Knockdown of microRNA-135b in Mammary Carcinoma by Targeted Nanodiamonds: Potentials and Pitfalls of In Vivo Applications

. 2019 Jun 07 ; 9 (6) : . [epub] 20190607

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31181619

Grantová podpora
15‑33094A Ministerstvo Zdravotnictví Ceské Republiky

Nanodiamonds (ND) serve as RNA carriers with potential for in vivo application. ND coatings and their administration strategy significantly change their fate, toxicity, and effectivity within a multicellular system. Our goal was to develop multiple ND coating for effective RNA delivery in vivo. Our final complex (NDA135b) consisted of ND, polymer, antisense RNA, and transferrin. We aimed (i) to assess if a tumor-specific coating promotes NDA135b tumor accumulation and effective inhibition of oncogenic microRNA-135b and (ii) to outline off-targets and immune cell interactions. First, we tested NDA135b toxicity and effectivity in tumorospheres co-cultured with immune cells ex vivo. We found NDA135b to target tumor cells, but it binds also to granulocytes. Then, we followed with NDA135b intravenous and intratumoral applications in tumor-bearing animals in vivo. Application of NDA135b in vivo led to the effective knockdown of microRNA-135b in tumor tissue regardless administration. Only intravenous application resulted in NDA135b circulation in peripheral blood and urine and the decreased granularity of splenocytes. Our data show that localized intratumoral application of NDA135b represents a suitable and safe approach for in vivo application of nanodiamond-based constructs. Systemic intravenous application led to an interaction of NDA135b with bio-interface, and needs further examination regarding its safety.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Bandrés E., Cubedo E., Agirre X., Malumbres R., Zárate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzó M., et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol. Cancer. 2006;5:29–39. doi: 10.1186/1476-4598-5-29. PubMed DOI PMC

Tong A.W., Fulgham P., Jay C., Chen P., Khalil I., Liu S., Senzer N., Eklund A.C., Han J., Nemunaitis J. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 2009;16:206–216. doi: 10.1038/cgt.2008.77. PubMed DOI

Lowery A.J., Miller N., Devaney A., McNeill R.E., Davoren P.A., Lemetre C., Benes V., Schmidt S., Blake J., Ball G., et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11:R27. doi: 10.1186/bcr2257. PubMed DOI PMC

Lin S.L., Chang D.C., Ying S.Y. Isolation and identification of gene-specific microRNAs. Methods Mol. Biol. 2013;936:271–278. PubMed

Hayward S.L., Francis D.M., Kholmatov P., Kidambi S. Targeted Delivery of MicroRNA125a-5p by Engineered Lipid Nanoparticles for the Treatment of HER2 Positive Metastatic Breast Cancer. J. Biomed. Nanotechnol. 2016;12:554–568. doi: 10.1166/jbn.2016.2194. PubMed DOI

Tyagi N., Arora S., Deshmukh S.K., Singh S., Marimuthu S., Singh A.P. Exploiting Nanotechnology for the Development of MicroRNA-Based Cancer Therapeutics. J. Biomed. Nanotechnol. 2016;12:28–42. doi: 10.1166/jbn.2016.2172. PubMed DOI

Wang S., Zhang J., Wang Y., Chen M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine. 2016;12:411–420. doi: 10.1016/j.nano.2015.09.014. PubMed DOI

Zhong S., Chen X., Wang D., Zhang X., Shen H., Yang S., Lv M., Tang J., Zhao J. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget. 2016;7:19601–19609. doi: 10.18632/oncotarget.7481. PubMed DOI PMC

Faklaris O., Joshi V., Irinopoulou T., Tauc P., Sennour M., Girard H., Gesset C., Arnault J.C., Thorel A., Boudou J.P., et al. Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano. 2009;3:3955–3962. doi: 10.1021/nn901014j. PubMed DOI

Alhaddad A., Durieu C., Dantelle G., Le Cam E., Malvy C., Treussart F., Bertrand J.R. Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PLoS ONE. 2012;7:e52207. doi: 10.1371/journal.pone.0052207. PubMed DOI PMC

Petrakova V., Benson V., Buncek M., Fiserova A., Ledvina M., Stursa J., Cigler P., Nesladek M. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale. 2016;8:12002–12012. doi: 10.1039/C6NR00610H. PubMed DOI

Lukowski S., Neuhoferova E., Kinderman M., Krivohlava R., Mineva A., Petrakova V., Benson V. Fluorescent Nanodiamonds are Efficient, Easy-to-Use Cyto-Compatible Vehicles for Monitored Delivery of Non-Coding Regulatory RNAs. J. Biomed. Nanotechnol. 2018;14:946–958. doi: 10.1166/jbn.2018.2540. PubMed DOI

Chang Y.R., Lee H.Y., Chen K., Chang C.C., Tsai D.S., Fu C.C., Lim T.S., Tzeng Y.K., Fang C.Y., Han C.C., et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 2008;3:284–288. doi: 10.1038/nnano.2008.99. PubMed DOI

Zhang X.Q., Chen M., Lam R., Xu X., Osawa E., Ho D. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano. 2009;3:2609–2616. doi: 10.1021/nn900865g. PubMed DOI

Ho D., Wang C.H., Chow E.K. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 2015;1:e1500439. doi: 10.1126/sciadv.1500439. PubMed DOI PMC

Zheng T., Perona Martínez F., Storm I.M., Rombouts W., Sprakel J., Schirhagl R., de Vries R. Recombinant Protein Polymers for Colloidal Stabilization and Improvement of Cellular Uptake of Diamond Nanosensors. Anal. Chem. 2017;89:12812–12820. doi: 10.1021/acs.analchem.7b03236. PubMed DOI

Chipaux M., van der Laan K.J., Hemelaar S.R., Hasani M., Zheng T., Schirhagl R. Nanodiamonds and Their Applications in Cells. Small. 2018;14:e1704263. doi: 10.1002/smll.201704263. PubMed DOI

Hsiao W.W., Hui Y.Y., Tsai P.C., Chang H.C. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. Acc. Chem. Res. 2016;49:400–407. doi: 10.1021/acs.accounts.5b00484. PubMed DOI

Mohan N., Chen C.S., Hsieh H.H., Wu Y.C., Chang H.C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10:3692–3699. doi: 10.1021/nl1021909. PubMed DOI

Van der Laan K., Hasani M., Zheng T., Schirhagl R. Nanodiamonds for In Vivo Applications. Small. 2018;14:e1703838. doi: 10.1002/smll.201703838. PubMed DOI

Yuan Y., Chen Y., Liu J.H., Wang H., Liu Y. Biodistribution and fate of nanodiamonds in vivo. Diam. Relat. Mater. 2009;18:95–100. doi: 10.1016/j.diamond.2008.10.031. DOI

Vaijayanthimala V., Cheng P.Y., Yeh S.H., Liu K.K., Hsiao C.H., Chao J.I., Chang H.C. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 2012;33:7794–7802. doi: 10.1016/j.biomaterials.2012.06.084. PubMed DOI

Tsai L.W., Lin Y.C., Perevedentseva E., Lugovtsov A., Priezzhev A., Cheng C.L. Nanodiamonds for Medical Applications: Interaction with Blood in Vitro and in Vivo. Int. J. Mol. Sci. 2016;17:1111. doi: 10.3390/ijms17071111. PubMed DOI PMC

Hua K., Jin J., Zhao J., Song J., Song H., Li D., Maskey N., Zhao B., Wu C., Xu H., et al. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int. J. Oncol. 2016;48:1791–2423. doi: 10.3892/ijo.2016.3405. PubMed DOI

Petrakova V., Rehor I., Stursa J., Ledvina M., Nesladek M., Cigler P. Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale. 2015;7:12307–12311. doi: 10.1039/C5NR00712G. PubMed DOI

Upreti M., Jamshidi-Parsian A., Koonce N.A., Webber J.S., Sharma S.K., Asea A.A., Mader M.J., Griffin R.J. Tumor-Endothelial Cell Three-dimensional Spheroids: New Aspects to Enhance Radiation and Drug Therapeutics. Transl. Oncol. 2011;4:365–376. doi: 10.1593/tlo.11187. PubMed DOI PMC

Longmire M., Choyke P.L., Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomed. Lond. 2008;3:703–717. doi: 10.2217/17435889.3.5.703. PubMed DOI PMC

Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI

Yu M., Zheng J. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano. 2015;9:6655–6674. doi: 10.1021/acsnano.5b01320. PubMed DOI PMC

Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond (Review) Nanotechnology. 2017;28:252001. doi: 10.1088/1361-6528/aa6ae4. PubMed DOI

Yu S.J., Kang M.W., Chang H.C., Chen K.M., Yu Y.C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005;127:17604–17605. doi: 10.1021/ja0567081. PubMed DOI

Liu K.K., Cheng C.L., Chang C.C., Chao J.I. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology. 2007;18:325102. doi: 10.1088/0957-4484/18/32/325102. DOI

Blaber S.P., Hill C.J., Webster R.A., Say J.M., Brown L.J., Wang S.C., Vesey G., Herbert B.R. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS ONE. 2013;8:e52997. doi: 10.1371/journal.pone.0052997. PubMed DOI PMC

Hsu T.C., Liu K.K., Chang H.C., Hwang E., Chao J.I. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. Sci. Rep. 2014;4:5004–5015. doi: 10.1038/srep05004. PubMed DOI PMC

Feng Q., Liu Y., Huang J., Chen K., Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018;8:2082–2095. doi: 10.1038/s41598-018-19628-z. PubMed DOI PMC

Daniels T.R., Bernabeu E., Rodríguez J.A., Patel S., Kozman M., Chiappetta D.A., Holler E., Ljubimova J.Y., Helguera G., Penichet M.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta. 2012;1820:291–317. doi: 10.1016/j.bbagen.2011.07.016. PubMed DOI PMC

Hemelaar S.R., Nagl A., Bigot F., Rodríguez-García M.M., de Vries M.P., Chipaux M., Schirhagl R. The interaction of fluorescent nanodiamond probes with cellular media. Mikrochim. Acta. 2017;184:1001–1009. doi: 10.1007/s00604-017-2086-6. PubMed DOI PMC

Yuan Y., Wang X., Jia G. Pulmonary toxicity and translocation of nanodiamond in mice. Diam. Relat. Mater. 2010;19:291–300. doi: 10.1016/j.diamond.2009.11.022. DOI

Muñoz L.E., Bilyy R., Biermann M.H., Kienhöfer D., Maueröder C., Hahn J., Brauner J.M., Weidner D., Chen J., Scharin-Mehlmann M., et al. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl. Acad. Sci. USA. 2016;113:5856–5865. doi: 10.1073/pnas.1602230113. PubMed DOI PMC

Pham N.B., Ho T.T., Nguyen G.T., Le T.T., Le N.T., Chang H.C., Pham M.D., Conrad U., Chu H.H. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. J. Nanobiotechnol. 2017;15:69–81. doi: 10.1186/s12951-017-0305-2. PubMed DOI PMC

Puzyr A.P., Baron A.V., Purtov K.V., Bortnikov E.V., Skobelev N.N., Mogilnaya O.A., Bondar V.S. Nanodiamonds with novel properties: A biological study. Diam. Relat. Mater. 2007;16:2124–2128. doi: 10.1016/j.diamond.2007.07.025. DOI

Wang E., Sandoval R.M., Campos S.B., Molitoris B.A. Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat. Am. J. Physiol. Renal Physiol. 2010;299:1048–1055. doi: 10.1152/ajprenal.00691.2009. PubMed DOI PMC

Li Y., Wu J., Xu L., Wu Q., Wan Z., Li L., Yu H., Li X., Li K., Zhang Q., et al. Regulation of Leukocyte Recruitment to the Spleen and Peritoneal Cavity during Pristane-Induced Inflammation. J. Immunol. Res. 2017;2017:9891348. doi: 10.1155/2017/9891348. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...