An improved strategy to analyse strigolactones in complex sample matrices using UHPLC-MS/MS
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32963580
PubMed Central
PMC7499983
DOI
10.1186/s13007-020-00669-3
PII: 669
Knihovny.cz E-zdroje
- Klíčová slova
- Phosphate starvation, Phytohormones, Quantitative analysis, Solid phase extraction (SPE), Strigolactones, UHPLC–MS/MS,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Strigolactones represent the most recently described group of plant hormones involved in many aspects of plant growth regulation. Simultaneously, root exuded strigolactones mediate rhizosphere signaling towards beneficial arbuscular mycorrhizal fungi, but also attract parasitic plants. The seed germination of parasitic plants induced by host strigolactones leads to serious agricultural problems worldwide. More insight in these signaling molecules is hampered by their extremely low concentrations in complex soil and plant tissue matrices, as well as their instability. So far, the combination of tailored isolation-that would replace current unspecific, time-consuming and labour-intensive processing of large samples-and a highly sensitive method for the simultaneous profiling of a broad spectrum of strigolactones has not been reported. RESULTS: Depending on the sample matrix, two different strategies for the rapid extraction of the seven structurally similar strigolactones and highly efficient single-step pre-concentration on polymeric RP SPE sorbent were developed and validated. Compared to conventional methods, controlled temperature during the extraction and the addition of an organic modifier (acetonitrile, acetone) to the extraction solvent helped to tailor strigolactone isolation from low initial amounts of root tissue (150 mg fresh weight, FW) and root exudate (20 ml), which improved both strigolactone stability and sample purity. We have designed an efficient UHPLC separation with sensitive MS/MS detection for simultaneous analysis of seven natural strigolactones including their biosynthetic precursors-carlactone and carlactonoic acid. In combination with the optimized UHPLC-MS/MS method, attomolar detection limits were achieved. The new method allowed successful profiling of seven strigolactones in small exudate and root tissue samples of four different agriculturally important plant species-sorghum, rice, pea and tomato. CONCLUSION: The established method provides efficient strigolactone extraction with aqueous mixtures of less nucleophilic organic solvents from small root tissue and root exudate samples, in combination with rapid single-step pre-concentration. This method improves strigolactone stability and eliminates the co-extraction and signal of matrix-associated contaminants during the final UHPLC-MS/MS analysis with an electrospray interface, which dramatically increases the overall sensitivity of the analysis. We show that the method can be applied to a variety of plant species.
Zobrazit více v PubMed
Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH. Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol. 2003;6:358–364. doi: 10.1016/S1369-5266(03)00065-7. PubMed DOI
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455:195–200. doi: 10.1038/nature07272. PubMed DOI
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J, et al. Strigolactone inhibition of shoot branching. Nature. 2008;455:189–194. doi: 10.1038/nature07271. PubMed DOI
Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol. 2015;66:161–186. doi: 10.1146/annurev-arplant-043014-114759. PubMed DOI
Akiyama K, Matsuzaki KI, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–827. doi: 10.1038/nature03608. PubMed DOI
López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008;178:863–874. doi: 10.1111/j.1469-8137.2008.02406.x. PubMed DOI
Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, et al. Origin of strigolactones in the green lineage. New Phytol. 2012;195:857–871. doi: 10.1111/j.1469-8137.2012.04209.x. PubMed DOI
Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K. 2′-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem. 2007;300:8067–8072. doi: 10.1021/jf0715121. PubMed DOI
Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta. 2007;2007:1031–1038. doi: 10.1007/s00425-006-0410-1. PubMed DOI
Yoneyama K, Arakawa R, Ishimoto K, Kim HI, Kisugi T, Xie X, et al. Difference in striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol. 2015;206:983–989. doi: 10.1111/nph.13375. PubMed DOI
Ueno K, Sugimoto Y, Zwanenburg B. The genuine structure of alectrol: end of a long controversy. Phytochem Rev. 2015;14:835–847. doi: 10.1007/s11101-014-9380-2. DOI
Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyema K, Uchida K, et al. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry. 2014;103:85–88. doi: 10.1016/j.phytochem.2014.03.030. PubMed DOI
Charnikhova TV, Gaus K, Lumbroso A, Sanders M, Vincken JP, De Mesmaeker A, et al. Zealactones. Novel natural strigolactones from maize. Phytochemistry. 2017;137:123–131. doi: 10.1016/j.phytochem.2017.02.010. PubMed DOI
Charnikhova TV, Gaus K, Lumbroso A, Sanders M, Vincken JP, De Mesmaeker A, et al. Zeapyranolactone—a novel strigolactone from maize. Phytochem Lett. 2018;24:172–178. doi: 10.1016/j.phytol.2018.01.003. DOI
Zwanenburg B, Pospíšil T. Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant. 2013;6:38–62. doi: 10.1093/mp/sss141. PubMed DOI
Akiyama K, Ogasawara S, Ito S, Hayashi H. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 2010;51:1104–1117. doi: 10.1093/pcp/pcq058. PubMed DOI PMC
Boyer F-D, de Saint Germain A, Pillot J-P, Pouvreau J-B, Chen VX, Ramos S, et al. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 2012;159:1524–1544. doi: 10.1104/pp.112.195826. PubMed DOI PMC
Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature. 2016;536:469–473. doi: 10.1038/nature19073. PubMed DOI
Halouzka R, Tarkowski P, Zwanenburg B, Ćavar Zeljković S. Stability of strigolactone analog GR24 toward nucleophiles. Pest Manag Sci. 2018;74:896–904. doi: 10.1002/ps.4782. PubMed DOI
Boutet-Mercey S, Perreau F, Roux A, Clavé G, Pillot JP, Schmitz-Afonso I, et al. Validated method for strigolactone quantification by ultra high-performance liquid chromatography—electrospray ionisation tandem mass spectrometry using novel deuterium labelled standards. Phytochem Anal. 2018;29:59–68. doi: 10.1002/pca.2714. PubMed DOI
Sato D, Awad AA, Chae SH, Yokota T, Sugimoto Y, Takeuchi Y, et al. Analysis of strigolactones, germination stimulants for Striga and Orobanche, by high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem. 2003;51:1162–1168. doi: 10.1021/jf025997z. PubMed DOI
Yoneyama K, Xie X, Nomura T, Yoneyama K. Extraction and measurement of strigolactones in sorghum roots. Bio-Protocol. 2016;2016:6.
Müller S, Hauck C, Schildknecht H. Germination stimulants produced by Vigna unguiculata Walp cv Saunders Upright. J Plant Growth Regul. 1992;1992:77–84. doi: 10.1007/BF00198018. DOI
Hayashi H, Akiyama K. Strigolactones: host recognition signals for arbuscular mycorrhizal fungi. In: Proceeding of the international seminar on chemistry. Jatinangor Indonesia. 30–31 October 2008. ISBN 978-979-18962-0-7, 55-61.
Siame BA, Weerasuriya Y, Wood K, Ejeta G, Butler LG. Isolation of Strigol, a germination stimulant for Striga asiatica, from host plants. J Agric Food Chem. 1993;41:1486–1491. doi: 10.1021/jf00033a025. DOI
Yasuda N, Sugimoto Y, Kato M, Inanaga S. (+)-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry. 2003;62:1115–1119. doi: 10.1016/S0031-9422(02)00679-9. PubMed DOI
Sato D, Awad AA, Takeuchi Y, Yoneyama K. Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem. 2005;69:98–102. doi: 10.1271/bbb.69.98. PubMed DOI
Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, et al. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant. 2013;6:153–163. doi: 10.1093/mp/sss139. PubMed DOI PMC
Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 2010;51:1095–1103. doi: 10.1093/pcp/pcq055. PubMed DOI PMC
Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 2011;155:974–987. doi: 10.1104/pp.110.164640. PubMed DOI PMC
Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, et al. Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci. 2014;111:1640–1645. doi: 10.1073/pnas.1314805111. PubMed DOI PMC
Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, et al. Plant Hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC
Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 2010;51:1118–1126. doi: 10.1093/pcp/pcq084. PubMed DOI PMC
Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol. 2014;10:1028–1033. doi: 10.1038/nchembio.1660. PubMed DOI
Ueno K, Hanada A, Yamaguchi S, Asami T. Preparation of multideuterated 5-deoxystrigol for use as an internal standard for quantitative LC/MS. J Label Compd Radiopharm. 2010;53:763–766. doi: 10.1002/jlcr.1789. DOI
Zwanenburg B, Ćavar Zeljković S, Pospíšil T. Synthesis of strigolactones, a strategic account. Pest Manag Sci. 2016;72:15–29. doi: 10.1002/ps.4105. PubMed DOI
Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, et al. Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol. 2014;56:1059–1072. doi: 10.1093/pcp/pcv028. PubMed DOI
Rial C, Varela RM, Molinillo JMG, López-Ráez JA, Macías FA. A new UHPLC–MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem Anal. 2018;2018:110–116. PubMed
Mangnus EM, Zwanenburg B. Synthesis, structural characterization, and biological evaluation of all four enantiomers of strigol Analog GR7. J Agric Food Chem. 1992;40:697–700. doi: 10.1021/jf00016a035. DOI
Akiyama K, Hayashi H. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot. 2006;97:925–931. doi: 10.1093/aob/mcl063. PubMed DOI PMC
Zwanenburg B, Mwakaboko AS, Kannan C. Suicidal germination for parasitic weed control. Pest Manag Sci. 2016;72:2016–2025. doi: 10.1002/ps.4222. PubMed DOI
Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, et al. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta. 2012;235:1197–1207. doi: 10.1007/s00425-011-1568-8. PubMed DOI PMC
Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, et al. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 2016;212:954–963. doi: 10.1111/nph.14190. PubMed DOI
Pavan S, Schiavulli A, Marcotrigiano AR, Bardaro N, Bracuto V, Ricciardi F, et al. Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.) Mol Plant-Microbe Interact. 2016;29:743–749. doi: 10.1094/MPMI-07-16-0134-R. PubMed DOI
Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, et al. The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot. 2018;69:2403–2414. PubMed
Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI
Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester HJ. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta. 2012;235:473–484. doi: 10.1007/s00425-011-1520-y. PubMed DOI PMC
López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol. 2011;168:294–297. doi: 10.1016/j.jplph.2010.08.011. PubMed DOI
Mohemed N, Charnikhova T, Fradin EF, Rienstra J, Babiker AGT, Bouwmeester HJ. Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. J Exp Bot. 2018;69:2415–2430. doi: 10.1093/jxb/ery041. PubMed DOI PMC
Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, et al. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot. 2014;65:6735–6746. doi: 10.1093/jxb/eru029. PubMed DOI PMC
Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal Chem. 2003;75:3019–3030. doi: 10.1021/ac020361s. PubMed DOI
Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SON, et al. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci. 2014;111:2379–2384. doi: 10.1073/pnas.1317360111. PubMed DOI PMC
Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, et al. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci. 2017;114:4471–4476. doi: 10.1073/pnas.1618965114. PubMed DOI PMC
Koltai H, Lekkala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, et al. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot. 2010;61:1739–1749. doi: 10.1093/jxb/erq041. PubMed DOI PMC
Zhang Y, Cheng X, Wang Y, Díez-Simón C, Flokova K, Bimbo A, et al. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytol. 2018;219:297–309. doi: 10.1111/nph.15131. PubMed DOI
Yoneyama K, Mori N, Sato T, Yoda A, Xie X, Okamoto M, et al. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol. 2018;218:1522–1533. doi: 10.1111/nph.15055. PubMed DOI
Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci. 2014;111:18084–18090. doi: 10.1073/pnas.1410801111. PubMed DOI PMC
Can plant hormonomics be built on simple analysis? A review
Plant Growth Regulators in Tree Rooting
A stable isotope dilution method for a highly accurate analysis of karrikins