A stable isotope dilution method for a highly accurate analysis of karrikins

. 2021 Apr 01 ; 17 (1) : 37. [epub] 20210401

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33794941

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 Ministerstvo Školství, Mládeže a Tělovýchovy
IGA_PrF_2021_011 Univerzita Palackého v Olomouci

Odkazy

PubMed 33794941
PubMed Central PMC8017846
DOI 10.1186/s13007-021-00738-1
PII: 10.1186/s13007-021-00738-1
Knihovny.cz E-zdroje

BACKGROUND: Karrikins (KARs) are recently described group of plant growth regulators with stimulatory effects on seed germination, seedling growth and crop productivity. So far, an analytical method for the simultaneous targeted profiling of KARs in plant tissues has not been reported. RESULTS: We present a sensitive method for the determination of two highly biologically active karrikins (KAR1 and KAR2) in minute amounts of plant material (< 20 mg fresh weight). The developed protocol combines the optimized extraction and efficient single-step sample purification with ultra-high performance liquid chromatography-tandem mass spectrometry. Newly synthesized deuterium labelled KAR1 was employed as an internal standard for the validation of KAR quantification using a stable isotope dilution method. The application of the matrix-matched calibration series in combination with the internal standard method yields a high level of accuracy and precision in triplicate, on average bias 3.3% and 2.9% RSD, respectively. The applicability of this analytical approach was confirmed by the successful analysis of karrikins in Arabidopsis seedlings grown on media supplemented with different concentrations of KAR1 and KAR2 (0.1, 1.0 and 10.0 µmol/l). CONCLUSIONS: Our results demonstrate the usage of methodology for routine analyses and for monitoring KARs in complex biological matrices. The proposed method will lead to better understanding of the roles of KARs in plant growth and development.

Zobrazit více v PubMed

Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. A compound from smoke that promotes seed germination. Science. 2004;305:977. doi: 10.1126/science.1099944. PubMed DOI

Van Staden J, Jäger AK, Light ME, Burger BV. Isolation of the major germination cue from plant-derived smoke. South African J Bot. 2004;70:654–659. doi: 10.1016/S0254-6299(15)30206-4. DOI

Flematti GR, Dixon KW, Smith SM. What are karrikins and how were they “discovered” by plants? BMC Biol. 2015;13:108. doi: 10.1186/s12915-015-0219-0. PubMed DOI PMC

Light ME, Burger BV, van Staden J. Formation of a seed germination promoter from carbohydrates and amino acids. J Agric Food Chem. 2005;53(15):5936–5942. doi: 10.1021/jf050710u. PubMed DOI

Light ME, Van Staden J. The potential of smoke in seed technology. South Afr J Bot. 2004;70:97–101. doi: 10.1016/S0254-6299(15)30311-2. DOI

Gupta S, Hrdlička J, Ngoroyemoto N, Nemahunguni NK, Gucký T, Novák O, et al. Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. J Plant Growth Regul. 2020;39:338–345. doi: 10.1007/s00344-019-09985-y. DOI

Carbonnel S, Torabi S, Griesmann M, Bleek E, Tang Y, Buchka S, et al. Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genet. 2020;16:1–34. doi: 10.1371/journal.pgen.1009249. PubMed DOI PMC

Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH. Secondary metabolite signalling in host – parasitic plant interactions. Curr Opin Plant Biol. 2003;6:358–364. doi: 10.1016/S1369-5266(03)00065-7. PubMed DOI

Humphrey AJ, Galster AM, Beale MH. Strigolactones in chemical ecology: waste products or vital allelochemicals? Nat Prod Rep. 2006;23:592–614. doi: 10.1039/b512776a. PubMed DOI

Morffy N, Faure L, Nelson DC. Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet. 2016;32:176–188. doi: 10.1016/j.tig.2016.01.002. PubMed DOI PMC

De Cuyper C, Struk S, Braem L, Gevaert K, De Jaeger G, Goormachtig S. Strigolactones, karrikins and beyond. Plant Cell Environ. 2017;40:1691–1703. doi: 10.1111/pce.12996. PubMed DOI

Novák O, Napier R, Ljung K. Zooming in on plant hormone analysis: tissue- and cell-specific approaches. Annu Rev Plant Biol. 2017;68:323–348. doi: 10.1146/annurev-arplant-042916-040812. PubMed DOI

Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, et al. Quo vadis plant hormone analysis? Planta. 2014;240:55–76. doi: 10.1007/s00425-014-2063-9. PubMed DOI

Hedden P. Modern methods for the quantitative analysis of plant hormones. Annu Rev Plant Physiol Plant Mol Biol. 1993;44:107–129. doi: 10.1146/annurev.pp.44.060193.000543. DOI

Pan X, Wang X. Profiling of plant hormones by mass spectrometry. J Chromatogr B. 2009;877:2806–2813. doi: 10.1016/j.jchromb.2009.04.024. PubMed DOI

Ljung K, Sandberg G, Moritz T. Methods of Plant Hormone Analysis. In: Davies PJ, editor. Plant Hormones. Dordrecht: Springer; 2010. pp. 671–694.

Du F, Ruan G, Liu H. Analytical methods for tracing plant hormones. Anal Bioanal Chem. 2012;403:55–74. doi: 10.1007/s00216-011-5623-x. PubMed DOI

Nováková L. Challenges in the development of bioanalytical liquid chromatography–mass spectrometry method with emphasis on fast analysis. J Chromatogr A. 2013;1292:25–37. doi: 10.1016/j.chroma.2012.08.087. PubMed DOI

Berg T, Strand DH. (13)C labelled internal standards – a solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs inbiological samples? J Chromatogr A. 2011;1218:9366–9374. doi: 10.1016/j.chroma.2011.10.081. PubMed DOI

Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, et al. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: An analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 2003;35:405–17. doi: 10.1046/j.1365-313X.2003.01800.x. PubMed DOI

Pan X, Welti R, Wang X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry. 2008;69:1773–1781. doi: 10.1016/j.phytochem.2008.02.008. PubMed DOI

Farrow SC, Emery RJN. Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Methods. 2012;8:42. doi: 10.1186/1746-4811-8-42. PubMed DOI PMC

Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, et al. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC

Hrdlička J, Gucký T, Novák O, Kulkarni M, Gupta S, Van Staden J, et al. Quantification of karrikins in smoke water using ultra-high performance liquid chromatography–tandem mass spectrometry. Plant Methods. 2019;15:81. doi: 10.1186/s13007-019-0467-z. PubMed DOI PMC

Ito S, Tsukada K. Matrix effect and correction by standard addition in quantitative liquid chromatographic–mass spectrometric analysis of diarrhetic shellfish poisoning toxins. J Chromatogr A. 2001;943:39–46. doi: 10.1016/S0021-9673(01)01429-7. PubMed DOI

Sun K, Chen Y, Wagerle T, Linnstaedt D, Currie M, Chmura P, et al. Synthesis of butenolides as seed germination stimulants. Tetrahedron Lett. 2008;49:2922–2925. doi: 10.1016/j.tetlet.2008.03.024. DOI

Floková K, Shimels M, Jimenez BA, Bardaro N, Strnad M, Novák O, et al. An improved strategy to analyse strigolactones in complex sample matrices using UHPLC–MS/MS. Plant Methods. 2020;16:125. doi: 10.1186/s13007-020-00669-3. PubMed DOI PMC

Bieleski RL. The problem of halting enzyme action when extracting plant tissues. Anal Biochem. 1964;9:431–442. doi: 10.1016/0003-2697(64)90204-0. PubMed DOI

Fukazawa T, Yamazaki Y, Miyamoto Y. Reduction of non-specific adsorption of drugs to plastic containers used in bioassays or analyses. J Pharmacol Toxicol Methods. 2010;61:329–333. doi: 10.1016/j.vascn.2009.12.005. PubMed DOI

Scaffidi A, Waters MT, Skelton BW, Bond CS, Sobolev AN, Bythell-Douglas R, et al. Solar irradiation of the seed germination stimulant karrikinolide produces two novel head-to-head cage dimers. Org Biomol Chem. 2012;10:4069–4073. doi: 10.1039/c2ob25090j. PubMed DOI

López-Ráez JA, Charnikhova T, Gómez-roldán V, Matusova R, Kohlen W, De VR, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008;178:863–874. doi: 10.1111/j.1469-8137.2008.02406.x. PubMed DOI

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455:195–200. doi: 10.1038/nature07272. PubMed DOI

Umehara M, Hanada A, Magome H, Takeda-kamiya N, Yamaguchi S. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 2010;51:1118–1126. doi: 10.1093/pcp/pcq084. PubMed DOI PMC

Novák O, Hényková E, Sairanen I, Kowalczyk M, Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI

Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI

Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, et al. The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but Not in the Bryophyte Physcomitrella patens. Plant Cell. 2007;19:3058–3079. doi: 10.1105/tpc.107.051524. PubMed DOI PMC

Zentella R, Zhang Z-L, Park M, Thomas SG, Endo A, Murase K, et al. Global analysis of DELLA direct targets in early gibberellin signaling in arabidopsis. Plant Cell. 2007;19:3037–3057. doi: 10.1105/tpc.107.054999. PubMed DOI PMC

Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry. 2008;69:2214–2224. doi: 10.1016/j.phytochem.2008.04.022. PubMed DOI

Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009;50:1201–1214. doi: 10.1093/pcp/pcp057. PubMed DOI PMC

Turečková V, Novák O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009;80:390–9. doi: 10.1016/j.talanta.2009.06.027. PubMed DOI

Jemal M. High-throughput quantitative bioanalysis by LC/MS/MS. Biomed Chromatogr. 2000;14:422–429. doi: 10.1002/1099-0801(200010)14:6<422::AID-BMC25>3.0.CO;2-I. PubMed DOI

Nováková L, Svoboda P, Pavlík J. Ultra-high performance liquid chromatography. In: Fanali, S., Haddad, P.R., Poole, C.F., Riekkola, M.-L., editors. Liquid Chromatography. Elsevier Inc.; 2017. p. 719–69.

Pratt JJ. Isotope dilution analysis using chromatographic separation of isotopic forms of the compound to be measured. Ann Clin Biochem. 1986;23:251–276. doi: 10.1177/000456328602300305. PubMed DOI

Fu Y, Li W, Flarakos J. Recommendations and best practices for calibration curves in quantitative LC–MS bioanalysis. Bioanalysis. 2019;11:1375–1377. doi: 10.4155/bio-2019-0149. PubMed DOI

Azadeh M, Gorovits B, Kamerud J, Macmannis S, Safavi A, Sailstad J, et al. Calibration curves in quantitative ligand binding assays: recommendations and best practices for preparation, design, and editing of calibration curves. AAPS J. 2017;20:22. doi: 10.1208/s12248-017-0159-4. PubMed DOI

Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–3030. doi: 10.1021/ac020361s. PubMed DOI

Poole CF. New trends in solid-phase extraction. Trends Anal Chem. 2003;22:362–373. doi: 10.1016/S0165-9936(03)00605-8. DOI

Caban M, Migowska N, Stepnowski P, Kwiatkowski M, Kumirska J. Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of β-blockers and β-agonists in environmental samples. J Chromatogr A. 2012;1258:117–127. doi: 10.1016/j.chroma.2012.08.029. PubMed DOI

Van Rhijn JA, Heskamp HH, Davelaar E, Jordi W, Leloux MS, Brinkman UAT. Quantitative determination of glycosylated and aglycon isoprenoid cytokinins at sub-picomolar levels by microcolumn liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A. 2001;929:31–42. doi: 10.1016/S0021-9673(01)01134-7. PubMed DOI

Urbanová T, Tarkowská D, Novák O, Hedden P, Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI

Kulkarni MG, Ascough GD, Van Staden J. Smoke-water and a Smoke-isolated Butenolide improve growth and yield of tomatoes under greenhouse conditions. HortThechnology. 2008;18:449–454. doi: 10.21273/HORTTECH.18.3.449. DOI

Rittenberg D, Foster GL. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940;133:737–744. doi: 10.1016/S0021-9258(18)73304-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace