Bilateral changes in IL-6 protein, but not in its receptor gp130, in rat dorsal root ganglia following sciatic nerve ligature
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19330444
PubMed Central
PMC11505828
DOI
10.1007/s10571-009-9396-0
Knihovny.cz E-zdroje
- MeSH
- cytokinový receptor gp130 metabolismus MeSH
- imunohistochemie MeSH
- interleukin-6 metabolismus MeSH
- krysa rodu Rattus MeSH
- měření bolesti MeSH
- nervus ischiadicus zranění metabolismus patofyziologie MeSH
- spinální ganglia metabolismus MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokinový receptor gp130 MeSH
- interleukin-6 MeSH
Local intracellular signaling cascades following peripheral nerve injury lead to robust axon regeneration and neuropathic pain induction. Cytokines are classic injury-induced mediators. We used sciatic nerve ligature (ScNL) to investigate temporal changes in IL-6 and its receptor gp130 in both ipsilateral and contralateral lumbal (L4-L5) dorsal root ganglia (DRG). Rats were operated aseptically on unilateral ScNL and allowed to survive for 1, 3, 7, and 14 days. Immunohistochemistry and Western blot analysis were used to determine levels of IL-6 and gp130 in DRG. A distinct increase in immunostaining for IL-6 was found in the neuronal cell bodies of sections through both ipsilateral and contralateral DRG at 1 and 3 days after operation. After 7 and 14 days, the DRG sections displayed only a moderate elevation in immunostaining when compared with sections of naïve DRG. The levels of IL-6 protein increased in both ipsilateral and contralateral lumbal DRG following peripheral nerve injury. The elevation of IL-6 protein was significant in both ipsilateral and contralateral DRG 1, 3, 7, and 14 days after operation. On the other hand, the levels of gp130 receptor did not change significantly. The data provide evidence for changes in IL-6 levels not only in the DRG associated with the damaged nerve but also in those unassociated with nerve injury during the experimental neuropathic pain model.
Zobrazit více v PubMed
Arruda JL, Colburn RW, Rickman AJ, Rutkowski MD, DeLeo JA (1998) Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Res Mol Brain Res 62:228–235. doi:10.1016/S0169-328X(98)00257-5 PubMed
Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS (1995) Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 64:850–858 PubMed
Brazda V, Muller P, Brozkova K, Vojtesek B (2006) Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem Biophys Res Commun 351:499–506. doi:10.1016/j.bbrc.2006.10.065 PubMed
Cafferty WB, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, Munson J, Cohen J, Thompson SW (2001) Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci 21:7161–7170 PubMed PMC
Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW (2004) Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci 24:4432–4443 PubMed PMC
Chao T, Pham K, Steward O, Gupta R (2008) Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia. J Comp Neurol 506:180–193. doi:10.1002/cne.21537 PubMed
Chudler EH, Anderson LC, Byers MR (1997) Nerve growth factor depletion by autoimmunization produces thermal hypoalgesia in adult rats. Brain Res 765:327–330. doi:10.1016/S0006-8993(97)00681-1 PubMed
De Jongh RF, Vissers KC, Meert TF, Booij LH, De Deyne CS, Heylen RJ (2003) The role of interleukin-6 in nociception and pain. Anesth Analg 96:1096–1103. doi:10.1213/01.ANE.0000055362.56604.78 (table of contents) PubMed
DeLeo JA, Colburn RW, Nichols M, Malhotra A (1996) Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J Interferon Cytokine Res 16:695–700 PubMed
De Martino C, Zamboni L (1967) Silver methenamine stain for electron microscopy. J Ultrastruct Res 19:273–282 PubMed
Dubovy P, Jancalek R, Klusakova I, Svizenska I, Pejchalova K (2006) Intra- and extraneuronal changes of immunofluorescence staining for TNF-alpha and TNFR1 in the dorsal root ganglia of rat peripheral neuropathic pain models. Cell Mol Neurobiol 26:1205–1217. doi:10.1007/s10571-006-9006-3 PubMed PMC
Dubovy P, Tuckova L, Jancalek R, Svizenska I, Klusakova I (2007) Increased invasion of ED-1 positive macrophages in both ipsi- and contralateral dorsal root ganglia following unilateral nerve injuries. Neurosci Lett 427:88–93. doi:10.1016/j.neulet.2007.09.012 PubMed
Gadient RA, Otten UH (1997) Interleukin-6 (IL-6)–a molecule with both beneficial and destructive potentials. Prog Neurobiol 52:379–390. doi:10.1016/S0301-0082(97)00021-X PubMed
Gardiner NJ, Cafferty WB, Slack SE, Thompson SW (2002) Expression of gp130 and leukaemia inhibitory factor receptor subunits in adult rat sensory neurones: regulation by nerve injury. J Neurochem 83:100–109. doi:10.1046/j.1471-4159.2002.01101.x PubMed
Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz D, Cattini P, Otten U (2000) Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: relation to 18-kD fibroblast growth factor-2. Brain Res 885:172–181. doi:10.1016/S0006-8993(00)02911-5 PubMed
Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48:457–476. doi:10.1016/j.brainresrev.2004.09.001 PubMed
Hirota H, Kiyama H, Kishimoto T, Taga T (1996) Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med 183:2627–2634. doi:10.1084/jem.183.6.2627 PubMed PMC
Jacobs JM, Macfarlane RM, Cavanagh JB (1976) Vascular leakage in the dorsal root ganglia of the rat, studied with horseradish peroxidase. J Neurol Sci 29:95–107. doi:10.1016/0022-510X(76)90083-6 PubMed
Kidd BL, Cruwys SC, Garrett NE, Mapp PI, Jolliffe VA, Blake DR (1995) Neurogenic influences on contralateral responses during experimental rat monoarthritis. Brain Res 688:72–76. doi:10.1016/0006-8993(95)00512-O PubMed
Kieseier BC, Tani M, Mahad D, Oka N, Ho T, Woodroofe N, Griffin JW, Toyka KV, Ransohoff RM, Hartung HP (2002) Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. Brain 125:823–834. doi:10.1093/brain/awf070 PubMed
Kishimoto TK, Springer TA (1989) Human leukocyte adhesion deficiency: molecular basis for a defective immune response to infections of the skin. Curr Probl Dermatol 18:106–115 PubMed
Kishimoto T, Akira S, Narazaki M, Taga T (1995) Interleukin-6 family of cytokines and gp130. Blood 86:1243–1254 PubMed
Kleinschnitz C, Brinkhoff J, Sommer C, Stoll G (2005) Contralateral cytokine gene induction after peripheral nerve lesions: dependence on the mode of injury and NMDA receptor signaling. Brain Res Mol Brain Res 136:23–28. doi:10.1016/j.molbrainres.2004.12.015 PubMed
Koltzenburg M, Wall PD, McMahon SB (1999) Does the right side know what the left is doing? Trends Neurosci 22:122–127. doi:10.1016/S0166-2236(98)01302-2 PubMed
Liu RY, Snider WD (2001) Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci 21:RC164 PubMed PMC
Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M (2000) Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85:503–521. doi:10.1016/S0304-3959(00)00251-7 PubMed
Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532. doi:10.1038/nrn1700 PubMed
Markus A, Zhong J, Snider WD (2002) Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35:65–76. doi:10.1016/S0896-6273(02)00752-3 PubMed
McMahon SB, Cafferty WB, Marchand F (2005) Immune and glial cell factors as pain mediators and modulators. Exp Neurol 192:444–462. doi:10.1016/j.expneurol.2004.11.001 PubMed
Mellick RS, Cavanagh JB (1968) Changes in blood vessel permeability during degeneration and regeneration in peripheral nerves. Brain 91:141–160. doi:10.1093/brain/91.1.141 PubMed
Mullberg J, Geib T, Jostock T, Hoischen SH, Vollmer P, Voltz N, Heinz D, Galle PR, Klouche M, Rose-John S (2000) IL-6 receptor independent stimulation of human gp130 by viral IL-6. J Immunol 164:4672–4677 PubMed
Murphy PG, Grondin J, Altares M, Richardson PM (1995) Induction of interleukin-6 in axotomized sensory neurons. J Neurosci 15:5130–5138 PubMed PMC
Murphy P, Topilko P, Schneider-Maunoury S, Seitanidou T, Baron-Van Evercooren A, Charnay P (1996) The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 122:2847–2857 PubMed
Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA (1999) Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci 11:2243–2253. doi:10.1046/j.1460-9568.1999.00641.x PubMed
Oka T, Oka K, Hosoi M, Hori T (1995) Intracerebroventricular injection of interleukin-6 induces thermal hyperalgesia in rats. Brain Res 692:123–128. doi:10.1016/0006-8993(95)00691-I PubMed
Olsson R (1966) Partial hepatectomy in experimental carbon tetrachloride-induced liver fibrosis. A histological and biochemical study in rats. Acta Chir Scand Suppl 366:3–85 PubMed
Oppenhheim JJ, Feldman M (2001) Cytokine reference. Academic Press, New York
Qiu J, Cafferty WB, McMahon SB, Thompson SW (2005) Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci 25:1645–1653. doi:10.1523/JNEUROSCI.3269-04.2005 PubMed PMC
Reichert F, Levitzky R, Rotshenker S (1996) Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8:530–535. doi:10.1111/j.1460-9568.1996.tb01237.x PubMed
Ryoke K, Ochi M, Iwata A, Uchio Y, Yamamoto S, Yamaguchi H (2000) A conditioning lesion promotes in vivo nerve regeneration in the contralateral sciatic nerve of rats. Biochem Biophys Res Commun 267:715–718. doi:10.1006/bbrc.1999.2017 PubMed
Shamash S, Reichert F, Rotshenker S (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22:3052–3060 PubMed PMC
Sheth K, Friel J, Nolan B, Miller-Graziano C, Bankey P (2002) Down-regulated circulating PMN function after injury despite enhanced p38 MAPK activity. Surg Infect (Larchmt) 3:151–157. doi:10.1089/109629602760105826 (discussion 157–158) PubMed
Simpson RJ, Hammacher A, Smith DK, Matthews JM, Ward LD (1997) Interleukin-6: structure-function relationships. Protein Sci 6:929–955. doi:10.1002/pro.5560060501 PubMed PMC
Stoll G, Muller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9:313–325 PubMed PMC
Svensson P, Wang K, Arendt-Nielsen L, Cairns BE, Sessle BJ (2005) Pain effects of glutamate injections into human jaw or neck muscles. J Orofac Pain 19:109–118 PubMed
Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819. doi:10.1146/annurev.immunol.15.1.797 PubMed
Thomson AW (1991) Immunomodulation: suppression, enhancement and autoimmunity. Curr Opin Biotechnol 2:247–253. doi:10.1016/0958-1669(91)90017-Y PubMed
Ueda H (2006) Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 109:57–77. doi:10.1016/j.pharmthera.2005.06.003 PubMed
Yamaguchi H, Ochi M, Mori R, Ryoke K, Yamamoto S, Iwata A, Uchio Y (1999) Unilateral sciatic nerve injury stimulates contralateral nerve regeneration. NeuroReport 10:1359–1362. doi:10.1097/00001756-199904260-00037 PubMed
Zhong J, Heumann R (1995) Lesion-induced interleukin-6 mRNA expression in rat sciatic nerve. Ann N Y Acad Sci 762:488–490 PubMed
Zhong H, Zhang M, Nurse CA (1999) Electrophysiological characterization of 5-HT receptors on rat petrosal neurons in dissociated cell culture. Brain Res 816:544–553 PubMed