The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28392795
PubMed Central
PMC5364151
DOI
10.3389/fpls.2017.00392
Knihovny.cz E-zdroje
- Klíčová slova
- abscisic acid, plant architecture, post-attachment resistance, root parasitic plant, strigolactone,
- Publikační typ
- časopisecké články MeSH
The root parasitic plant species Phelipanche ramosa, branched broomrape, causes severe damage to economically important crops such as tomato. Its seed germination is triggered by host-derived signals upon which it invades the host root. In tomato, strigolactones (SLs) are the main germination stimulants for P. ramosa. Therefore, the development of low SL-producing lines may be an approach to combat the parasitic weed problem. However, since SLs are also a plant hormone controlling many aspects of plant development, SL deficiency may also have an effect on post-germination stages of the infection process, during the parasite-host interaction. In this study, we show that SL-deficient tomato plants (Solanum lycopersicum; SlCCD8 RNAi lines), infected with pre-germinated P. ramosa seeds, display an increased infection level and faster development of the parasite, which suggests a positive role for SLs in the host defense against parasitic plant invasion. Furthermore, we show that SL-deficient tomato plants lose their characteristic SL-deficient phenotype during an infection with P. ramosa through a reduction in the number of internodes and the number and length of secondary branches. Infection with P. ramosa resulted in increased levels of abscisic acid (ABA) in the leaves and roots of both wild type and SL-deficient lines. Upon parasite infection, the level of the conjugate ABA-glucose ester (ABA-GE) also increased in leaves of both wild type and SL-deficient lines and in roots of one SL-deficient line. The uninfected SL-deficient lines had a higher leaf ABA-GE level than the wild type. Despite the high levels of ABA, stomatal aperture and water loss rate were not affected by parasite infection in the SL-deficient line, while in wild type tomato stomatal aperture and water loss increased upon infection. Future studies are needed to further underpin the role that SLs play in the interaction of hosts with parasitic plants and which other plant hormones interact with the SLs during this process.
Zobrazit více v PubMed
Abe S., Sado A., Tanaka K., Kisugi T., Asami K., Ota S., et al. (2014). Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. U.S.A. 111 18084–18089. 10.1073/pnas.1410801111 PubMed DOI PMC
Akiyama K., Matsuzaki K., Hayashi H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435 824–827. 10.1038/nature03608 PubMed DOI
Alder A., Jamil M., Marzorati M., Bruno M., Vermathen M., Bigler P., et al. (2012). The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335 1348–1351. 10.1126/science.1218094 PubMed DOI
Angeles Castillejo M., Amiour N., Dumas-Gaudot E., Rubiales D., Jorrín J. V. (2004). A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry 65 1817–1828. 10.1016/j.phytochem.2004.03.029 PubMed DOI
Arite T., Umehara M., Ishikawa S., Hanada A., Maekawa M., Yamaguchi S., et al. (2009). d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50 1416–1424. 10.1093/pcp/-pcp091 PubMed DOI
Barker E. R., Press M. C., Scholes J. D., Quick W. P. (1996). Interactions between the parasitic angiosperm Orobanche aegyptiaca and its tomato host: growth and biomass allocation. New Phytol. 133 637–642. 10.1111/j.1469-8137.1996.tb01932.x DOI
Bar-Nun N., Mayer A. M. (2008). Methyl jasmonate and methyl salicylate, but not cis-jasmone, evoke defenses against infection of Arabidopsis thaliana by Orobanche aegyptiaca. Weed Biol. Manage. 8 91–96. 10.1111/j.1445-6664.2008.00280.x DOI
Bar-Nun N., Sachs T., Mayer A. M. (2008). A role for IAA in the infection of Arabidopsis thaliana by Orobanche aegyptiaca. Ann. Bot. 101 261–265. 10.1093/aob/mcm032 PubMed DOI PMC
Bennett T., Sieberer T., Willett B., Booker J., Luschnig C., Leyser O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16 553–563. 10.1016/j.cub.2006.01.058 PubMed DOI
Beveridge C. A., Murfet I. C., Kerhoas L., Sotta B., Miginiac E., Rameau C. (1997a). The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant J. 11 339–345. 10.1046/j.1365-313X.1997.11020339.x DOI
Beveridge C. A., Ross J. J., Murfet I. C. (1994). Branching mutant rms-2 in Pisum sativum (grafting studies and endogenous indole-3-acetic acid levels). Plant Physiol. 104 953–959. 10.1104/pp.104.3.953 PubMed DOI PMC
Beveridge C. A., Symons C. M., Murfet I. C., Ross J. J., Rameau C. (1997b). The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol. 115 1251–1258. 10.1104/pp.115.3.1251 DOI
Blackman P. G., Davies W. J. (1983). The effects of cytokinins and ABA on stomatal behaviour of maize and Commelina. J. Exp. Bot. 34 1619–1626. 10.1093/jxb/34.12.1619 DOI
Booker J., Sieberer T., Wright W., Williamson L., Willett B., Stirnberg P., et al. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8 443–449. 10.1016/j.devcel.2005.01.009 PubMed DOI
Bouwmeester H. J., Matusova R., Zhongkui S., Beale M. H. (2003). Secondary metabolite signalling in host–parasitic plant interactions. Curr. Opin. Plant Biol. 6 358–364. 10.1016/s1369-5266(03)00065-7 PubMed DOI
Brewer P. B., Yoneyama K., Filardo F., Meyers E., Scaffidi A., Frickey T., et al. (2016). LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 113 6301–6306. 10.1073/pnas.1601729113 PubMed DOI PMC
Bu Q., Lv T., Shen H., Luong P., Wang J., Wang Z., et al. (2014). Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol. 164 424–439. 10.1104/pp.113.226837 PubMed DOI PMC
Cagáň L., Tóth P. (2003). A decrease in tomato yield caused by branched broomrape (Orobanche ramosa) parasitization. Acta Fytotechnica Zootechnica 6 65–68.
Cardoso C., Ruyter-Spira C., Bouwmeester H. J. (2011). Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci. 180 414–420. 10.1016/j.plantsci.2010.11.007 PubMed DOI
Cardoso C., Zhang Y., Jamil M., Hepworth J., Charnikhova T., Dimkpa S. O. N., et al. (2014). Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc. Natl. Acad. Sci. U.S.A. 111 2379–2384. 10.1073/pnas.1317360111 PubMed DOI PMC
Castillejo M. A., Maldonado A. M., Dumas-Gaudot E., Fernandez-Aparicio M., Susin R., Diego R., et al. (2009). Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula. BMC Genomics 10:294 10.1186/1471-2164-10-294 PubMed DOI PMC
Chevalier F., Nieminen K., Sánchez-Ferrero J. C., Rodríguez M. L., Chagoyen M., Hardtke C. S., et al. (2014). Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26 1134–1150. 10.1105/tpc.114.122903 PubMed DOI PMC
Cissoko M., Boisnard A., Rodenburg J., Press M. C., Scholes J. D. (2011). New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytol. 192 952–963. 10.1111/j.1469-8137.2011.03846.x PubMed DOI
Die J. V., Dita M. A., Krajinski F., González Verdejo C. I., Rubiales D., Moreno M. T., et al. (2007). Identification by suppression subtractive hybridization and expression analysis of Medicago truncatula putative defence genes in response to Orobanche crenata parasitization. Physiol. Mol. Plant Pathol. 70 49–59. 10.1016/j.pmpp.2007.06.001 DOI
Dita M. A., Die J. V., Román B., Krajinski F., Küster H., Moreno M. T., et al. (2009). Gene expression profiling of Medicago truncatula roots in response to the parasitic plant Orobanche crenata. Weed Res. 49 66–80. 10.1111/j.1365-3180.2009.00746.x DOI
Dor E., Yoneyama K., Wininger S., Kapulnik Y., Yoneyama K., Koltai H., et al. (2011). Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology 101 213–222. 10.1094/PHYTO-07-10-0184 PubMed DOI
Dos Santos C. V., Delavault P., Letousey P., Thalouarn P. (2003a). Identification by suppression subtractive hybridization and expression analysis of Arabidopsis thaliana putative defence genes during Orobanche ramosa infection. Physiol. Mol. Plant Pathol. 62 297–303. 10.1016/s0885-5765(03)00073-0 DOI
Dos Santos C. V., Letousey P., Delavault P., Thalouarn P. (2003b). Defense gene expression analysis of Arabidopsis thaliana parasitized by Orobanche ramosa. Phytopathology 93 451–457. 10.1094/PHYTO.2003.93.4.451 PubMed DOI
Emery R. J. N., Longnecker N. E., Atkins C. A. (1998). Branch development in Lupinus angustifolius L. II. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds. J. Exp. Bot. 49 555–562. 10.1093/jxb/49.320.555 DOI
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novak O. (2014). UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105 147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI
Foo E., Morris S. E., Parmenter K., Young N., Wang H., Jones A., et al. (2007). Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol. 143 1418–1428. 10.1104/pp.106.093708 PubMed DOI PMC
Frost D. L., Gurney A. L., Press M. C., Scholes J. D. (1997). Striga hermonthica reduces photosynthesis in sorghum: the importance of stomatal limitations and a potential role for ABA? Plant, Cell Environ. 20 483–492. 10.1046/j.1365-3040.1997.d01-87.x DOI
Gurney A. L., Slate J., Press M. C., Scholes J. D. (2006). A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol. 169 199–208. 10.1111/j.1469-8137.2005.01560.x PubMed DOI
Ha C. V., Leyva-González M. A., Osakabe Y., Tran U. T., Nishiyama R., Watanabe Y., et al. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. U.S.A. 111 851–856. 10.1073/pnas.1322135111 PubMed DOI PMC
Hamiaux C., Drummond R. S. M., Janssen B. J., Ledger S. E., Cooney J. M., Newcomb R. D., et al. (2012). DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22 2032–2036. 10.1016/j.cub.2012.08.007 PubMed DOI
Hibberd J. M., Quick W. P., Press M. C., Scholes J. D. (1998). Can source–sink relations explain responses of tobacco to infection by the root holoparasitic angiosperm Orobanche cernua? Plant Cell Environ. 21 333–340. 10.1046/j.1365-3040.1998.00272.x DOI
Hiraoka Y., Ueda H., Sugimoto Y. (2009). Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. J. Exp. Bot. 60 641–650. 10.1093/jxb/ern316 PubMed DOI PMC
Ihl B., Jacob F., Meyer A., Sembdner G. (1987). Investigations on the endogenous levels of abscisic acid in a range of parasitic phanerogams. J. Plant Growth Regul. 5 191–205. 10.1007/BF02030134 DOI
Jiang F., Jeschke W. D., Hartung W. (2004). Abscisic acid (ABA) flows from Hordeum vulgare to the hemiparasite Rhinanthus minor and the influence of infection on host and parasite abscisic acid relations. J. Exp. Bot. 55 2323–2329. 10.1093/jxb/erh240 PubMed DOI
Jiang F., Jeschke W. D., Hartung W., Cameron D. D. (2010). Interactions between Rhinanthus minor and its hosts: a review of water, mineral nutrient and hormone flows and exchanges in the hemiparasitic association. Folia Geobotanica 45 369–385. 10.1007/s12224-010-9093-2 DOI
Jiang F., Veselova S., Veselov D., Kudoyarova G., Jeschke W. D., Hartung W. (2005). Cytokinin flows from Hordeum vulgare to the hemiparasite Rhinanthus minor and the influence of infection on host and parasite cytokinins relations. Funct. Plant Biol. 32 619–629. 10.1071/FP04168 PubMed DOI
Jiang L., Liu X., Xiong G., Liu H., Chen F., Wang L., et al. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504 401–405. 10.1038/nature12870 PubMed DOI PMC
Kaewchumnong K., Price A. H. (2008). A study on the susceptibility of rice cultivars to Striga hermonthica and mapping of Striga tolerance quantitative trait loci in rice. New Phytol. 180 206–216. 10.1111/j.1469-8137.2008.02568.x PubMed DOI
Kohlen W., Charnikhova T., Lammers M., Pollina T., Tóth P., Haider I., et al. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196 535–547. 10.1111/j.1469-8137.2012.04265.x PubMed DOI
Kong X., Zhang M., Ding Z. (2014). D53: the missing link in strigolactone signaling. Mol. Plant 7 761–763. 10.1093/mp/ssu016 PubMed DOI
Lee K. H., Piao H. L., Kim H. Y., Choi S. M., Jiang F., Hartung W., et al. (2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126 1109–1120. 10.1016/j.cell.2006.07.034 PubMed DOI
Letousey P., De Zélicourt A., Vieira Dos Santos C., Thoiron S., Monteau F., Simier P., et al. (2007). Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathol. 56 536–546. 10.1111/j.1365-3059.2007.01575.x DOI
Lin H., Wang R., Qian Q., Yan M., Meng X., Fu Z., et al. (2009). DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21 1512–1525. 10.1105/tpc.109.065987 PubMed DOI PMC
Liu J., He H., Vitali M., Visentin I., Charnikhova T., Haider I., et al. (2015). Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241 1435–1451. 10.1007/s00425-015-2266-8 PubMed DOI
Liu Z., Yan J. P., Li D. K., Luo Q., Yan Q., Liu Z. B., et al. (2015). UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiol. 167 1659–1670. 10.1104/pp.15.00053 PubMed DOI PMC
Longo A. M. G., Lo Monaco A., Mauromicale G. (2010). The effect of Phelipanche ramosa infection on the quality of tomato fruit. Weed Res. 50 58–66. 10.1111/j.1365-3180.2009.00752.x DOI
López-Ráez J. A., Kohlen W., Charnikhova T., Mulder P., Undas A. K., Sergeant M. J., et al. (2010). Does abscisic acid affect strigolactone biosynthesis? New Phytol. 187 343–354. 10.1111/j.1469-8137.2010.03291.x PubMed DOI
Mashiguchi K., Sasaki E., Shimada Y., Nagae M., Ueno K., Nakano T., et al. (2009). Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem. 73 2460–2465. 10.1271/bbb.90443 PubMed DOI
Mauromicale G., Monaco A. L., Longo A. M. G. (2008). Effect of branched broomrape (Orobanche ramosa) infection on the growth and photosynthesis of tomato. Weed Sci. 56 574–581. 10.1614/WS-07-147.1 DOI
Morris S. E., Turnbull C. G., Murfet I. C., Beveridge C. A. (2001). Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126 1205–1213. 10.1104/pp.126.3.1205 PubMed DOI PMC
Nelson D. C., Scaffidi A., Dun E. A., Waters M. T., Flematti G. R., Dixon K. W., et al. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 108 8897–8902. 10.1073/pnas.1100987108 PubMed DOI PMC
Parker C. (2009). Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65 453–459. 10.1002/ps.1713 PubMed DOI
Ranjan A., Ichihashi Y., Farhi M., Zumstein K., Townsley B., David-Schwartz R., et al. (2014). De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol. 166 1186–1199. 10.1104/pp.113.234864 PubMed DOI PMC
Sauter A., Dietz K. J., Hartung W. (2002). A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ. 25 223–228. 10.1046/j.1365-3040.2002.00747.x PubMed DOI
Shimizu-Sato S., Mori H. (2001). Control of outgrowth and dormancy in axillary buds. Plant Physiol. 127 1405–1413. 10.1104/pp.010841 PubMed DOI PMC
Suttle J. C. (2004). Physiological regulation of potato tuber dormancy. Am. J. Potato Res. 81 253–262. 10.1007/BF02871767 DOI
Suttle J. C., Hultstrand J. F. (1994). Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol. 105 891–896. 10.1104/pp.105.3.891 PubMed DOI PMC
Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2006). Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 57 2259–2266. 10.1093/jxb/erj193 PubMed DOI
Taylor A., Martin J., Seel W. E. (1996). Physiology of the parasitic association between maize and witchweed (Striga hermonthica): is ABA involved? J. Exp. Bot. 47 1057–1065. 10.1093/jxb/47.8.1057 DOI
Taylor A., Seel W. E. (1998). Do Striga hermonthica-induced changes in soil matric potential cause the reduction in stomatal conductance and growth of infected maize plants? New Phytol. 138 67–73. 10.1046/j.1469-8137.1998.00895.x DOI
Torres-Vera R., García J. M., Pozo M. J., López-Ráez J. A. (2014). Do strigolactones contribute to plant defence? Mol. Plant Pathol. 15 211–216. 10.1111/mpp.12074 PubMed DOI PMC
Torres-Vera R., García J. M., Pozo M. J., López-Ráez J. A. (2016). Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol. Mol. Plant Pathol. 94 100–107. 10.1016/j.pmpp.2016.05.007 DOI
Xie X., Yoneyama K., Yoneyama K. (2010). The strigolactone story. Annu. Rev. Phytopathol. 48 93–117. 10.1146/annurev-phyto-073009-114453 PubMed DOI
Xu Z. Y., Lee K. H., Dong T., Jeong J. C., Jin J. B., Kanno Y., et al. (2012). A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24 2184–2199. 10.1105/tpc.112.095935 PubMed DOI PMC
Yao C., Finlayson S. A. (2015). Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth. Plant Physiol. 169 611–626. 10.1104/pp.15.00682 PubMed DOI PMC
Zhang Y., van Dijk A. D., Scaffidi A., Flematti G. R., Hofmann M., Charnikhova T., et al. (2014). Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10 1028–1033. 10.1038/nchembio.1660 PubMed DOI
Zhao L. H., Zhou X. E., Wu Z. S., Yi W., Xu Y., Li S., et al. (2013). Crystal structures of two phytohormone signal-transducing alpha/beta hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23 436–439. 10.1038/cr.2013.19 PubMed DOI PMC