Bilateral activation of glial cells and cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis of trigeminal neuropathic pain model
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SV MUNI/A/1086/2018
SV MUNI/A/1086/2018
PubMed
32020274
DOI
10.1007/s00418-020-01850-4
PII: 10.1007/s00418-020-01850-4
Knihovny.cz E-zdroje
- Klíčová slova
- Astrocytes, Infraorbital nerve, Microglia, Unilateral nerve injury,
- MeSH
- chemokin CCL2 metabolismus MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- neuralgie metabolismus MeSH
- neuroglie metabolismus MeSH
- potkani Wistar MeSH
- receptory CCR2 metabolismus MeSH
- substantia gelatinosa metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemokin CCL2 MeSH
- receptory CCR2 MeSH
Glial cells activated by peripheral nerve injury contribute to the induction and maintenance of neuropathic pain by releasing neuromodulating cytokines and chemokines. We investigated the activation of microglia and astrocytes as well as the cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis (TSC) ipsilateral and contralateral to infraorbital nerve ligature (IONL). The left infraorbital nerve was ligated under aseptic conditions, and sham controls were operated without nerve ligature. Tactile hypersensitivity was significantly increased bilaterally in vibrissal pads of both sham- and IONL-operated animals from day 1 to 7 and tended to normalize in sham controls surviving for 14 days. Activated microglial cells significantly increased bilaterally in the TSC of both sham- and IONL-operated animals with a marked but gradual increase in the ipsilateral TSC from 1 to 7 days followed by a decrease by day 14. In contrast, robust activation of astrocytes was found bilaterally in the TSC of IONL-operated rats from 3 to 14 days with a transient activation in the ipsilateral TSC of sham-operated animals. Cellular distribution of CCL2 varied with survival time. CCL2 immunofluorescence was detected in neurons within 3 days and in astrocytes at later time points. In contrast, CCR2 was found only in astrocytes at all time points with CCR2 intensity being dominant in the ipsilateral TSC. In summary, our results reveal bilateral activation of microglial cells and astrocytes as well as changes in the cellular distribution of CCL2 and its receptor CCR2 in the TSC during the development and maintenance of orofacial neuropathic pain.
Zobrazit více v PubMed
Abbadie C, Lindia JA, Cumiskey AM et al (2003) Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci USA 100:7947–7952. https://doi.org/10.1073/pnas.1331358100 PubMed DOI
Abbadie C, Bhangoo S, DeKoninck Y et al (2009) Chemokines and pain mechanisms. Brain Res Rev 60:125–134. https://doi.org/10.1016/j.brainresrev.2008.12.002 PubMed DOI
Ajami B, Bennett JL, Krieger C et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. https://doi.org/10.1038/nn2014 PubMed DOI
Aldskogius H, Kozlova EN (1998) Central neuron–glial and glial–glial interactions following axon injury. Prog Neurobiol 55:1–26. https://doi.org/10.1016/S0301-0082(97)00093-2 PubMed DOI
Anderson LC, Rao RD (2001) Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Arch Oral Biol 46:633–640. https://doi.org/10.1016/s0003-9969(01)00024-3 PubMed DOI
Austin PJ, Moalem-Taylor G (2010) The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol 229:26–50. https://doi.org/10.1016/j.jneuroim.2010.08.013 PubMed DOI
Brazda V, Klusakova I, Svizenska I, Veselkova Z, Dubovy P (2009) Bilateral changes in IL-6 protein, but not in its receptor gp130, in rat dorsal root ganglia following sciatic nerve ligature. Cell Mol Neurobiol 29:1053–1062. https://doi.org/10.1007/s10571-009-9396-0 PubMed DOI
Calvo M, Bennett DLH (2012) The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol 234:271–282. https://doi.org/10.1016/j.expneurol.2011.08.018 PubMed DOI
Cao H, Zhang Y-Q (2008) Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 32:972–983. https://doi.org/10.1016/j.neubiorev.2008.03.009 PubMed DOI
Challa SR (2015) Surgical animal models of neuropathic pain: pros and Cons. Int J Neurosci 125:170–174. https://doi.org/10.3109/00207454.2014.922559 PubMed DOI
Cheng C-F, Cheng J-K, Chen C-Y et al (2014) Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury. Pain 155:906–920. https://doi.org/10.1016/j.pain.2014.01.010 PubMed DOI
Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ (2011) Role of glia in orofacial pain. Neuroscientist 17:303–320. https://doi.org/10.1177/1073858410386801 PubMed DOI
Chichorro JG, Zampronio AR, Rae GA (2006) Endothelin ETB receptor antagonist reduces mechanical allodynia in rats with trigeminal neuropathic pain. Exp Biol Med 231:1136–1140. https://doi.org/10.3181/00379727-232-2311136 DOI
Clatworthy AL, Illich PA, Castro GA, Walters ET (1995) Role of peri-axonal inflammation in the development of thermal hyperalgesia and guarding behavior in a rat model of neuropathic pain. Neurosci Lett 184:5–8. https://doi.org/10.1016/0304-3940(94)11154-B PubMed DOI
Dauvergne C, Molet J, Reaux-Le Goazigo A et al (2014) Implication of the chemokine CCL2 in trigeminal nociception and traumatic neuropathic orofacial pain. Eur J Pain 18:360–375. https://doi.org/10.1002/j.1532-2149.2013.00377.x PubMed DOI
Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158. https://doi.org/10.1016/S0304-3959(00)00276-1 PubMed DOI
DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10:40–52. https://doi.org/10.1177/1073858403259950 PubMed DOI
Demartini C, Greco R, Zanaboni AM et al (2018) Antagonism of transient receptor potential ankyrin Type-1 channels as a potential target for the treatment of trigeminal neuropathic pain: study in an animal model. Int J Mol Sci 19:3320. https://doi.org/10.3390/ijms19113320 DOI PMC
Devoize L, Alvarez P, Monconduit L, Dallel R (2011) Representation of dynamic mechanical allodynia in the ventral medial prefrontal cortex of trigeminal neuropathic rats. Eur J Pain 15:676–682. https://doi.org/10.1016/j.ejpain.2010.11.017 PubMed DOI
Duarte J, Fernandes EC, Kononenko O et al (2019) Differential suppression of the ipsi- and contralateral nociceptive reflexes in the neonatal rat spinal cord by agonists of µ-, δ- and κ-opioid receptors. Brain Res 1717:182–189. https://doi.org/10.1016/j.brainres.2019.04.026 PubMed DOI
Dubovy P, Klusakova I, Svizenska I, Brazda V (2010) Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol 6:73–83. https://doi.org/10.1017/S1740925X10000074 PubMed DOI
Dubovy P, Brazda V, Klusakova I, Hradilova-Svizenska I (2013) Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J Neuroinflamm 10:824. https://doi.org/10.1186/1742-2094-10-55 DOI
Dubovy P, Klusakova I, Hradilova-Svizenska I et al (2018) Activation of astrocytes and microglial cells and CCL2/CCR2 upregulation in the dorsolateral and ventrolateral nuclei of periaqueductal gray and rostral ventromedial medulla following different types of sciatic nerve injury. Front Cell Neurosci 12:40. https://doi.org/10.3389/fncel.2018.00040 PubMed DOI PMC
Echeverry S, Shi XQ, Rivest S, Zhang J (2011) Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci 31:10819–10828. https://doi.org/10.1523/JNEUROSCI.1642-11.2011 PubMed DOI PMC
Fantuzzi L, Borghi P, Ciolli V, Pavlakis G et al (1999) Loss of CCR2 expression and functional response to monocyte chemotactic protein (MCP-1) during the differentiation of human monocytes: role of secreted MCP-1 in the regulation of the chemotactic response. Blood 94:875–883. https://doi.org/10.1182/blood.V94.3.875.415k28_875_883 PubMed DOI
Gao Y-J, Ji R-R (2010) Chemokines, neuronal–glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126:56–68. https://doi.org/10.1016/j.pharmthera.2010.01.002 PubMed DOI PMC
Gao Y-J, Zhang L, Samad OA et al (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29:4096–4108. https://doi.org/10.1523/JNEUROSCI.3623-08.2009 PubMed DOI PMC
Gu L, Tseng SC, Rollins BJ (1999) Monocyte chemoattractant protein-1. Chemokines 72:7–29. https://doi.org/10.1159/000058723 DOI
Gu N, Peng J, Murugan M et al (2016) Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep 16:605–614. https://doi.org/10.1016/j.celrep.2016.06.018 PubMed DOI PMC
Guo L-H, Schluesener HJ (2007) The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci 64:1128. https://doi.org/10.1007/s00018-007-6494-3 PubMed DOI
Hatashita S, Sekiguchi M, Kobayashi H et al (2008) Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats. Spine 33:1344–1351. https://doi.org/10.1097/BRS.0b013e3181733188 PubMed DOI
Hu P, Bembrick AL, Keay KA, McLachlan EM (2007) Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 21:599–616. https://doi.org/10.1016/j.bbi.2006.10.013 PubMed DOI
Idanpaan-Heikkila JJ, Guilbaud G (1999) Pharmacological studies on a rat model of trigeminal neuropathic pain: baclofen, but not carbamazepine, morphine or tricyclic antidepressants, attenuates the allodynia-like behaviour. Pain 79:281–290. https://doi.org/10.1016/s0304-3959(98)00172-9 PubMed DOI
Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57:1469–1479. https://doi.org/10.1002/glia.20871 PubMed DOI
Iwata K, Katagiri A, Shinoda M (2017) Neuron-glia interaction is a key mechanism underlying persistent orofacial pain. J Oral Sci 59:173–175. https://doi.org/10.2334/josnusd.16-0858 PubMed DOI
Karperien A, Ahammer H, Jelinek H (2013) Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci. https://doi.org/10.3389/fncel.2013.00003 PubMed DOI PMC
Kawaguchi-Niida M, Yamamoto T, Kato Y et al (2013) MCP-1/CCR2 signaling-mediated astrocytosis is accelerated in a transgenic mouse model of SOD1-mutated familial ALS. Acta Neuropathol Commun 1:21. https://doi.org/10.1186/2051-5960-1-21 PubMed DOI PMC
Kayser V, Latrémolière A, Hamon M, Bourgoin S (2011) N-methyl-D-aspartate receptor-mediated modulations of the anti-allodynic effects of 5-HT1B/1D receptor stimulation in a rat model of trigeminal neuropathic pain. Eur J Pain 15:451–458. https://doi.org/10.1016/j.ejpain.2010.09.012 PubMed DOI
Kitagawa J, Takeda M, Suzuki I et al (2006) Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy. Eur J Neurosci 24:1976–1986. https://doi.org/10.1111/j.1460-9568.2006.05065.x PubMed DOI
Klusakova I, Dubovy P (2009) Experimental models of peripheral neuropathic pain based on traumatic nerve injuries—an anatomical perspective. Ann Anat Anat Anz 191:248–259. https://doi.org/10.1016/j.aanat.2009.02.007 DOI
Knerlich-Lukoschus F, Juraschek M, Blömer U et al (2008) Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat. J Neurotrauma 25:427–448. https://doi.org/10.1089/neu.2007.0431 PubMed DOI
Kogelman LJA, Christensen RE, Pedersen SH et al (2017) Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus. Neuroscience 350:169–179. https://doi.org/10.1016/j.neuroscience.2017.03.027 PubMed DOI
Koltzenburg M, Wall PD, McMahon SB (1999) Does the right side know what the left is doing? Trends Neurosci 22:122–127. https://doi.org/10.1016/s0166-2236(98)01302-2 PubMed DOI
Kumar A, Kaur H, Singh A (2018) Neuropathic pain models caused by damage to central or peripheral nervous system. Pharmacol Rep 70:206–216. https://doi.org/10.1016/j.pharep.2017.09.009 PubMed DOI
Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158. https://doi.org/10.1016/j.pharmthera.2017.10.006 PubMed DOI
Latrémolière A, Mauborgne A, Masson J et al (2008) Differential implication of proinflammatory cytokine interleukin-6 in the development of cephalic versus extracephalic neuropathic pain in rats. J Neurosci 28:8489–8501. https://doi.org/10.1523/JNEUROSCI.2552-08.2008 PubMed DOI PMC
Luo W, Fu R, Tan Y et al (2014) Chemokine CCL2 up-regulated in the medullary dorsal horn astrocytes contributes to nocifensive behaviors induced by experimental tooth movement. Eur J Oral Sci 122:27–35. https://doi.org/10.1111/eos.12099 PubMed DOI
Lyons DN, Kniffin TC, Zhang LP et al (2015) Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors. Neuroscience 295:126–138. https://doi.org/10.1016/j.neuroscience.2015.03.051 PubMed DOI PMC
Ma F, Zhang L, Lyons D, Westlund KN (2012) Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve. Mol Brain 5:44. https://doi.org/10.1186/1756-6606-5-44 PubMed DOI PMC
Ma F, Zhang L, Oz HS et al (2015) Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 300:493–507. https://doi.org/10.1016/j.neuroscience.2015.05.046 PubMed DOI PMC
Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532. https://doi.org/10.1038/nrn1700 PubMed DOI
Maves TJ, Pechman PS, Gebhart GF, Meller ST (1993) Possible chemical contribution from chromic gut sutures produces disorders of pain sensation like those seen in man. Pain 54:57–69. https://doi.org/10.1016/0304-3959(93)90198-X PubMed DOI
McMahon SB, Malcangio M (2009) Current challenges in glia-pain biology. Neuron 64:46–54. https://doi.org/10.1016/j.neuron.2009.09.033 PubMed DOI
Melzer P, Zhang MZ, McKanna JA (1997) Infraorbital nerve transection and whisker follicle removal in adult rats affect microglia and astrocytes in the trigeminal brainstem. A study with Lipocortin1- and S100 beta-immunohistochemistry. Neuroscience 80:459–472. https://doi.org/10.1016/s0306-4522(96)00693-8 PubMed DOI
Melzer P, Savchenko V, McKanna JA (2001) Microglia, astrocytes, and macrophages react differentially to central and peripheral lesions in the developing and mature rat whisker-to-barrel pathway: a study using immunohistochemistry for Lipocortin1, phosphotyrosine, S100 beta, and mannose receptors. Exp Neurol 168:63–77. https://doi.org/10.1006/exnr.2000.7554 PubMed DOI
Michot B, Bourgoin S, Kayser V, Hamon M (2013) Effects of tapentadol on mechanical hypersensitivity in rats with ligatures of the infraorbital nerve versus the sciatic nerve. EJP 17:867–880. https://doi.org/10.1002/j.1532-2149.2012.00259.x PubMed DOI
Michot B, Kayser V, Hamon M, Bourgoin S (2015) CGRP receptor blockade by MK-8825 alleviates allodynia in infraorbital nerve-ligated rats. EJP 19:281–290. https://doi.org/10.1002/ejp.616 PubMed DOI
Michot B, Deumens R, Hermans E (2017) Immunohistochemical comparison of astrocytic mGluR5 upregulation in infraorbital nerve-versus sciatic nerve-ligated rat. Neurosci Lett 653:113–119. https://doi.org/10.1016/j.neulet.2017.05.035 PubMed DOI
Mika J, Osikowicz M, Rojewska E et al (2009) Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur J Pharmacol 623:65–72. https://doi.org/10.1016/j.ejphar.2009.09.030 PubMed DOI
Milligan ED, Twining C, Chacur M et al (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23:1026–1040. https://doi.org/10.1523/JNEUROSCI.23-03-01026.2003 PubMed DOI PMC
Mizutani M, Pino PA, Saederup N et al (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29–36. https://doi.org/10.4049/jimmunol.1100421 PubMed DOI
Montague K, Malcangio M (2017a) The therapeutic potential of targeting chemokine signalling in the treatment of chronic pain. J Neurochem 141:520–531. https://doi.org/10.1111/jnc.13927 PubMed DOI PMC
Montague K, Malcangio M (2017b) The therapeutic potential of monocyte/macrophage manipulation in the treatment of chemotherapy-induced painful neuropathy. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2017.00397 PubMed DOI PMC
Munger B, Bennett G, Kajander K (1992) An experimental painful peripheral neuropathy due to nerve constriction.1. Axonal pathology in the sciatic-nerve. Exp Neurol 118:204–214. https://doi.org/10.1016/0014-4886(92)90037-Q PubMed DOI
Nakamura Y, Morioka N, Abe H et al (2013) Neuropathic pain in rats with a partial sciatic nerve ligation is alleviated by intravenous injection of monoclonal antibody to High Mobility Group Box-1. PLoS ONE. https://doi.org/10.1371/journal.pone.0073640 PubMed DOI PMC
Nomura H, Ogawa A, Tashiro A et al (2002) Induction of Fos protein-like immunoreactivity in the trigeminal spinal nucleus caudalis and upper cervical cord following noxious and non-noxious mechanical stimulation of the whisker pad of the rat with an inferior alveolar nerve transection. Pain 95:225–238. https://doi.org/10.1016/S0304-3959(01)00403-1 PubMed DOI
Obata H, Sakurazawa S, Kimura M, Saito S (2010) Activation of astrocytes in the spinal cord contributes to the development of bilateral allodynia after peripheral nerve injury in rats. Brain Res 1363:72–80. https://doi.org/10.1016/j.brainres.2010.09.105 PubMed DOI
Okada-Ogawa A, Suzuki I, Sessle BJ et al (2009) Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 29:11161–11171. https://doi.org/10.1523/jneurosci.3365-09.2009 PubMed DOI PMC
Piao ZG, Cho IH, Park CK et al (2006) Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 121:219–231. https://doi.org/10.1016/j.pain.2005.12.023 PubMed DOI
Pitcher GM, Ritchie J, Henry JL (1999) Nerve constriction in the rat: model of neuropathic, surgical and central pain. Pain 83:37–46. https://doi.org/10.1016/S0304-3959(99)00085-8 PubMed DOI
Price TJ, Flores CM (2007) Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 8:263–272. https://doi.org/10.1016/j.jpain.2006.09.005 PubMed DOI
Raghavendra V, Tanga F, DeLeo JA (2003) Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 306:624–630. https://doi.org/10.1124/jpet.103.052407 PubMed DOI
Sawada A, Niiyama Y, Ataka K et al (2014) Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. Pain 155:1762–1772. https://doi.org/10.1016/j.pain.2014.05.031 PubMed DOI
Shibuta K, Suzuki I, Shinoda M et al (2012) Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain. Brain Res 1451:74–86. https://doi.org/10.1016/j.brainres.2012.02.023 PubMed DOI
Sotgiu ML, Biella G (1998) Contralateral inhibitory control of spinal nociceptive transmission in rats with chronic peripheral nerve injury. Neurosci Lett 253:21–24. https://doi.org/10.1016/S0304-3940(98)00589-8 PubMed DOI
Suzuki I, Tsuboi Y, Shinoda M et al (2013) Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury. PLoS ONE 8:e57278. https://doi.org/10.1371/journal.pone.0057278 PubMed DOI PMC
Sweet WH (1984) Deafferentation pain after posterior rhizotomy, trauma to a limb, and herpes-zoster. Neurosurgery 15:928–932. https://doi.org/10.1227/00006123-198412000-00031 PubMed DOI
Takeda M, Matsumoto S, Sessle BJ et al (2011) Peripheral and central mechanisms of trigeminal neuropathic and inflammatory pain. J Oral Biosci 53:318–329. https://doi.org/10.1016/S1349-0079(11)80025-3 DOI
Takeda M, Nasu M, Kanazawa T et al (2017) Chemokine ligand 2/chemokine receptor 2 signaling in the trigeminal ganglia contributes to inflammatory hyperalgesia in rats. Neurosci Res. https://doi.org/10.1016/j.neures.2017.07.008 PubMed DOI
Thacker MA, Clark AK, Bishop T et al (2009) CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur J Pain 13:263–272. https://doi.org/10.1016/j.ejpain.2008.04.017 PubMed DOI
Vos BP, Strassman AM (1995) Fos expression in the medullary dorsal horn of the rat after chronic constriction injury to the infraorbital nerve. J Comp Neurol 357:362–375. https://doi.org/10.1002/cne.903570304 PubMed DOI
Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rats infraorbital nerve. J Neurosci 14:2708–2723. https://doi.org/10.1523/JNEUROSCI.14-05-02708.1994 PubMed DOI PMC
Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455. https://doi.org/10.1016/S0166-2236(00)01854-3 PubMed DOI
Wei F, Guo W, Zou S, Ren K, Dubner R (2008) Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 28:10482–10495. https://doi.org/10.1523/JNEUROSCI.3593-08.2008 PubMed DOI PMC
Xian H, Jiang Y, Zhang H et al (2020) CCL2-CCR2 axis potentiates NMDA receptor signaling to aggravate neuropathic pain induced by brachial plexus avulsion. Neuroscience 425:29–38. https://doi.org/10.1016/j.neuroscience.2019.11.012 PubMed DOI
Xie YF, Zhang S, Chiang CY et al (2007) Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun 21:634–641. https://doi.org/10.1016/j.bbi.2006.07.008 PubMed DOI
Xie R-G, Gao Y-J, Park C-K et al (2018) Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull 34:13–21. https://doi.org/10.1007/s12264-017-0106-5 PubMed DOI
Xu M, Aita M, Chavkin C (2008) Partial infraorbital nerve ligation as a model of trigeminal nerve injury in the mouse: behavioral, neural, and glial reactions. J Pain 9:1036–1048. https://doi.org/10.1016/j.jpain.2008.06.006 PubMed DOI PMC
Xu J, Dong H, Qian Q et al (2017) Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav Brain Res 332:145–153. https://doi.org/10.1016/j.bbr.2017.05.066 PubMed DOI
Yamaguchi H, Ochi M, Mori R, Ryoke K, Yamamoto S, Iwata A, Uchio Y (1999) Unilateral sciatic nerve injury stimulates contralateral nerve regeneration. NeuroReport 10:1359–1362 DOI
Zamboni L, Demartin C (1967) Buffered picric acid-formaldehyde—a new rapid fixative for electron microscopy. J Cell Biol 35:A148
Zhang J, De Koninck Y (2006) Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem 97:772–783. https://doi.org/10.1111/j.1471-4159.2006.03746.x PubMed DOI
Zhang Z-J, Dong Y-L, Lu Y et al (2012) Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain. J Neuroinflamm 9:136. https://doi.org/10.1186/1742-2094-9-136 DOI
Zhang Z-J, Jiang B-C, Gao Y-J (2017) Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 74:3275–3291. https://doi.org/10.1007/s00018-017-2513-1 PubMed DOI