Quantification of karrikins in smoke water using ultra-high performance liquid chromatography-tandem mass spectrometry
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
31372177
PubMed Central
PMC6659305
DOI
10.1186/s13007-019-0467-z
PII: 467
Knihovny.cz E-resources
- Keywords
- Karrikins, Smoke water, Standard addition method, Standard dilution method, Tandem mass spectrometry (MS/MS), Ultra-high performance liquid chromatography (UHPLC),
- Publication type
- Journal Article MeSH
BACKGROUND: Karrikins (KARs) are plant growth regulators that promote seed germination and the subsequent growth and development of seedlings of many plant species. In nature they are generated and released by combustion of plant material and promote the restoration of burned ecosystems. Smoke water can be artificially prepared as a saturated extract of all substances in smoke produced by burning plants, and it has various horticultural and agricultural applications. RESULTS: We have developed, validated and applied the first fast, specific and sensitive method, based on ultra-high performance liquid chromatography-tandem mass spectrometry, for quantifying KARs in smoke water. To assist these efforts and further analyses, standards of the main KARs (which are not commercially available) were synthesized. Due to the complex matrix of smoke waters, two quantification approaches (standard dilution with a structural KAR analogue and standard addition) were compared. The standard addition method allowed absolute quantification of KARs in six of eight smoke water samples of diverse origins and ages. CONCLUSIONS: Our findings reveal differences in both total and relative levels of KARs in smoke water, and indicate that differences in its KAR composition may be linked to variations in its bioactivity.
See more in PubMed
Flematti GR, Dixon KW, Smith SM. What are karrikins and how were they “discovered” by plants? BMC Biol. 2015;13:108. doi: 10.1186/s12915-015-0219-0. PubMed DOI PMC
De Lange JH, Boucher C. Autecological studies on Audouinia capitala (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot. 1990;56:700–703. doi: 10.1016/S0254-6299(16)31009-2. DOI
Jäger AK, Light ME, Van Staden J. Effects of source of plant material and temperature on the production of smoke extracts that promote germination of light-sensitive lettuce seeds. Environ Exp Bot. 1996;36:421–429. doi: 10.1016/S0098-8472(96)01024-6. DOI
Keeley JE, Fotheringham CJ. Trace gas emissions and smoke-induced seed germination. Science. 1997;276:1248–1250. doi: 10.1126/science.276.5316.1248. DOI
Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. A compound from smoke that promotes seed germination. Science. 2004;305:977. doi: 10.1126/science.1099944. PubMed DOI
Van Staden J, Jäger AK, Light ME, Burger BV. Isolation of the major germination cue from plant-derived smoke. S Afr J Bot. 2004;70:654–659. doi: 10.1016/S0254-6299(15)30206-4. DOI
Light ME, Burger BV, Van Staden J. Formation of a seed germination promoter from carbohydrates and amino acids. J Agric Food Chem. 2005;53:5936–5942. doi: 10.1021/jf050710u. PubMed DOI
Light ME, Daws MI, Van Staden J. Smoke-derived butenolide: towards understanding its biological effects. S Afr J Bot. 2009;75:1–7. doi: 10.1016/j.sajb.2008.10.004. DOI
Flematti GR, Goddard-Borger ED, Merritt DJ, Ghisalberti EL, Dixon KW, Trengove RD. Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. J Agric Food Chem. 2007;55:2189–2194. doi: 10.1021/jf0633241. PubMed DOI
Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J Agric Food Chem. 2009;57:9475–9480. doi: 10.1021/jf9028128. PubMed DOI
Verschaeve L, Maes J, Light ME, Van Staden J. Genetic toxicity testing of 3-methyl-2H-furo[2,3-c]pyran-2-one, an important biologically active compound from plant-derived smoke. Mutat Res. 2006;611:89–95. doi: 10.1016/j.mrgentox.2006.07.005. PubMed DOI
Chiwocha SDS, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, et al. Karrikins: a new family of plant growth regulators in smoke. Plant Sci. 2009;177:252–256. doi: 10.1016/j.plantsci.2009.06.007. DOI
Flematti GR, Scaffidi A, Goddard-Borger ED, Heath CH, Nelson DC, Commander LE, et al. Structure-activity relationship of karrikin germination stimulants. J Agric Food Chem. 2010;58:8612–8617. doi: 10.1021/jf101690a. PubMed DOI
Downes KS, Light ME, Pošta M, Kohout L, Van Staden J. Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-water and the smoke-derived compounds karrikinolide (KAR1) and glyceronitrile. Ann Bot. 2013;111:489–497. doi: 10.1093/aob/mcs300. PubMed DOI PMC
Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol. 2012;63:107–130. doi: 10.1146/annurev-arplant-042811-105545. PubMed DOI
Drewes FE, Smith MT, Van Staden J. The effect of a plant-derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul. 1995;16:205–209. doi: 10.1007/BF00029542. DOI
Jain N, Van Staden J. A smoke-derived butenolide improves early growth of tomato seedlings. Plant Growth Regul. 2006;50:139–148. doi: 10.1007/s10725-006-9110-x. DOI
Kulkarni MG, Sparg SG, Light ME, Van Staden J. Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. J Agron Crop Sci. 2006;192:395–398. doi: 10.1111/j.1439-037X.2006.00213.x. DOI
Kulkarni MG, Ascough GD, Van Staden J. Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. HortThecnology. 2008;6214:449–454. doi: 10.21273/HORTTECH.18.3.449. DOI
Nelson DC, Riseborough J-A, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, et al. Karrikins discovered in smoke trigger arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 2009;149:863–873. doi: 10.1104/pp.108.131516. PubMed DOI PMC
Sparg SG, Kulkarni MG, Van Staden J. Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop Sci. 2006;46:1336–1340. doi: 10.2135/cropsci2005.07-0324. DOI
Van Staden J, Sparg SG, Kulkarni MG, Light ME. Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. F Crop Res. 2006;98:98–105. doi: 10.1016/j.fcr.2005.12.007. DOI
Morffy N, Faure L, Nelson DC. Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet. 2016;32:176–188. doi: 10.1016/j.tig.2016.01.002. PubMed DOI PMC
Light ME, Gardner MJ, Jäger AK, Van Staden J. Dual regulation of seed germination by smoke solutions. Plant Growth Regul. 2002;37:135–141. doi: 10.1023/A:1020536711989. DOI
Light ME, Burger BV, Staerk D, Kohout L, Van Staden J. Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination. J Nat Prod. 2010;73:267–269. doi: 10.1021/np900630w. PubMed DOI
Light ME, Van Staden J. The potential of smoke in seed technology. S Afr J Bot. 2004;70:97–101. doi: 10.1016/S0254-6299(15)30311-2. DOI
Goddard-Borger ED, Ghisalberti EL, Stick RV. Synthesis of the germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one and analogous compounds from carbohydrates. Eur J Org Chem. 2007;23:3925–3934. doi: 10.1002/ejoc.200700334. DOI
Sun K, Chen Y, Wagerle T, Linnstaedt D, Currie M, Chmura P, et al. Synthesis of butenolides as seed germination stimulants. Tetrahedron Lett. 2008;49:2922–2925. doi: 10.1016/j.tetlet.2008.03.024. DOI
Stirk WA, Arthur GD, Lourens AF, Novák O, Strnad M, Van Staden J. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol. 2004;16:31–39. doi: 10.1023/B:JAPH.0000019057.45363.f5. DOI
Nováková L, Vlčková H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta. 2009;656:8–35. doi: 10.1016/j.aca.2009.10.004. PubMed DOI
Kulkarni MG, Light ME, Van Staden J. Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture. S Afr J Bot. 2011;77:972–979. doi: 10.1016/j.sajb.2011.08.006. DOI
Novák O, Napier R, Ljung K. Zooming in on plant hormone analysis: tissue- and cell-specific approaches. Annu Rev Plant Biol. 2017;68:323–348. doi: 10.1146/annurev-arplant-042916-040812. PubMed DOI
Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Ljung K, Sandberg G, Moritz T. Methods of Plant Hormone Analysis. In: Davies PJ, editor. Plant hormones. Dordrecht: Springer; 2010. pp. 671–694.
Zwanenburg B, Pospíšil T, Zeljković ĆS. Strigolactones: new plant hormones in action. Planta. 2016;243:1311–1326. doi: 10.1007/s00425-015-2455-5. PubMed DOI PMC
Ito S, Yamagami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, et al. Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiol. 2017;174:1250–1259. doi: 10.1104/pp.17.00301. PubMed DOI PMC
Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42:94–99. doi: 10.1093/nar/gku436. PubMed DOI PMC
Choi BK, Gusev AI, Hercules DM. Postcolumn introduction of an internal standard for quantitative LC–MS analysis. Anal Chem. 1999;71:4107–4110. doi: 10.1021/ac990312o. DOI
Arrivault S, Guenther M, Fry SC, Fuenfgeld MMFF, Veyel D, Mettler-Altmann T, et al. Synthesis and use of stable-isotope-labeled internal standards for quantification of phosphorylated metabolites by LC–MS/MS. Anal Chem. 2015;87:6896–6904. doi: 10.1021/acs.analchem.5b01387. PubMed DOI
Pagliano E, Meija J. Reducing the matrix effects in chemical analysis: fusion of isotope dilution and standard addition methods. Metrologia. 2016;53:829–834. doi: 10.1088/0026-1394/53/2/829. DOI
Nováková L. Challenges in the development of bioanalytical liquid chromatography–mass spectrometry method with emphasis on fast analysis. J Chromatogr A. 2013;1292:25–37. doi: 10.1016/j.chroma.2012.08.087. PubMed DOI
Tang L, Kebarle P. Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal Chem. 1993;65:3654–3668. doi: 10.1021/ac00072a020. DOI
Cappiello A, Famiglini G, Palma P, Pierini E, Termopoli V, Trufelli H. Overcoming matrix effects in liquid chromatography–mass spectrometry. Anal Chem. 2008;80:9343–9348. doi: 10.1021/ac8018312. PubMed DOI
Gosetti F, Mazzucco E, Zampieri D, Gennaro MC. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217:3929–3937. doi: 10.1016/j.chroma.2009.11.060. PubMed DOI
Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003;49:1041–1044. doi: 10.1373/49.7.1041. PubMed DOI
Westley C, Xu Y, Thilaganathan B, Carnell AJ, Turner NJ, Goodacre R. absolute quantification of uric acid in human urine using surface enhanced raman scattering with the standard addition method. Anal Chem. 2017;89:2472–2477. doi: 10.1021/acs.analchem.6b04588. PubMed DOI
Ito S, Tsukada K. Matrix effect and correction by standard addition in quantitative liquid chromatographic–mass spectrometric analysis of diarrhetic shellfish poisoning toxins. J Chromatogr A. 2001;943:39–46. doi: 10.1016/S0021-9673(01)01429-7. PubMed DOI
Baxter BJM, Van Staden J. Plant-derived smoke: an effective seed pre-treatment. Plant Growth Regul. 1994;14:279–282. doi: 10.1007/BF00024804. DOI
Baxter BJM, Van Staden J, Granger E, Brown NAC. Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra. Environ Exp Bot. 1994;34:217–223. doi: 10.1016/0098-8472(94)90042-6. DOI
Brown NAC, Van Staden J. Smoke as a germination cue: a review. Plant Spec Biol. 1997;22:115–124.
Adibekian A, Bindschädler P, Timmer MSM, Noti C, Schützenmeister N, Seeberger PH. De novo synthesis of uronic acid building blocks for assembly of heparin oligosaccharides. Chem - A Eur J. 2007;13:4510–4522. doi: 10.1002/chem.200700141. PubMed DOI
McIlvaine TC. A buffer solution for colorimetric comparison. J Biol Chem. 1921;49:183–186.
King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T. mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom. 2000;11:942–950. doi: 10.1016/S1044-0305(00)00163-X. PubMed DOI
Trufelli H, Palma P, Famiglini G, Cappiello A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2011;30:491–509. doi: 10.1002/mas.20298. PubMed DOI
Nováková L, Rentsch M, Perrenoud G-GA, Nicoli R, Saugy M, Veuthey J-L, et al. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. II: analysis of biological samples. Anal Chim Acta. 2015;853:647–659. doi: 10.1016/j.aca.2014.10.007. PubMed DOI
A stable isotope dilution method for a highly accurate analysis of karrikins
Potential of Karrikins as Novel Plant Growth Regulators in Agriculture