BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS), characterized by inflammation and neurodegeneration. The pathophysiology of MS, especially its progressive forms, involves various cellular components, including microglia, the primary resident immune cells of the CNS. This review discusses the role of microglia in neuroinflammation, tissue repair, and neural homeostasis, as well as their involvement in MS and explores potential therapeutic strategies targeting microglial function. METHODS: A literature search conducted in August 2023 and updated in March 2025, using the PubMed database, focused on articles relating to microglia and MS published in 2018-2025. Additionally, ongoing clinical trials of Bruton's tyrosine kinase (BTK) inhibitors were identified through the ClinicalTrials.gov website in November 2023 and updated in March 2025. RESULTS: Microglia are highly adaptive and exhibit various functional states throughout different life stages and play critical roles in neuroinflammation, tissue repair, and neural homeostasis. Their altered activity is a prominent feature of MS, contributing to its pathogenesis. Imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) provide insights into microglial activity in MS. BTK inhibitors and other novel treatments for MS, including masitinib and frexalimab, show promise in modulating microglial function and influencing the disease progression rate. CONCLUSIONS: The multifaceted roles of microglia in CNS development, immune surveillance, and particularly in the pathogenesis of MS highlight the potential of targeting microglial functions in MS treatment. Emerging research on the involvement of microglia in MS pathophysiology offers promising avenues for developing novel therapies, especially for progressive MS, potentially improving patient outcomes in this debilitating disease.
- MeSH
- inhibitory proteinkinas * terapeutické užití farmakologie MeSH
- inhibitory tyrosinkinasy MeSH
- lidé MeSH
- mikroglie * účinky léků imunologie metabolismus MeSH
- proteinkinasa BTK * antagonisté a inhibitory metabolismus MeSH
- roztroušená skleróza * farmakoterapie imunologie etiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Berberine (BBR), a small molecule protoberberine isoquinoline alkaloid, is easy to cross the blood-brain barrier and is a potential drug for neurodegenerative diseases. Here, we explored the role and molecular mechanism of BBR in Alzheimer's disease (AD) progression. Weighted gene co-expression network analysis (WGCNA) was conducted to determine AD pathology-associated gene modules and differentially expressed genes (DEGs) were also identified. GO and KEGG analyses were performed for gene function and signaling pathway annotation. Cell counting kit-8 (CCK8) assay was applied to analyze cell viability. Immunofluorescence (IF) staining assay was conducted to measure the levels of polarization markers. The production of inflammatory cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were detected using a ROS detection kit and a MMP Detection Kit (JC-1), respectively. AD pathology-associated DEGs were applied for GO function annotation and KEGG enrichment analysis, and the results uncovered that AD pathology was related to immune and inflammation. Lipopolysaccharide (LPS) exposure induced the M1 phenotype of microglia, and BBR suppressed LPS-induced M1 polarization and induced microglia toward M2 polarization. Through co-culture of microglia and neuronal cells, we found that BBR exerted a neuro-protective role by attenuating the injury of LPS-induced HMC3 on SH-SY5Y cells. Mechanically, BBR switched the M1/M2 phenotypes of microglia by activating PI3K-AKT signaling. In summary, BBR protected neuronal cells from activated microglia-mediated neuro-inflammation by switching the M1/M2 polarization in LPS-induced microglia via activating PI3K-AKT signaling. Key words Alzheimer's Disease, Berberine, Microglia polarization, Neuroinflammation, PI3K-AKT signaling.
- MeSH
- Alzheimerova nemoc * metabolismus farmakoterapie patologie MeSH
- berberin * farmakologie terapeutické užití MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- lidé MeSH
- mikroglie * účinky léků metabolismus MeSH
- myši MeSH
- neuroprotektivní látky * farmakologie MeSH
- polarita buněk účinky léků MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets. Among P2X receptors, purinergic P2X4 and P2X7 receptors are expressed in microglia, the innate immune cells involved in the brain inflammatory response. In this study, we explore the ionotropic purinergic receptors modulation by cholesterol metabolites in microglia. Patch-clamp experiments were performed in BV2 cells, a murine microglia cell line, to evaluate effects of cholesterol metabolites using micro- and nanomolar concentrations. About P2X4 receptor, we found that testosterone butyrate (20 μM and 200 nM) and allopregnanolone (10 μM and 100 nM) both potentiated its current, while neither 25-hydroxycholesterol (10 μM and 100 nM) nor 17β-estradiol (1 μM) showed any effects. On the other hand, P2X7 receptor current was potentiated by allopregnanolone (10 μM) and 25-hydroxycholesterol (10 μM and 100 nM). Taken together, our data show that modulation of either P2X4 and P2X7 current is affected differently by cholesterol metabolites, suggesting a structure-activity relationship among these players. Identifying the possible link between purinergic transmission, microglia and cholesterol metabolites will allow to define new targets for drug development to treat neuroinflammation.
- MeSH
- buněčné linie MeSH
- mikroglie * metabolismus MeSH
- pregnanolon * metabolismus MeSH
- purinergní receptory P2X4 * metabolismus MeSH
- testosteron * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus responsible for severe infections of the central nervous system. Although neurons are predominantly targeted, specific involvement of microglia in pathogenesis of TBE is not yet fully understood. In this study, the susceptibility of human microglia to TBEV is investigated, focusing on productive infection and different immune responses of different viral strains. We investigated primary human microglia and two immortalized microglial cell lines exposed to three TBEV strains (Hypr, Neudörfl and 280), each differing in virulence. Our results show that all microglia cultures tested support long-term productive infections, regardless of the viral strain. In particular, immune response varied significantly with the viral strain, as shown by the differential secretion of cytokines and chemokines such as IP-10, MCP-1, IL-8 and IL-6, quantified using a Luminex 48-plex assay. The most virulent strain triggered the highest cytokine induction. Electron tomography revealed substantial ultrastructural changes in the infected microglia, despite the absence of cytopathic effects. These findings underscore the susceptibility of human microglia to TBEV and reveal strain-dependent variations in viral replication and immune responses, highlighting the complex role of microglia in TBEV-induced neuropathology and contribute to a deeper understanding of TBE pathogenesis and neuroinflammation.
- MeSH
- buněčné linie MeSH
- cytokiny * metabolismus MeSH
- klíšťová encefalitida * virologie patologie imunologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mikroglie * virologie imunologie patologie MeSH
- neurozánětlivé nemoci virologie patologie imunologie MeSH
- replikace viru MeSH
- viry klíšťové encefalitidy * patogenita fyziologie imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- alkoholismus * imunologie komplikace patofyziologie MeSH
- enterocyty patologie MeSH
- lidé MeSH
- mikroglie patologie MeSH
- neurotransmiterové látky MeSH
- osa mozek-střevo * fyziologie imunologie MeSH
- poruchy nervového systému vyvolané alkoholem MeSH
- střevní mikroflóra imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.
- MeSH
- bolest metabolismus MeSH
- buněčné linie MeSH
- lipopolysacharidy MeSH
- mikroglie * metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- netrin-1 * metabolismus MeSH
- neuropeptidy * MeSH
- NF-kappa B * metabolismus MeSH
- pyroptóza * fyziologie účinky léků MeSH
- rac1 protein vázající GTP * metabolismus MeSH
- signální transdukce * MeSH
- zánět * metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Resveratrol (RSV) is a polyphenol antioxidant that has been shown to have neuroprotective effects. We sought molecular mechanisms that emphasize the anti-inflammatory activity of RSV in traumatic brain injury (TBI) in mice associated with endoplasmic reticulum stress (ERS). After establishing three experimental groups (sham, TBI, and TBI+RSV), we explored the results of RSV after TBI on ERS and caspase-12 apoptotic pathways. The expression levels of C/EBP homologous protein (CHOP), glucose regulated protein 78kD (GRP78), caspase-3, and caspase-12 in cortical brain tissues were assessed by western blotting. The qPCR analysis was also performed on mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in cortical brain tissue. In addition, the expression of GRP78 in microglia (ionized calcium binding adaptor molecule 1; Iba-1) and neurons (neuronal nuclei; NeuN) was identified by immunofluorescence staining. The neurological function of mice was assessed by modified neurological severity scores (mNSS). After drug treatment, the expression of CHOP, GRP78, caspase-3 and caspase-12 decreased, and qPCR results showed that TNF-α and IL-1β were down-regulated. Immunofluorescence staining showed down-regulation of Iba-1+/GRP78+ and NeuN+/GRP78+ cells after RSV treatment. The mNSS analysis confirmed improvement after RSV treatment. RSV improved apoptosis by downregulating the ERS signaling pathway and improved neurological prognosis in mice with TBI.
- MeSH
- apoptóza účinky léků MeSH
- buněčná smrt účinky léků MeSH
- chaperon endoplazmatického retikula BiP * MeSH
- interleukin-1beta metabolismus genetika MeSH
- kaspasa 12 metabolismus genetika MeSH
- mikroglie účinky léků metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neurony účinky léků patologie metabolismus MeSH
- neuroprotektivní látky farmakologie terapeutické užití MeSH
- prognóza MeSH
- proteiny tepelného šoku metabolismus genetika MeSH
- resveratrol * farmakologie terapeutické užití MeSH
- stres endoplazmatického retikula * účinky léků MeSH
- TNF-alfa metabolismus MeSH
- transkripční faktor CHOP metabolismus genetika MeSH
- traumatické poranění mozku * farmakoterapie patologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20×) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60× greater efficiency than manual stereology (<1 min vs. ∼ 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.
Článek přináší výběr zajímavých základních výzkumů zejména významu mikroglie u chronické bolesti, nových doporučení k optimalizaci a urychlení vývoje „přesné“ léčby chronické bolesti, IASP doporučení pro rok integrativní medicíny, kterým byl rok 2023. Pozoruhodnou publikací je rovněž alkoholem indukovaná mechanická alodynie, kdy chronická konzumace alkoholu může způsobit, že lidé jsou citlivější na bolest prostřednictvím dvou různých molekulárních mechanismů. Posledním neméně zajímavým tématem je uvedení nasálního naloxonu na americký trh ve verzi volně prodejného léku. Zpracovány jsou pouze zahraniční a relevantní zdroje.
The article presents a selection of interesting basic research, particularly the importance of microglia in chronic pain, new recommendations to optimize and accelerate the development of "precision" treatments for chronic pain, IASP recommendations for the year of integrative medicine, which was 2023. Also of note is alcohol-induced mechanical allodynia, where chronic alcohol consumption can make people more sensitive to pain through two different molecular mechanisms. A final no less interesting topic is the introduction of nasal naloxone to the ame-ric market as an over-the-counter drug. Only international and relevant sources are discussed.
- MeSH
- astrocyty MeSH
- blokátory kalciových kanálů terapeutické užití MeSH
- chronická bolest * terapie MeSH
- lidé MeSH
- mikroglie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Stroke is a devastating cerebrovascular pathology with high morbidity and mortality. Inflammation plays a central role in the pathophysiology of stroke. Vagus nerve stimulation (VNS) is a promising immunomodulatory method that has shown positive effects in stroke treatment, including neuroprotection, anti-apoptosis, anti-inflammation, antioxidation, reduced infarct volume, improved neurological scores, and promotion of M2 microglial polarization. In this review, we summarize the current knowledge about the vagus nerve's immunomodulatory effects through the cholinergic anti-inflammatory pathway (CAP) and provide a comprehensive assessment of the available experimental literature focusing on the use of VNS in stroke treatment.