Bioproduced Nanoparticles Deliver Multiple Cargoes via Targeted Tumor Therapy In Vivo
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39130536
PubMed Central
PMC11307291
DOI
10.1021/acsomega.4c03277
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study recognized biologically produced gold nanoparticles (AuNPs) as multiple cargo carriers with a perspective of drug delivery into specialized tumor cells in vivo. Paclitaxel (PTX), transferrin, and antimiR-135b were conjugated with AuNPs and their uptake by mouse tumor cells in an induced breast cancer model was investigated. Each of the above-mentioned molecules was conjugated to the AuNPs separately as well as simultaneously, loading efficiency of each cargo was assessed, and performance of the final product (FP) was judged. After tumor induction in BALB/c mice, sub-IC50 doses of FP as well as control AuNPs, PTX, and phosphate buffered saline were administered in vivo. Round AuNPs were prepared using Fusarium oxysporum and exhibited a size of 13 ± 1.3 nm and a zeta potential of -35.8 ± 1.3 mV. The cytotoxicity of individual conjugates and FP were tested by MTT assay in breast tumor cells 4T1 and nontumor fibroblasts NIH/3T3 cells. The conjugation of individual molecules with AuNPs was confirmed, and FP (size of 54 ± 14 nm and zeta potential of -31.9 ± 2.08 mV) showed higher 4T1-specific toxicity in vitro when compared to control conjugates. After in vivo application of the FP, transmission electron microscopy analyses proved the presence of AuNPs in the tumor cells. Hematoxylin and eosin staining of the tumor tissue revealed that the FP group exhibited the highest amounts of inflammatory, necrotic, and apoptotic cells in contrast to the control groups. Finally, qPCR results showed that FP could transfect and suppress miR-135b expression in vivo, confirming the tumor-targeting properties of FP. The capacity of biologically produced gold nanoparticles to conjugate with multiple decorative molecules while retaining their stability and effective intracellular uptake makes them a promising alternative strategy superior to current drug carriers.
Department of Medical Sciences Shahrood Branch Islamic Azad University Shahrood 9WVM 5HC Iran
Faculty of Health Studies Technical University of Liberec Liberec 46001 Czech Republic
Institute of Analytical Chemistry Czech Academy of Sciences Brno 602 00 Czech Republic
Institute of Microbiology Czech Academy of Sciences Praha 142 20 Czech Republic
Zobrazit více v PubMed
Waks A. G.; Winer E. P. Breast cancer treatment: a review. JAMA 2019, 321 (3), 288–300. 10.1001/jama.2018.19323. PubMed DOI
Lei S.; Zheng R.; Zhang S.; Wang S.; Chen R.; Sun K.; Zeng H.; Zhou J.; Wei W. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021, 41 (11), 1183–1194. 10.1002/cac2.12207. PubMed DOI PMC
Wu H.-C.; Chang D.-K.; Huang C.-T. Targeted therapy for cancer. J. Cancer Mol. 2006, 2 (2), 57–66.
Li Y.; Gao Y.; Zhang X.; Guo H.; Gao H. Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy. Int. J. Pharm. 2020, 591, 119986.10.1016/j.ijpharm.2020.119986. PubMed DOI
Wang J.; Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduction Targeted Ther. 2019, 4 (1), 34.10.1038/s41392-019-0069-2. PubMed DOI PMC
Perez H. L.; Cardarelli P. M.; Deshpande S.; Gangwar S.; Schroeder G. M.; Vite G. D.; Borzilleri R. M. Antibody-drug conjugates: current status and future directions. Drug Discovery Today 2014, 19 (7), 869–881. 10.1016/j.drudis.2013.11.004. PubMed DOI
Zardavas D.; Irrthum A.; Swanton C.; Piccart M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 2015, 12 (7), 381–394. 10.1038/nrclinonc.2015.73. PubMed DOI
Wood K. C. Mapping the pathways of resistance to targeted therapies. Cancer Res. 2015, 75 (20), 4247–4251. 10.1158/0008-5472.CAN-15-1248. PubMed DOI PMC
Huang P. S.; Oliff A. Drug-targeting strategies in cancer therapy. Curr. Opin. Genet. Dev. 2001, 11 (1), 104–110. 10.1016/S0959-437X(00)00164-7. PubMed DOI
Vine K. L.; Lobov S.; Chandran V. I.; Harris N. L. E.; Ranson M. Improved pharmacokinetic and biodistribution properties of the selective urokinase inhibitor PAI-2 (SerpinB2) by site-specific PEGylation: implications for drug delivery. Pharm. Res. 2015, 32 (3), 1045–1054. 10.1007/s11095-014-1517-x. PubMed DOI
Yahyaei B.; Nouri M.; Bakherad S.; Hassani M.; Pourali P. Effects of biologically produced gold nanoparticles: toxicity assessment in different rat organs after intraperitoneal injection. AMB Express 2019, 9 (1), 38.10.1186/s13568-019-0762-0. PubMed DOI PMC
Yahyaei B.; Arabzadeh S.; Pourali P. An alternative method for biological production of silver and gold nanoparticles. JPAM 2014, 8, 4495–4501.
Pourali P.; Badiee S. H.; Manafi S.; Noorani T.; Rezaei A.; Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron. J. Biotechnol. 2017, 29, 86–93. 10.1016/j.ejbt.2017.07.005. DOI
Pourali P.; Yahyaei B.; Afsharnezhad S. Bio-Synthesis of Gold Nanoparticles by Fusarium oxysporum and Assessment of Their Conjugation Possibility with Two Types of β-Lactam Antibiotics without Any Additional Linkers. Microbiology 2018, 87 (2), 229–237. 10.1134/s0026261718020108. DOI
Pourali P.; Dzmitruk V.; Pátek M.; Neuhöferová E.; Svoboda M.; Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci. Rep. 2023, 13 (1), 4916.10.1038/s41598-023-31792-5. PubMed DOI PMC
Pourali P.; Neuhöferová E.; Dzmitruk V.; Benson V. Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles. Materials 2022, 15 (13), 4615.10.3390/ma15134615. PubMed DOI PMC
Pourali P.; Benada O.; Pátek M.; Neuhöferová E.; Dzmitruk V.; Benson V. Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles?. Appl. Sci. 2021, 11 (23), 11559.10.3390/app112311559. DOI
Pourali P.; Baserisalehi M.; Afsharnezhad S.; Behravan J.; Ganjali R.; Bahador N.; Arabzadeh S. The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. BioMetals 2013, 26 (1), 189–196. 10.1007/s10534-012-9606-y. PubMed DOI
Yahyaei B.; Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci. Rep. 2019, 9 (1), 10242.10.1038/s41598-019-46602-0. PubMed DOI PMC
Naimi-Shamel N.; Pourali P.; Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Med. 2019, 29 (1), 7–13. 10.1016/j.mycmed.2019.01.005. PubMed DOI
Roy N.; Gaur A.; Jain A.; Bhattacharya S.; Rani V. Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environ. Toxicol. Pharmacol. 2013, 36 (3), 807–812. 10.1016/j.etap.2013.07.005. PubMed DOI
Składanowski M.; Golinska P.; Rudnicka K.; Dahm H.; Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med. Microbiol. Immunol. 2016, 205 (6), 603–613. 10.1007/s00430-016-0477-7. PubMed DOI PMC
Křivohlavá R.; Neuhüferová E.; Jakobsen K. Q.; Benson V. Knockdown of microRNA-135b in mammary carcinoma by targeted nanodiamonds: potentials and pitfalls of in vivo applications. Nanomaterials 2019, 9 (6), 866.10.3390/nano9060866. PubMed DOI PMC
Uva P.; Cossu-Rocca P.; Loi F.; Pira G.; Murgia L.; Orrù S.; Floris M.; Muroni M. R.; Sanges F.; Carru C.; et al. miRNA-135b contributes to triple negative breast cancer molecular heterogeneity: Different expression profile in Basal-like versus non-Basal-like phenotypes. Int. J. Med. Sci. 2018, 15 (6), 536–548. 10.7150/ijms.23402. PubMed DOI PMC
Hua K.; Jin J.; Zhao J.; Song J.; Song H.; Li D.; Maskey N.; Zhao B.; Wu C.; Xu H.; et al. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int. J. Oncol. 2016, 48 (5), 1997–2006. 10.3892/ijo.2016.3405. PubMed DOI
Kesarwani P.; Tekade R. K.; Jain N. Spectrophotometric estimation of paclitaxel. Int. J. Adv. Pharm. Sci. 2011, 2 (1), 29–32.
Pavelek Z.; Vyšata O.; Tambor V.; Pimková K.; Vu D. L.; Kuča K.; Št’ourač P.; Vališ M. Proteomic analysis of cerebrospinal fluid for relapsing-remitting multiple sclerosis and clinically isolated syndrome. Biomed. Rep. 2016, 5 (1), 35–40. 10.3892/br.2016.668. PubMed DOI PMC
Procházková E. k.; Kucherak O.; Stodůlková E.; Tošner Z. k.; Císařová I.; Flieger M.; Kolarik M.; Baszczyňski O. NMR Structure elucidation of naphthoquinones from Quambalaria cyanescens. J. Nat. Prod. 2021, 84 (1), 46–55. 10.1021/acs.jnatprod.0c00930. PubMed DOI
Ackerson C. J.; Sykes M. T.; Kornberg R. D. Defined DNA/nanoparticle conjugates. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (38), 13383–13385. 10.1073/pnas.0506290102. PubMed DOI PMC
Wang H.-Q.; Deng Z.-X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 2015, 26 (12), 1435–1438. 10.1016/j.cclet.2015.10.019. DOI
Vajedi F. S.; Dehghani H.; Zarrabi A. Design and characterization of a novel pH-sensitive biocompatible and multifunctional nanocarrier for in vitro paclitaxel release. Mater. Sci. Eng.: C 2021, 119, 111627.10.1016/j.msec.2020.111627. PubMed DOI
Hazekawa M.; Nishinakagawa T.; Kawakubo-Yasukochi T.; Nakashima M. Evaluation of IC50 levels immediately after treatment with anticancer reagents using a real-time cell monitoring device. Exp. Ther. Med. 2019, 18 (4), 3197–3205. 10.3892/etm.2019.7876. PubMed DOI PMC
Li C.; Price J. E.; Milas L.; Hunter N. R.; Ke S.; Yu D.-F.; Charnsangavej C.; Wallace S. Antitumor activity of poly (L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin. Cancer Res. 1999, 5 (4), 891–897. PubMed
Pourali P.; Nouri M.; Ameri F.; Heidari T.; Kheirkhahan N.; Arabzadeh S.; Yahyaei B. Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393 (5), 867–878. 10.1007/s00210-019-01796-y. PubMed DOI
Pourali P.; Dzmitruk V.; Benada O.; Svoboda M.; Benson V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: evaluation of transfection efficiency. Sci. Rep. 2023, 13 (1), 14669.10.1038/s41598-023-41567-7. PubMed DOI PMC
England C. G.; Miller M. C.; Kuttan A.; Trent J. O.; Frieboes H. B. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur. J. Pharm. Biopharm. 2015, 92, 120–129. 10.1016/j.ejpb.2015.02.017. PubMed DOI PMC
Manivasagan P.; Bharathiraja S.; Bui N. Q.; Lim I. G.; Oh J. Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. Int. J. Pharm. 2016, 511 (1), 367–379. 10.1016/j.ijpharm.2016.07.025. PubMed DOI
Ng C. T.; Tang F. M. A.; Li J. J. e.; Ong C.; Yung L. L. Y.; Bay B. H. Clathrin-mediated endocytosis of gold nanoparticles in vitro. Anat. Rec. 2015, 298 (2), 418–427. 10.1002/ar.23051. PubMed DOI
De Jong J.; van Diest P. J.; Baak J. Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br. J. Cancer 2000, 82 (2), 368–373. 10.1054/bjoc.1999.0928. PubMed DOI PMC
Koren E.; Fuchs Y. Modes of regulated cell death in cancer. Cancer Discovery 2021, 11 (2), 245–265. 10.1158/2159-8290.CD-20-0789. PubMed DOI
Liu Z.-g.; Jiao D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 2020, 4 (1), 1–8. 10.15698/cst2020.01.208. PubMed DOI PMC
Calaf G. M.; Ponce-Cusi R.; Carrión F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol. Rep. 2018, 40 (4), 2381–2388. PubMed
Wang T. H.; Wang H. S.; Soong Y. K. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000, 88 (11), 2619–2628. 10.1002/1097-0142(20000601)88:11<2619::AID-CNCR26>3.0.CO;2-J. PubMed DOI
Yahyaei B.; Pourali P.; Hassani M. Morphological Change of Kidney after Injection of the Biological Gold Nanoparticles in Wistar Rats. J. Anim. Biol. 2020, 13 (1), 109–119.
Zhou Y.; Zhou J.; Wang F.; Yang H. Polydopamine-based functional composite particles for tumor cell targeting and dual-mode cellular imaging. Talanta 2018, 181, 248–257. 10.1016/j.talanta.2018.01.003. PubMed DOI
Pourali P.; Svoboda M.; Neuhöferová E.; Dzmitruk V.; Benson V.. Accumulation and toxicity of biologically produced gold nanoparticles in different types of specialized mammalian cells. Biotechnol. Appl. Biochem. 202410.1002/bab.2575, Online publication ahead of print. PubMed DOI
Chaumet A.; Wright G. D.; Seet S. H.; Tham K. M.; Gounko N. V.; Bard F. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nat. Commun. 2015, 6 (1), 8218.10.1038/ncomms9218. PubMed DOI PMC
Degors I. M.; Wang C.; Rehman Z. U.; Zuhorn I. S. Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc. Chem. Res. 2019, 52 (7), 1750–1760. 10.1021/acs.accounts.9b00177. PubMed DOI PMC
Egorova E. A.; Lamers G. E.; Monikh F. A.; Boyle A. L.; Slütter B.; Kros A. Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses. RSC Adv. 2022, 12 (31), 19703–19716. 10.1039/D2RA03027F. PubMed DOI PMC
Daniele R.; Brazzale C.; Arpac B.; Tognetti F.; Pesce C.; Malfanti A.; Sayers E.; Mastrotto F.; Jones A. T.; Salmaso S.; et al. Influence of folate-targeted gold nanoparticles on subcellular localization and distribution into lysosomes. Pharmaceutics 2023, 15 (3), 864.10.3390/pharmaceutics15030864. PubMed DOI PMC
Yoo J.-W.; Irvine D. J.; Discher D. E.; Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discovery 2011, 10 (7), 521–535. 10.1038/nrd3499. PubMed DOI
Bechara C.; Sagan S. Cell-penetrating peptides: 20 years later, where do we stand?. FEBS Lett. 2013, 587 (12), 1693–1702. 10.1016/j.febslet.2013.04.031. PubMed DOI
Cesbron Y.; Shaheen U.; Free P.; Levy R. TAT and HA2 facilitate cellular uptake of gold nanoparticles but do not lead to cytosolic localisation. PLoS One 2015, 10 (4), e012168310.1371/journal.pone.0121683. PubMed DOI PMC
Davis M. E.; Zuckerman J. E.; Choi C. H. J.; Seligson D.; Tolcher A.; Alabi C. A.; Yen Y.; Heidel J. D.; Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464 (7291), 1067–1070. 10.1038/nature08956. PubMed DOI PMC
Tu Y.; Zhao L.; Billadeau D. D.; Jia D. Endosome-to-TGN trafficking: organelle-vesicle and organelle-organelle interactions. Front. Cell Dev. Biol. 2020, 8, 163.10.3389/fcell.2020.00163. PubMed DOI PMC
Le Blanc I.; Luyet P.-P.; Pons V.; Ferguson C.; Emans N.; Petiot A.; Mayran N.; Demaurex N.; Fauré J.; Sadoul R.; et al. Endosome-to-cytosol transport of viral nucleocapsids. Nat. Cell Biol. 2005, 7 (7), 653–664. 10.1038/ncb1269. PubMed DOI PMC
Behzadi S.; Serpooshan V.; Tao W.; Hamaly M. A.; Alkawareek M. Y.; Dreaden E. C.; Brown D.; Alkilany A. M.; Farokhzad O. C.; Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 2017, 46 (14), 4218–4244. 10.1039/C6CS00636A. PubMed DOI PMC
Pourali P.; Svoboda M.; Benada O.; Dzmitruk V.; Benson V. Biological Production of Gold Nanoparticles at Different Temperatures: Efficiency Assessment. Part. Part. Syst. Charact. 2023, 40 (12), 2200182.10.1002/ppsc.202200182. DOI
Clarance P.; Luvankar B.; Sales J.; Khusro A.; Agastian P.; Tack J.-C.; Al Khulaifi M. M.; Al-Shwaiman H. A.; Elgorban A. M.; Syed A.; et al. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J. Biol. Sci. 2020, 27 (2), 706–712. 10.1016/j.sjbs.2019.12.026. PubMed DOI PMC
Hosseinzadeh N.; Shomali T.; Hosseinzadeh S.; Raouf Fard F.; Pourmontaseri M.; Fazeli M. Green synthesis of gold nanoparticles by using Ferula persica Willd. gum essential oil: production, characterization and in vitro anti-cancer effects. J. Pharm. Pharmacol. 2020, 72 (8), 1013–1025. 10.1111/jphp.13274. PubMed DOI
Khanzada B.; Akthar N.; Bhatti M. Z.; Ismail H.; Alqarni M.; Mirza B.; Mostafa-Hedeab G.; Batiha G. E.-S. Green synthesis of gold and iron nanoparticles for targeted delivery: an in vitro and in vivo study. J. Chem. 2021, 2021 (1), 1–16. 10.1155/2021/1581444. DOI
Mukherjee S.; Sau S.; Madhuri D.; Bollu V. S.; Madhusudana K.; Sreedhar B.; Banerjee R.; Patra C. R. Green synthesis and characterization of monodispersed gold nanoparticles: toxicity study, delivery of doxorubicin and its bio-distribution in mouse model. J. Biomed. Nanotechnol. 2016, 12 (1), 165–181. 10.1166/jbn.2016.2141. PubMed DOI
Paciotti G. F.; Zhao J.; Cao S.; Brodie P. J.; Tamarkin L.; Huhta M.; Myer L. D.; Friedman J.; Kingston D. G. Synthesis and evaluation of paclitaxel-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjugate Chem. 2016, 27 (11), 2646–2657. 10.1021/acs.bioconjchem.6b00405. PubMed DOI PMC
Hale S. J.; Perrins R. D.; Garcıa C. E.; Pace A.; Peral U.; Patel K. R.; Robinson A.; Williams P.; Ding Y.; Saito G.; et al. DM1 loaded ultrasmall gold nanoparticles display significant efficacy and improved tolerability in murine models of hepatocellular carcinoma. Bioconjugate Chem. 2018, 30 (3), 703–713. 10.1021/acs.bioconjchem.8b00873. PubMed DOI
Govindaraju S.; Roshini A.; Lee M.-H.; Yun K. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. Int. J. Nanomed. 2019, 14, 5147–5157. 10.2147/ijn.s209773. PubMed DOI PMC
Paris J. L.; Villaverde G.; Gómez-Graña S.; Vallet-Regí M. Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy. Acta Biomater. 2020, 101, 459–468. 10.1016/j.actbio.2019.11.004. PubMed DOI PMC