Dynamics of Cellular Regulation of Fractalkine/CX3CL1 and Its Receptor CX3CR1 in the Rat Trigeminal Subnucleus Caudalis after Unilateral Infraorbital Nerve Lesion-Extended Cellular Signaling of the CX3CL1/CX3CR1 Axis in the Development of Trigeminal Neuropathic Pain
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MUNI/A/1563/2023
Masaryk University
PubMed
38892268
PubMed Central
PMC11172820
DOI
10.3390/ijms25116069
PII: ijms25116069
Knihovny.cz E-resources
- Keywords
- chemokine receptors, chemokines, image analysis, immunohistochemistry, microglial cells, neurons, reactive astroglia,
- MeSH
- Astrocytes metabolism MeSH
- Chemokine CX3CL1 * metabolism MeSH
- CX3C Chemokine Receptor 1 * metabolism genetics MeSH
- Rats MeSH
- Microglia metabolism MeSH
- Trigeminal Neuralgia metabolism pathology MeSH
- Neuralgia metabolism pathology MeSH
- Neurons metabolism MeSH
- Rats, Sprague-Dawley MeSH
- Signal Transduction * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chemokine CX3CL1 * MeSH
- CX3C Chemokine Receptor 1 * MeSH
- Cx3cl1 protein, rat MeSH Browser
- CX3CR1 protein, rat MeSH Browser
The cellular distribution and changes in CX3CL1/fractalkine and its receptor CX3CR1 protein levels in the trigeminal subnucleus caudalis (TSC) of rats with unilateral infraorbital nerve ligation (IONL) were investigated on postoperation days 1, 3, 7, and 14 (POD1, POD3, POD7, and POD14, respectively) and compared with those of sham-operated and naïve controls. Behavioral tests revealed a significant increase in tactile hypersensitivity bilaterally in the vibrissal pads of both sham- and IONL-operated animals from POD1 to POD7, with a trend towards normalization in sham controls at POD14. Image analysis revealed increased CX3CL1 immunofluorescence (IF) intensities bilaterally in the TSC neurons of both sham- and IONL-operated rats at all survival periods. Reactive astrocytes in the ipsilateral TSC also displayed CX3CL1-IF from POD3 to POD14. At POD1 and POD3, microglial cells showed high levels of CX3CR1-IF, which decreased by POD7 and POD14. Conversely, CX3CR1 was increased in TSC neurons and reactive astrocytes at POD7 and POD14, which coincided with high levels of CX3CL1-IF and ADAM17-IF. This indicates that CX3CL1/CX3CR1 may be involved in reciprocal signaling between TSC neurons and reactive astrocytes. The level of CatS-IF in microglial cells suggests that soluble CX3CL1 may be involved in neuron-microglial cell signaling at POD3 and POD7, while ADAM17 allows this release at all studied time points. These results indicate an extended CX3CL1/CX3CR1 signaling axis and its role in the crosstalk between TSC neurons and glial cells during the development of trigeminal neuropathic pain.
See more in PubMed
Gregg J.M., Dixon A.D. Somatotopic Organization of the Trigeminal Ganglion in the Rat. Arch. Oral Biol. 1973;18:487–498. doi: 10.1016/0003-9969(73)90069-1. PubMed DOI
Chichorro J.G., Porreca F., Sessle B. Mechanisms of Craniofacial Pain. Cephalalgia. 2017;37:613–626. doi: 10.1177/0333102417704187. PubMed DOI
Inoue K., Tsuda M. Microglia and Neuropathic Pain. Glia. 2009;57:1469–1479. doi: 10.1002/glia.20871. PubMed DOI
Kubíčková L., Klusáková I., Dubový P. Bilateral Activation of Glial Cells and Cellular Distribution of the Chemokine CCL2 and Its Receptor CCR2 in the Trigeminal Subnucleus Caudalis of Trigeminal Neuropathic Pain Model. Histochem. Cell Biol. 2020;153:239–255. doi: 10.1007/s00418-020-01850-4. PubMed DOI
Okada-Ogawa A., Suzuki I., Sessle B.J., Chiang C.Y., Salter M.W., Dostrovsky J.O., Tsuboi Y., Kondo M., Kitagawa J., Kobayashi A., et al. Astroglia in Medullary Dorsal Horn (Trigeminal Spinal Subnucleus Caudalis) Are Involved in Trigeminal Neuropathic Pain Mechanisms. J. Neurosci. 2009;29:11161–11171. doi: 10.1523/jneurosci.3365-09.2009. PubMed DOI PMC
Shibuta K., Suzuki I., Shinoda M., Tsuboi Y., Honda K., Shimizu N., Sessle B.J., Iwata K. Organization of Hyperactive Microglial Cells in Trigeminal Spinal Subnucleus Caudalis and Upper Cervical Spinal Cord Associated with Orofacial Neuropathic Pain. Brain Res. 2012;1451:74–86. doi: 10.1016/j.brainres.2012.02.023. PubMed DOI
Dauvergne C., Molet J., Reaux-Le Goazigo A., Mauborgne A., Melik-Parsadaniantz S., Boucher Y., Pohl M. Implication of the Chemokine CCL2 in Trigeminal Nociception and Traumatic Neuropathic Orofacial Pain. Eur. J. Pain. 2014;18:360–375. doi: 10.1002/j.1532-2149.2013.00377.x. PubMed DOI
Takeda M., Nasu M., Kanazawa T., Takahashi M., Shimazu Y. Chemokine Ligand 2/Chemokine Receptor 2 Signaling in the Trigeminal Ganglia Contributes to Inflammatory Hyperalgesia in Rats. Neurosci. Res. 2018;128:25–32. doi: 10.1016/j.neures.2017.07.008. PubMed DOI
Zhang Q., Cao D.-L., Zhang Z.-J., Jiang B.-C., Gao Y.-J. Chemokine CXCL13 Mediates Orofacial Neuropathic Pain via CXCR5/ERK Pathway in the Trigeminal Ganglion of Mice. J. Neuroinflamm. 2016;13:183. doi: 10.1186/s12974-016-0652-1. PubMed DOI PMC
Abbadie C., Bhangoo S., De Koninck Y., Malcangio M., Melik-Parsadaniantz S., White F.A. Chemokines and Pain Mechanisms. Brain Res. Rev. 2009;60:125–134. doi: 10.1016/j.brainresrev.2008.12.002. PubMed DOI PMC
Gao Y.-J., Ji R.-R. Chemokines, Neuronal–Glial Interactions, and Central Processing of Neuropathic Pain. Pharmacol. Ther. 2010;126:56–68. doi: 10.1016/j.pharmthera.2010.01.002. PubMed DOI PMC
Old E.A., Malcangio M. Chemokine Mediated Neuron-Glia Communication and Aberrant Signalling in Neuropathic Pain States. Curr. Opin. Pharmacol. 2012;12:67–73. doi: 10.1016/j.coph.2011.10.015. PubMed DOI
Zhang Z.-J., Jiang B.-C., Gao Y.-J. Chemokines in Neuron–Glial Cell Interaction and Pathogenesis of Neuropathic Pain. Cell. Mol. Life Sci. 2017;74:3275–3291. doi: 10.1007/s00018-017-2513-1. PubMed DOI PMC
Clark A.K., Malcangio M. Fractalkine/CX3CR1 Signaling during Neuropathic Pain. Front. Cell. Neurosci. 2014;8:121. doi: 10.3389/fncel.2014.00121. PubMed DOI PMC
Jeon S.-M., Lee K.-M., Cho H.-J. Expression of Monocyte Chemoattractant Protein-1 in Rat Dorsal Root Ganglia and Spinal Cord in Experimental Models of Neuropathic Pain. Brain Res. 2009;1251:103–111. doi: 10.1016/j.brainres.2008.11.046. PubMed DOI
Verge G.M., Milligan E.D., Maier S.F., Watkins L.R., Naeve G.S., Foster A.C. Fractalkine (CX3CL1) and Fractalkine Receptor (CX3CR1) Distribution in Spinal Cord and Dorsal Root Ganglia under Basal and Neuropathic Pain Conditions. Eur. J. Neurosci. 2004;20:1150–1160. doi: 10.1111/j.1460-9568.2004.03593.x. PubMed DOI
Zhang Z.-J., Dong Y.-L., Lu Y., Cao S., Zhao Z.-Q., Gao Y.-J. Chemokine CCL2 and Its Receptor CCR2 in the Medullary Dorsal Horn Are Involved in Trigeminal Neuropathic Pain. J. Neuroinflamm. 2012;9:136. doi: 10.1186/1742-2094-9-136. PubMed DOI PMC
Mizutani M., Pino P.A., Saederup N., Charo I.F., Ransohoff R.M., Cardona A.E. The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood. J. Immunol. 2012;188:29–36. doi: 10.4049/jimmunol.1100421. PubMed DOI PMC
Kiyomoto M., Shinoda M., Okada-Ogawa A., Noma N., Shibuta K., Tsuboi Y., Sessle B.J., Imamura Y., Iwata K. Fractalkine Signaling in Microglia Contributes to Ectopic Orofacial Pain Following Trapezius Muscle Inflammation. J. Neurosci. 2013;33:7667–7680. doi: 10.1523/JNEUROSCI.4968-12.2013. PubMed DOI PMC
Clark A.K., Malcangio M. Microglial Signalling Mechanisms: Cathepsin S and Fractalkine. Exp. Neurol. 2012;234:283–292. doi: 10.1016/j.expneurol.2011.09.012. PubMed DOI
Abraira V.E., Ginty D.D. The Sensory Neurons of Touch. Neuron. 2013;79:619–639. doi: 10.1016/j.neuron.2013.07.051. PubMed DOI PMC
Bereiter D.A., Hirata H., Hu J.W. Trigeminal Subnucleus Caudalis: Beyond Homologies with the Spinal Dorsal Horn. Pain. 2000;88:221–224. doi: 10.1016/S0304-3959(00)00434-6. PubMed DOI
Olszewski J. On the Anatomical and Functional Organization of the Spinal Trigeminal Nucleus. J. Comp. Neurol. 1950;92:401–413. doi: 10.1002/cne.900920305. PubMed DOI
Sessle B.J. Acute and Chronic Craniofacial Pain: Brainstem Mechanisms of Nociceptive Transmission and Neuroplasticity, and Their Clinical Correlates. Crit. Rev. Oral Biol. Med. 2000;11:57–91. doi: 10.1177/10454411000110010401. PubMed DOI
D’amico-Martel A., Noden D.M. Contributions of Placodal and Neural Crest Cells to Avian Cranial Peripheral Ganglia. Am. J. Anat. 1983;166:445–468. doi: 10.1002/aja.1001660406. PubMed DOI
Kogelman L.J.A., Christensen R.E., Pedersen S.H., Bertalan M., Hansen T.F., Jansen-Olesen I., Olesen J. Whole Transcriptome Expression of Trigeminal Ganglia Compared to Dorsal Root Ganglia in Rattus Norvegicus. Neuroscience. 2017;350:169–179. doi: 10.1016/j.neuroscience.2017.03.027. PubMed DOI
Korczeniewska O.A., Rider G.K., Gajra S., Narra V., Ramavajla V., Chang Y.-J., Tao Y., Soteropoulos P., Husain S., Khan J., et al. Differential Gene Expression Changes in the Dorsal Root versus Trigeminal Ganglia Following Peripheral Nerve Injury in Rats. Eur. J. Pain. 2020;24:967–982. doi: 10.1002/ejp.1546. PubMed DOI
Lindia J.A., McGowan E., Jochnowitz N., Abbadie C. Induction of CX3CL1 Expression in Astrocytes and CX3CR1 in Microglia in the Spinal Cord of a Rat Model of Neuropathic Pain. J. Pain. 2005;6:434–438. doi: 10.1016/j.jpain.2005.02.001. PubMed DOI
Fan W., Zhu X., He Y., Zhu M., Wu Z., Huang F., He H. The Role of Satellite Glial Cells in Orofacial Pain. J. Neurosci. Res. 2019;97:393–401. doi: 10.1002/jnr.24341. PubMed DOI
Bonfante R., Napimoga M.H., Macedo C.G., Abdalla H.B., Pieroni V., Clemente-Napimoga J.T. The P2 × 7 Receptor, Cathepsin S and Fractalkine in the Trigeminal Subnucleus Caudalis Signal Persistent Hypernociception in Temporomandibular Rat Joints. Neuroscience. 2018;391:120–130. doi: 10.1016/j.neuroscience.2018.09.005. PubMed DOI
Cairns B.E., O’Brien M., Dong X.-D., Gazerani P. Elevated Fractalkine (CX3CL1) Levels in the Trigeminal Ganglion Mechanically Sensitize Temporalis Muscle Nociceptors. Mol. Neurobiol. 2017;54:3695–3706. doi: 10.1007/s12035-016-9935-x. PubMed DOI
Clark A.K., Yip P.K., Malcangio M. The Liberation of Fractalkine in the Dorsal Horn Requires Microglial Cathepsin S. J. Neurosci. 2009;29:6945–6954. doi: 10.1523/JNEUROSCI.0828-09.2009. PubMed DOI PMC
Meucci O., Fatatis A., Simen A.A., Miller R.J. Expression of CX3CR1 Chemokine Receptors on Neurons and Their Role in Neuronal Survival. Proc. Natl. Acad. Sci. USA. 2000;97:8075–8080. doi: 10.1073/pnas.090017497. PubMed DOI PMC
Ragozzino D., Angelantonio S.D., Trettel F., Bertollini C., Maggi L., Gross C., Charo I.F., Limatola C., Eusebi F. Chemokine Fractalkine/CX3CL1 Negatively Modulates Active Glutamatergic Synapses in Rat Hippocampal Neurons. J. Neurosci. 2006;26:10488–10498. doi: 10.1523/JNEUROSCI.3192-06.2006. PubMed DOI PMC
Brown E.V., Falnikar A., Heinsinger N., Cheng L., Andrews C.E., DeMarco M., Lepore A.C. Cervical Spinal Cord Injury-Induced Neuropathic Pain in Male Mice Is Associated with a Persistent pro-Inflammatory Macrophage/Microglial Response in the Superficial Dorsal Horn. Exp. Neurol. 2021;343:113757. doi: 10.1016/j.expneurol.2021.113757. PubMed DOI PMC
Hulshof S., van Haastert E.S., Kuipers H.F., van den Elsen P.J., de Groot C.J., van der Valk P., Ravid R., Biber K. CX3CL1 and CX3CR1 Expression in Human Brain Tissue: Noninflammatory Control versus Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2003;62:899–907. doi: 10.1093/jnen/62.9.899. PubMed DOI
Catalano M., Lauro C., Cipriani R., Chece G., Ponzetta A., Di Angelantonio S., Ragozzino D., Limatola C. CX3CL1 Protects Neurons against Excitotoxicity Enhancing GLT-1 Activity on Astrocytes. J. Neuroimmunol. 2013;263:75–82. doi: 10.1016/j.jneuroim.2013.07.020. PubMed DOI
Limatola C., Lauro C., Catalano M., Ciotti M.T., Bertollini C., Di Angelantonio S., Ragozzino D., Eusebi F. Chemokine CX3CL1 Protects Rat Hippocampal Neurons against Glutamate-Mediated Excitotoxicity. J. Neuroimmunol. 2005;166:19–28. doi: 10.1016/j.jneuroim.2005.03.023. PubMed DOI
Wang S., Song L., Tan Y., Ma Y., Tian Y., Jin X., Lim G., Zhang S., Chen L., Mao J. A Functional Relationship Between Trigeminal Astroglial Activation and NR1 Expression in a Rat Model of Temporomandibular Joint Inflammation. Pain Med. 2012;13:1590–1600. doi: 10.1111/j.1526-4637.2012.01511.x. PubMed DOI PMC
Jung S., Aliberti J., Graemmel P., Sunshine M.J., Kreutzberg G.W., Sher A., Littman D.R. Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion. Mol. Cell. Biol. 2000;20:4106–4114. doi: 10.1128/MCB.20.11.4106-4114.2000. PubMed DOI PMC
Garton K.J., Gough P.J., Blobel C.P., Murphy G., Greaves D.R., Dempsey P.J., Raines E.W. Tumor Necrosis Factor-α-Converting Enzyme (ADAM17) Mediates the Cleavage and Shedding of Fractalkine (CX3CL1) J. Biol. Chem. 2001;276:37993–38001. doi: 10.1074/jbc.M106434200. PubMed DOI
Clark A.K., Gentry C., Bradbury E.J., McMahon S.B., Malcangio M. Role of Spinal Microglia in Rat Models of Peripheral Nerve Injury and Inflammation. Eur. J. Pain Lond. Engl. 2007;11:223–230. doi: 10.1016/j.ejpain.2006.02.003. PubMed DOI
Luo P., Chu S., Zhang Z., Xia C., Chen N. Fractalkine/CX3CR1 Is Involved in the Cross-Talk between Neuron and Glia in Neurological Diseases. Brain Res. Bull. 2019;146:12–21. doi: 10.1016/j.brainresbull.2018.11.017. PubMed DOI
Vos B.P., Strassman A.M., Maciewicz R.J. Behavioral Evidence of Trigeminal Neuropathic Pain Following Chronic Constriction Injury to the Rat’s Infraorbital Nerve. J. Neurosci. 1994;14:2708–2723. doi: 10.1523/JNEUROSCI.14-05-02708.1994. PubMed DOI PMC
Kayser V., Latrémolière A., Hamon M., Bourgoin S. N-Methyl-D-Aspartate Receptor-Mediated Modulations of the Anti-Allodynic Effects of 5-HT1B/1D Receptor Stimulation in a Rat Model of Trigeminal Neuropathic Pain. Eur. J. Pain Lond. Engl. 2011;15:451–458. doi: 10.1016/j.ejpain.2010.09.012. PubMed DOI
Zamboni L., Demartin C. Buffered picric acid-formaldehyde—A new rapid fixative for electron microscopy. J. Cell Biol. 1967;35:A148
Montague-Cardoso K., Mrozkova P., Malcangio M. The Role of Spinal Cord CX3CL1/CX3CR1 Signalling in Chronic Pain. Curr. Tissue Microenviron. Rep. 2020;1:23–29. doi: 10.1007/s43152-020-00006-9. DOI
Staniland A.A., Clark A.K., Wodarski R., Sasso O., Maione F., D’Acquisto F., Malcangio M. Reduced Inflammatory and Neuropathic Pain and Decreased Spinal Microglial Response in Fractalkine Receptor (CX3CR1) Knockout Mice. J. Neurochem. 2010;114:1143–1157. doi: 10.1111/j.1471-4159.2010.06837.x. PubMed DOI
Yin Q., Cheng W., Cheng M.-Y., Fan S.-Z., Shen W. Intrathecal Injection of Anti-CX3CR1 Neutralizing Antibody Delayed and Attenuated Pain Facilitation in Rat Tibial Bone Cancer Pain Model. Behav. Pharmacol. 2010;21:595–601. doi: 10.1097/FBP.0b013e32833e7e2a. PubMed DOI