J., Webber C.A., Martinez J.A., Singh B., Zochodne D.W. PTEN Inhibition to Facilitate Intrinsic Regenerative Outgrowth of Adult Peripheral Axons. J. Neurosci. 2010;30:9306–9315. doi: 10.1523/JNEUROSCI.6271-09.2010. PubMed DOI PMC