Hormonomic Changes Driving the Negative Impact of Broomrape on Plant Host Interactions with Arbuscular Mycorrhizal Fungi

. 2021 Dec 20 ; 22 (24) : . [epub] 20211220

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34948474

Grantová podpora
DN06/9 Bulgarian Science Fund
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Sports of Czech Republic and the European Regional Development Fund

Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.

Zobrazit více v PubMed

Hu L.F., Robert C.A.M., Cadot S., Zhang X., Ye M., Li B.B., Manzo D., Chervet N., Steinger T., van der Heijden M.G.A., et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018;9:2738. doi: 10.1038/s41467-018-05122-7. PubMed DOI PMC

Zhalnina K., Louie K.B., Hao Z., Mansoori N., da Rocha U.N., Shi S.J., Cho H.J., Karaoz U., Loque D., Bowen B.P., et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018;3:470–480. doi: 10.1038/s41564-018-0129-3. PubMed DOI

Haichar F.E., Santaella C., Heulin T., Achouak W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014;77:69–80. doi: 10.1016/j.soilbio.2014.06.017. DOI

van Dam N.M., Bouwmeester H.J. Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–265. doi: 10.1016/j.tplants.2016.01.008. PubMed DOI

Korenblum E., Dong Y.H., Szymanski J., Panda S., Jozwiak A., Massalha H., Meir S., Rogachev I., Aharoni A. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl. Acad. Sci. USA. 2020;117:3874–3883. doi: 10.1073/pnas.1912130117. PubMed DOI PMC

Giovannini L., Palla M., Agnolucci M., Avio L., Sbrana C., Turrini A., Giovannetti M. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy. 2020;10:106. doi: 10.3390/agronomy10010106. DOI

Bouwmeester H.J., Roux C., Lopez-Raez J.A., Becard G. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 2007;12:224–230. doi: 10.1016/j.tplants.2007.03.009. PubMed DOI

Choi J., Summers W., Paszkowski U. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 2018;56:135–160. doi: 10.1146/annurev-phyto-080516-035521. PubMed DOI

Bouwmeester H., Li C.S., Thiombiano B., Rahimi M., Dong L.M. Adaptation of the parasitic plant lifecycle: Germination is controlled by essential host signaling molecules. Plant Physiol. 2021;185:1292–1308. doi: 10.1093/plphys/kiaa066. PubMed DOI PMC

Nelson D.C. The mechanism of host-induced germination in root parasitic plants. Plant Physiol. 2021;185:1353–1373. doi: 10.1093/plphys/kiab043. PubMed DOI PMC

Ueno K., Furumoto T., Umeda S., Mizutani M., Takikawa H., Batchvarova R., Sugimoto Y. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry. 2014;108:122–128. doi: 10.1016/j.phytochem.2014.09.018. PubMed DOI

Raupp F.M., Spring O. New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J. Agric. Food Chem. 2013;61:10481–10487. doi: 10.1021/jf402392e. PubMed DOI

Xie X.N., Yoneyama K., Kisugi T., Uchida K., Ito S., Akiyama K., Hayashi H., Yokota T., Nomura T., Yoneyama K. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol. Plant. 2013;6:153–163. doi: 10.1093/mp/sss139. PubMed DOI PMC

Brun G., Braem L., Thoiron S., Gevaert K., Goormachtig S., Delavault P. Seed germination in parasitic plants: What insights can we expect from strigolactone research? J. Exp. Bot. 2018;69:2265–2280. doi: 10.1093/jxb/erx472. PubMed DOI

Gobena D., Shimels M., Rich P.J., Ruyter-Spira C., Bouwmeester H., Kanuganti S., Mengiste T., Ejeta G. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc. Natl. Acad. Sci. USA. 2017;114:4471–4476. doi: 10.1073/pnas.1618965114. PubMed DOI PMC

Cardoso C., Charnikhova T., Jamil M., Delaux P.M., Verstappen F., Amini M., Lauressergues D., Ruyter-Spira C., Bouwmeester H. Differential activity of Striga hermonthica seed germination stimulants and Gigaspora rosea hyphal branching factors in rice and their contribution to underground communication. PLoS ONE. 2014;9:e104201. doi: 10.1371/journal.pone.0104201. PubMed DOI PMC

Burger M., Chory J. The many models of strigolactone signaling. Trends Plant Sci. 2020;25:395–405. doi: 10.1016/j.tplants.2019.12.009. PubMed DOI PMC

Machin D.C., Hamon-Josse M., Bennett T. Fellowship of the rings: A saga of strigolactones and other small signals. New Phytol. 2020;225:621–636. doi: 10.1111/nph.16135. PubMed DOI

Conn C.E., Bythell-Douglas R., Neumann D., Yoshida S., Whittington B., Westwood J.H., Shirasu K., Bond C.S., Dyer K.A., Nelson D.C. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science. 2015;349:540–543. doi: 10.1126/science.aab1140. PubMed DOI

Dor E., Plakhine D., Joel D.M., Larose H., Westwood J.H., Smirnov E., Ziadna H., Hershenhorn J. A new race of sunflower broomrape (Orobanche cumana) with a wider host range due to changes in seed response to strigolactones. Weed Sci. 2020;68:134–142. doi: 10.1017/wsc.2019.73. DOI

Liao D.H., Wang S.S., Cui M.M., Liu J.H., Chen A.Q., Xu G.H. Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 2018;19:3146. doi: 10.3390/ijms19103146. PubMed DOI PMC

Gutjahr C. Phytohormone signaling in arbuscular mycorhiza development. Curr. Opin. Plant Biol. 2014;20:26–34. doi: 10.1016/j.pbi.2014.04.003. PubMed DOI

Ludwig-Müller J. The Model Legume Medicago Truncatula. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2020. Auxins and other phytohormones as signals in arbuscular mycorrhiza formation; pp. 766–776. DOI

Floss D.S., Levy J.G., Levesque-Tremblay V., Pumplin N., Harrison M.J. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA. 2013;110:E5025–E5034. doi: 10.1073/pnas.1308973110. PubMed DOI PMC

Achard P., Cheng H., de Grauwe L., Decat J., Schoutteten H., Moritz T., van der Straeten D., Peng J.R., Harberd N.P. Integration of plant responses to environmentally activated phytohormonal signals. Science. 2006;311:91–94. doi: 10.1126/science.1118642. PubMed DOI

Foo E. Auxin influences strigolactones in pea mycorrhizal symbiosis. J. Plant Physiol. 2013;170:523–528. doi: 10.1016/j.jplph.2012.11.002. PubMed DOI

Martin-Rodriguez J.A., Leon-Morcillo R., Vierheilig H., Ocampo J.A., Ludwig-Muller J., Garcia-Garrido J.M. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol. 2011;190:193–205. doi: 10.1111/j.1469-8137.2010.03610.x. PubMed DOI

Cosme M., Ramireddy E., Franken P., Schmulling T., Wurst S. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza. 2016;26:709–720. doi: 10.1007/s00572-016-0706-3. PubMed DOI PMC

Pons S., Fournier S., Chervin C., Becard G., Rochange S., Frey N.F.D., Pages V.P. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS ONE. 2020;15:e0240886. doi: 10.1371/journal.pone.0240886. PubMed DOI PMC

Cui S.K., Kubota T., Nishiyama T., Ishida J.K., Shigenobu S., Shibata T.F., Toyoda A., Hasebe M., Shirasu K., Yoshida S. Ethylene signaling mediates host invasion by parasitic plants. Sci. Adv. 2020;6:eabc2385. doi: 10.1126/sciadv.abc2385. PubMed DOI PMC

Ishida J.K., Wakatake T., Yoshida S., Takebayashi Y., Kasahara H., Wafula E., Depamphilis C.W., Namba S., Shirasu K. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell. 2016;28:1795–1814. doi: 10.1105/tpc.16.00310. PubMed DOI PMC

Zhang M., Ma Y.Q., Zhong W.J., Jia X.T., Wu D.R., Yu R., Ye X.X. N-P-K ratio affects exudation of germination stimulants and resistance of tobacco seedlings to broomrapes. Plant Growth Regul. 2015;76:281–288. doi: 10.1007/s10725-014-9999-4. DOI

Nagahashi G., Douds D.D. Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol. Res. 2000;104:1453–1464. doi: 10.1017/S0953756200002860. DOI

Yoneyama K., Xie X.N., Kusumoto D., Sekimoto H., Sugimoto Y., Takeuchi Y., Yoneyama K. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta. 2007;227:125–132. doi: 10.1007/s00425-007-0600-5. PubMed DOI

Dobrev P.I., Hoyerova K., Petrasek J. Auxins and Cytokinins in Plant Biology: Methods and Protocols. Volume 1569. Humana Press; New York, NY, USA: 2017. Analytical determination of auxins and cytokinins; pp. 31–39. PubMed DOI

Weng J.K., Ye M.L., Li B., Noel J.P. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell. 2016;166:881–893. doi: 10.1016/j.cell.2016.06.027. PubMed DOI

Cheng X., Flokova K., Bouwmeester H., Ruyter-Spira C. The role of endogenous strigolactones and their interaction with ABA during the infection process of the parasitic weed Phelipanche ramosa in tomato plants. Front. Plant Sci. 2017;8:392. doi: 10.3389/fpls.2017.00392. PubMed DOI PMC

Olatunji D., Geelen D., Verstraeten I. Control of endogenous auxin levels in plant root development. Int. J. Mol. Sci. 2017;18:2587. doi: 10.3390/ijms18122587. PubMed DOI PMC

Lomin S.N., Krivosheev D.M., Steklov M.Y., Arkhipov D.V., Osolodkin D.I., Schmulling T., Romanov G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC

Gajdosova S., Spichal L., Kaminek M., Hoyerova K., Novak O., Dobrev P.I., Galuszka P., Klima P., Gaudinova A., Zizkova E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Raspor M., Motyka V., Ninkovic S., Dobrev P.I., Malbeck J., Cosic T., Cingel A., Savic J., Tadic V., Dragicevic I.C. Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci. Rep. 2020;10:3437. doi: 10.1038/s41598-020-60412-9. PubMed DOI PMC

Hosek P., Hoyerova K., Kiran N.S., Dobrev P.I., Zahajska L., Filepova R., Motyka V., Mueller K., Kaminek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2020;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI

Miransari M., Abrishamchi A., Khoshbakht K., Niknam V. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 2014;34:123–133. doi: 10.3109/07388551.2012.731684. PubMed DOI

Sugawara S., Mashiguchi K., Tanaka K., Hishiyama S., Sakai T., Hanada K., Kinoshita-Tsujimura K., Yu H., Dai X.H., Takebayashi Y., et al. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 2015;56:1641–1654. doi: 10.1093/pcp/pcv088. PubMed DOI PMC

Widhalm J.R., Dudareva N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant. 2015;8:83–97. doi: 10.1016/j.molp.2014.12.001. PubMed DOI

Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI

Halouzka R., Zeljkovic S.C., Klejdus B., Tarkowski P. Analytical methods in strigolactone research. Plant Methods. 2020;16:76. doi: 10.1186/s13007-020-00616-2. PubMed DOI PMC

Flokova K., Shimels M., Jimenez B.A., Bardaro N., Strnad M., Novak O., Bouwmeester H.J. An improved strategy to analyse strigolactones in complex sample matrices using UHPLC-MS/MS. Plant Methods. 2020;16:125. doi: 10.1186/s13007-020-00669-3. PubMed DOI PMC

Popova V.I.T., Stoyanova A., Nikolova V., Hristeva T., Docheva M., Nikolov N., Iliev I. Polyphenols and triterpenes in leaves and extracts from three Nicotiana species. J. Appl. Biol. Biotechnol. 2019;7:45–49. doi: 10.7324/JABB.2019.70508. DOI

Boutet-Mercey S., Perreau F., Roux A., Clave G., Pillot J.P., Schmitz-Afonso I., Touboul D., Mouille G., Rameau C., Boyer F.D. Validated method for strigolactone quantification by ultra high-performance liquid chromatography—Electrospray ionisation tandem mass spectrometry using novel deuterium labelled standards. Phytochem. Anal. 2018;29:59–68. doi: 10.1002/pca.2714. PubMed DOI

Lopez-Raez J.A., Charnikhova T., Gomez-Roldan V., Matusova R., Kohlen W., de Vos R., Verstappen F., Puech-Pages V., Becard G., Mulder P., et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008;178:863–874. doi: 10.1111/j.1469-8137.2008.02406.x. PubMed DOI

Louarn J., Carbonne F., Delavault P., Becard G., Rochange S. Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. PLoS ONE. 2012;7:e49273. doi: 10.1371/journal.pone.0049273. PubMed DOI PMC

Lopez-Raez J.A., Charnikhova T., Fernandez I., Bouwmeester H., Pozo M.J. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J. Plant Physiol. 2011;168:294–297. doi: 10.1016/j.jplph.2010.08.011. PubMed DOI

Staehelin C., Xie Z.P., Illana A., Vierheilig H. Long-distance transport of signals during symbiosis are nodule formation and mycorrhization autoregulated in a similar way? Plant Signal. Behav. 2011;6:372–377. doi: 10.4161/psb.6.3.13881. PubMed DOI PMC

Lopez-Raez J.A., Shirasu K., Foo E. Strigolactones in plant interactions with beneficial and detrimental organisms: The Yin and Yang. Trends Plant Sci. 2017;22:527–537. doi: 10.1016/j.tplants.2017.03.011. PubMed DOI

Zagorchev L., Stoggl W., Teofanova D., Li J.M., Kranner I. Plant parasites under pressure: Effects of abiotic stress on the interactions between parasitic plants and their hosts. Int. J. Mol. Sci. 2021;22:7418. doi: 10.3390/ijms22147418. PubMed DOI PMC

Herrera-Medina M.J., Steinkellner S., Vierheilig H., Bote J.A.O., Garrido J.M.G. Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 2007;175:554–564. doi: 10.1111/j.1469-8137.2007.02107.x. PubMed DOI

Torres-Vera R., Garcia J.M., Pozo M.J., Lopez-Raez J.A. Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol. Mol. Plant Pathol. 2016;94:100–107. doi: 10.1016/j.pmpp.2016.05.007. DOI

Torres-Vera R., Garcia J.M., Pozo M.J., Lopez-Raez J.A. Do strigolactones contribute to plant defence? Mol. Plant Pathol. 2014;15:211–216. doi: 10.1111/mpp.12074. PubMed DOI PMC

Lopez-Raez J.A., Kohlen W., Charnikhova T., Mulder P., Undas A.K., Sergeant M.J., Verstappen F., Bugg T.D.H., Thompson A.J., Ruyter-Spira C., et al. Does abscisic acid affect strigolactone biosynthesis? New Phytol. 2010;187:343–354. doi: 10.1111/j.1469-8137.2010.03291.x. PubMed DOI

Etemadi M., Gutjahr C., Couzigou J.M., Zouine M., Lauressergues D., Timmers A., Audran C., Bouzayen M., Becard G., Combier J.P. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol. 2014;166:281–292. doi: 10.1104/pp.114.246595. PubMed DOI PMC

Shaul-Keinan O., Gadkar V., Ginzberg I., Grunzweig J.M., Chet I., Elad Y., Wininger S., Belausov E., Eshed Y., Arzmon N., et al. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol. 2002;154:501–507. doi: 10.1046/j.1469-8137.2002.00388.x. PubMed DOI

Kieber J.J., Schaller G.E. Cytokinin signaling in plant development. Development. 2018;145:dev149344. doi: 10.1242/dev.149344. PubMed DOI

Goyet V., Billard E., Pouvreau J.B., Lechat M.M., Pelletier S., Bahut M., Monteau F., Spichal L., Delavault P., Montiel G., et al. Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal. J. Exp. Bot. 2017;68:5539–5552. doi: 10.1093/jxb/erx359. PubMed DOI PMC

Kirilova I., Hristeva T., Denev I. Identification of seeds of Phelipanche ramosa, Phelipanche mutelii and Orobanche cumana in the soils from different agricultural regions in Bulgaria by molecular markers. Biotechnol. Biotechnol. Equip. 2019;33:520–528. doi: 10.1080/13102818.2019.1591933. DOI

Prerostova S., Dobrev P.I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., Prasil I.T., Janda T., Brzobohaty B., Skalak J., et al. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC

Dobrev P.I., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Dobrev P.I., Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 2012;913:251–261. doi: 10.1007/978-1-61779-986-0_17. PubMed DOI

Koske R.E., Gemma J.N. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 1989;92:486–505. doi: 10.1016/S0953-7562(89)80195-9. DOI

Giovannetti M., Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980;84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace