Potential of Karrikins as Novel Plant Growth Regulators in Agriculture
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
VEGA 1/0589/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
31888087
PubMed Central
PMC7020145
DOI
10.3390/plants9010043
PII: plants9010043
Knihovny.cz E-resources
- Keywords
- Arabidopsis, crops, karrikins, seed germination,
- Publication type
- Journal Article MeSH
- Review MeSH
Karrikins (KARs) have been identified as molecules derived from plant material smoke, which have the capacity to enhance seed germination for a wide range of plant species. However, KARs were observed to not only impact seed germination but also observed to influence several biological processes. The plants defected in the KARs signaling pathway were observed to grow differently with several morphological changes. The observation of KARs as a growth regulator in plants leads to the search for an endogenous KAR-like molecule. Due to its simple genomic structure, Arabidopsis (Arabidopsis thaliana L.) helps to understand the signaling mechanism of KARs and phenotypic responses caused by them. However, different species have a different phenotypic response to KARs treatment. Therefore, in the current work, updated information about the KARs effect is presented. Results of research on agricultural and horticultural crops are summarized and compared with the findings of Arabidopsis studies. In this article, we suggested that KARs may be more important in coping with modern problems than one could imagine.
See more in PubMed
IPCC . Climate Change and Land. IPCC; Geneva, Switzerland: 2019. [(accessed on 18 November 2019)]. Summary for Policymakers. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Available online: https://www.ipcc.ch/srccl/
Jain H.K. The Green Revolution: History, Impact and Future. Studium Press LLC; Houston, TX, USA: 2010.
Tripati A.K., Roberts C.D., Eagle R.A. Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years. Science. 2009;326:1394–1397. doi: 10.1126/science.1178296. PubMed DOI
Blunden J., Arndt D.S. State of the Climate in 2018. Bull. Am. Meteorol. Soc. 2019;100:9. doi: 10.1175/2019BAMSStateoftheClimate.1. DOI
Jolly W.M., Cochrane M.A., Freeborn P.H., Holden Z.A., Brown T.J., Williamson G.J., Bowman D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015;6:7537. doi: 10.1038/ncomms8537. PubMed DOI PMC
Wicklow D.T. Germination Response in Emmenanthe Penduliflora (Hydrophyllaceae) Ecology. 1977;58:201–205. doi: 10.2307/1935123. DOI
Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengove R.D. A Compound from Smoke That Promotes Seed Germination. Science. 2004;305:977. doi: 10.1126/science.1099944. PubMed DOI
Van Staden J., Jäger A.K., Light M.E., Burger B.V. Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 2004;70:654–659. doi: 10.1016/S0254-6299(15)30206-4. DOI
Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengove R.D. Identification of Alkyl Substituted 2H-Furo[2,3-c]pyran-2-ones as Germination Stimulants Present in Smoke. J. Agric. Food Chem. 2009;57:9475–9480. doi: 10.1021/jf9028128. PubMed DOI
Dixon K.W., Merrit D.J., Flematti G.R. Karrikinolide—A Phytoreactive Compound Derived from Smoke with Applications in Horticulture, Ecological Restoration and Agriculture. Acta Hortic. 2009;813:155–170. doi: 10.17660/ActaHortic.2009.813.20. DOI
Flematti G.R., Merrit D.J., Piggott M.J., Trengove R.D., Smith S.M., Dixon K.W., Ghisalberti E.L. Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nat. Commun. 2011;2:360. doi: 10.1038/ncomms1356. PubMed DOI
Sweedman L., Merritt D. Australian Seeds: A Guide to Their Collection, Identification and Biology. CSIRO PUBLISHING; Clayton, Australia: 2006. pp. 199–219.
Douglas R.B., Rothfels C.L., Stevenson D.W.D., Graham W.S., Wong G.K.-S., Nelson D.C., Bennett T. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol. 2017;15:52. PubMed PMC
Daws M.I., Davies J., Pritchard H.W., Brown N.A.C., van Staden J. Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul. 2007;51:73–82. doi: 10.1007/s10725-006-9149-8. DOI
Kulkarni M.G., Sparg S.G., van Staden J. Germination and post-germination response of Acacia seeds to smoke-water and butenolide a smoke-derived compound. J. Arid Environ. 2007;69:177–178. doi: 10.1016/j.jaridenv.2006.09.001. DOI
Stevens J.C., Merritt D.J., Flematti G.R., Ghisalberti E.L., Dixon K.W. Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil. 2007;298:113–124. doi: 10.1007/s11104-007-9344-z. DOI
Long R.L., Stevens J.C., Griffiths E.M., Adamek M., Gorecki M.J., Powles S.B., Merritt D.J. Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide. Ann. Bot. 2011;108:933–944. doi: 10.1093/aob/mcr198. PubMed DOI PMC
Kulkarni M.G., Ghebrehiwot H.M., Kirkman K.P., van Staden J. Response of Grass Seedlings to Smoke-Water and Smoke-Derived Butenolide in the Absence of Macronutrients (Nitrogen, Phosphorus, and Potassium) Rangel. Ecol. Manag. 2012;65:31–38. doi: 10.2111/REM-D-11-00062.1. DOI
Catav S.S., Kucukakyuz K., Tavsanoglu C., Pausas J.G. Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic Appl. Ecol. 2018;30:65–75. doi: 10.1016/j.baae.2018.05.005. DOI
Van Staden J., Sparg S.G., Kulkarni M.G., Light M.E. Post-germination effects of the smoke-derived compound3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field Crops Res. 2006;98:98–105. doi: 10.1016/j.fcr.2005.12.007. DOI
Ghebrehiwot H., Kulkarni M.G., Bairu M., van Staden J. Plant-derived aerosol-smoke and smoke solutions influence agronomic performance of traditional cereal crop, tef. Exp. Agric. 2013;49:244–255. doi: 10.1017/S0014479712001068. DOI
Demir I., Ozden E., Yildirim K.C., Sahin O., van Staden J. Priming with smoke-derived karrikinolide enhances germination and transplant quality of immature and mature pepper seed lots. S. Afr. J. Bot. 2017;115:264–268. doi: 10.1016/j.sajb.2017.07.001. DOI
Scaffidi A., Waters M.T., Bond C.S., Dixon K.W., Smith S.M., Ghisalberti E.L., Flematti G.R. Exploring the molecular mechanism of karrikins and strigolactones. Bioorg. Med. Chem. Lett. 2012;22:3743–3746. doi: 10.1016/j.bmcl.2012.04.016. PubMed DOI
Morffy N., Faure L., Nelson D.C. Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling. Trends Genet. 2016;32:176–188. doi: 10.1016/j.tig.2016.01.002. PubMed DOI PMC
Conn C.E., Nelson D.C. Evidence that Karrikin- Insensitive2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone. Front. Plant Sci. 2016;6:1219. doi: 10.3389/fpls.2015.01219. PubMed DOI PMC
Burger B.V., Pošta M., Light M.E., Kulkarni M.G., Viviers M.Z., van Staden J. More butenolides from plant-derived smoke with germination inhibitory activity against karrikinolide. S. Afr. J. Bot. 2018;115:256–263. doi: 10.1016/j.sajb.2018.01.023. DOI
Baxter B.J.M., Granger J.E., van Staden J. Plant-derived smoke and seed germination: Is all smoke good smoke? That is the burning question. S. Afr. J. Bot. 1995;61:275–277. doi: 10.1016/S0254-6299(15)30536-6. DOI
Hrdlička J., Gucký T., Novák O., Kulkarni M., Gupta S., van Staden J., Doležal K. Quantification of karrikins in smoke water using ultra-high performance liquid chromatography-tandem mass spectrometry. Plant Methods. 2019;15:81. doi: 10.1186/s13007-019-0467-z. PubMed DOI PMC
Gupta S., Hrdlička J., Ngoroyemoto N., Nemahunguni N.K., Gucký T., Novák O., Kulkarni M.G., Doležal K., van Staden J. Preparation and Standardisation of Smoke-Water for Seed Germination and Plant Growth Stimulation. J. Plant Growth Regul. 2019:1–8. doi: 10.1007/s00344-019-09985-y. DOI
Nelson D.C., Flematti G.R., Ghisalberti E.L., Dixon K.W., Smith S.M. Regulation of Seed Germination and Seedling Growth by Chemical Signals from Burning Vegetation. Ann. Rev. Plant Biol. 2012;63:107–130. doi: 10.1146/annurev-arplant-042811-105545. PubMed DOI
Kochanek J., Long R.L., Lisle A.T., Flematti G.R. Karrikins Identified in Biochars Indicate Post-Fire Chemical Cues Can Influence Community Diversity and Plant Development. PLoS ONE. 2016;11:e0161234. doi: 10.1371/journal.pone.0161234. PubMed DOI PMC
Mona S., Rachna B., Deepak B., Bala K., Nisha R. Biochar for Reclamation of Saline Soils. In: Giri B., Varma A., editors. Microorganisms in Saline Environments: Strategies and Functions. Springer; Cham, Germany: 2019. pp. 451–466.
Waters M.T., Brewer P.B., Bussell J.D., Smith S.M., Beveridge C.A. The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones. Plant Physiol. 2012;159:1073–1085. doi: 10.1104/pp.112.196253. PubMed DOI PMC
Waters M.T., Scaffidi A., Sun Y.K., Flematti G.R., Smith S.M. The karrikin response system of Arabidopsis. Plant J. 2014;79:623–631. doi: 10.1111/tpj.12430. PubMed DOI
Flematti G., Dixon K., Smith S.M. What are karrikins and how were they ‘discovered’ by plants? BMC Biol. 2015;13:108. doi: 10.1186/s12915-015-0219-0. PubMed DOI PMC
Tokunaga T., Hayashi H., Akiyama K. Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer from Medicago truncatula. Phytochemistry. 2015;111:91–97. doi: 10.1016/j.phytochem.2014.12.024. PubMed DOI
Flematti G.R., Scaffidi A., Dixon K.W., Smith S.M., Ghisalberti E.L. Production of the Seed Germination Stimulant Karrikinolide from Combustion of Simple Carbohydrates. J. Agric. Food Chem. 2011;59:1195–1198. doi: 10.1021/jf1041728. PubMed DOI
Zwanenburg B., Pospíšil T. Structure and Activity of Strigolactones: New Plant Hormones with a Rich Future. Mol. Plant. 2013;6:38–62. doi: 10.1093/mp/sss141. PubMed DOI
Besserer A., Bécard G., Jauneau A., Roux C., Séjalon-Delmas N. GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism. Plant Physiol. 2008;148:402–413. doi: 10.1104/pp.108.121400. PubMed DOI PMC
Flematti G.R., Goddard-Borger E.D., Merritt D.J., Ghisalberti E.L., Dixon K.W., Trengove R.D. Preparation of 2H-Furo[2,3-c]pyran-2-one Derivatives and Evaluation of Their Germination-Promoting Activity. J. Agric. Food Chem. 2007;55:2189–2194. doi: 10.1021/jf0633241. PubMed DOI
Goddard-Borger E.D., Ghisalberti E.L., Stick R.V. Synthesis of the Germination Stimulant 3-Methyl-2H-furo[2,3-c]pyran-2-one and Analogous Compounds from Carbohydrates. Eur. J. Org. Chem. 2007:3925–3934. doi: 10.1002/ejoc.200700334. DOI
De Cuyper C., Struk S., Braem L., Gevaert K., De Jaeger G., Goormachtig S. Strigolactones, karrikins and beyond. Plant Cell Environ. 2017;40:1691–1703. doi: 10.1111/pce.12996. PubMed DOI
Nelson D.C., Scaffidi A., Dun E.A., Waters M.T., Flematti G.R., Dixon K.W., Beveridge C.A., Ghisalberti E.L., Smith S.M. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. PNAS. 2011;108:8897–8902. doi: 10.1073/pnas.1100987108. PubMed DOI PMC
Stanga J.P., Smith S.M., Briggs W.R., Nelson D.C. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 Controls Seed Germination and Seedling Development in Arabidopsis. Plant Physiol. 2013;163:318–330. doi: 10.1104/pp.113.221259. PubMed DOI PMC
Guo Y., Zheng Z., La Clair J.J., Chory J., Noel J.P. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110:8284–8289. doi: 10.1073/pnas.1306265110. PubMed DOI PMC
Stanga J.P., Morffy N., Nelson D.C. Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Planta. 2016;243:1397–1406. doi: 10.1007/s00425-015-2458-2. PubMed DOI PMC
Lee I., Kim K., Lee S., Lee S., Hwang E., Shin K., Kim D., Choi J., Choi H., Cha J.S., et al. A missense allele of KARRIKIN-INSENSITIVE2 impairs ligand-binding and downstream signaling in Arabidopsis thaliana. J. Exp. Bot. 2018;69:3609–3623. doi: 10.1093/jxb/ery164. PubMed DOI PMC
Waters M.T., Scaffidi A., Flematti G.R., Smith S.M. Substrate-Induced Degradation of the a/b-Fold Hydrolase KARRIKIN INSENSITIVE2 Requires a Functional Catalytic Triad but Is Independent of MAX2. Mol. Plant. 2015;8:814–817. doi: 10.1016/j.molp.2014.12.020. PubMed DOI
Waters M.T., Scaffidi A., Flematti G.R., Smith S.M. The origins and mechanisms of karrikin signalling. Curr. Opin. Plant Biol. 2013;16:667–673. doi: 10.1016/j.pbi.2013.07.005. PubMed DOI
Smith S.M., Li J. Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 2014;21:23–29. doi: 10.1016/j.pbi.2014.06.003. PubMed DOI
Sun X.D., Ni M. Hyposensitive to Light, an Alpha/Beta Fold Protein, Acts Downstream of Elongated Hypocotyl 5 to Regulate Seedling De-Etiolation. Mol. Plant. 2011;4:116–126. doi: 10.1093/mp/ssq055. PubMed DOI
Waters M.T. Strigolactones and Karrikins. In: Thomas B., Murray B.G., Murphy D.J., editors. Encyclopedia of Applied Plant Sciences. 2nd ed. Volume 3. Academic Press; Cambridge, MA, USA: 2017. pp. 466–472.
Nelson D.C., Risenborough J.-A., Flematti G.R., Stevens J., Ghisalberti E.L., Dixon K.W., Smith S.M. Karrikins Discovered in Smoke Trigger Arabidopsis Seed Germination by a Mechanism Requiring Gibberellic Acid Synthesis and Light. Plant Physiol. 2009;149:863–873. doi: 10.1104/pp.108.131516. PubMed DOI PMC
Nelson D.C., Flematti G.R., Riseborough J.A., Ghisalberti E.L., Dixon K.W., Smith S.M. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2010;107:7095–7100. doi: 10.1073/pnas.0911635107. PubMed DOI PMC
Soundappan I., Bennett T., Morffy N., Liang Y., Stanga J.P., Abbas A., Leyser O., Nelson D.C. SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell. 2015;27:3143–3159. doi: 10.1105/tpc.15.00562. PubMed DOI PMC
Villaécija-Aguilar J.A., Hamon-Josse M., Carbonnel S., Kretschmar A., Schmidt C., Dawid C., Bennett T., Gutjahr C. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet. 2019;15:e1008327. doi: 10.1371/journal.pgen.1008327. PubMed DOI PMC
The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. PubMed DOI
Koornneef M., Meinke D. The development of Arabidopsis as a model plant. Plant J. 2010;61:909–921. doi: 10.1111/j.1365-313X.2009.04086.x. PubMed DOI
Scaffidi A., Waters M., Sun Y.K., Skelton B.W., Dixon K.W., Ghisalberti E.L., Flematti G.R., Smith S.M. Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis. Plant Physiol. 2014;165:1221–1232. doi: 10.1104/pp.114.240036. PubMed DOI PMC
Wang L., Waters M.T., Smith S.M. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. New Phytol. 2018;219:605–618. doi: 10.1111/nph.15192. PubMed DOI
Ghebrehiwot H., Kulkarni M.G., Kirkman K.P., van Staden J. Smoke-Water and a Smoke-Isolated Butenolide Improve Germination and Seedling Vigour of Eragrostis tef (Zucc.) Trotter under High Temperature and Low Osmotic Potential. J. Agron. Crop Sci. 2008;194:270–277. doi: 10.1111/j.1439-037X.2008.00321.x. DOI
Jain N., Kulkarni M.G., van Staden J. A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant Growth Regul. 2006;49:263–267. doi: 10.1007/s10725-006-9136-0. DOI
Cembrowska-Lech D., Koprowski M., Kepczynski J. Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2−) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. J. Plant Physiol. 2014;176:169–179. doi: 10.1016/j.jplph.2014.11.010. PubMed DOI
Sunmonu T.O., Kulkarni M.G., van Staden J. Smoke-water, karrikinolide and gibberellic acid stimulate growth in bean and maize seedlings by efficient starch mobilization and suppression of oxidative stress. S. Afr. J. Bot. 2016;102:4–11. doi: 10.1016/j.sajb.2015.06.015. DOI
Meng Y., Chen F., Shuai H., Luo X., Ding J., Tang S., Xu S., Liu J., Liu W., Du J., et al. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Sci. Rep. 2016;6:22073. doi: 10.1038/srep22073. PubMed DOI PMC
Kulkarni M.G., Sparg S.G., Light M.E., van Staden J. Stimulation of Rice (Oryza sativa L.) Seedling Vigour by Smoke-water and Butenolide. J. Agron. Crop Sci. 2006;192:395–398. doi: 10.1111/j.1439-037X.2006.00213.x. DOI
Gutjahr C., Gobbato E., Choi J., Riemann M., Johnston M.G., Summers W., Carbonnel S., Mansfeld C., Yang S.-Y., Nadal M., et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science. 2015;350:1521–1524. doi: 10.1126/science.aac9715. PubMed DOI
Banerjee A., Tripathi D.K., Roychoudhury A. The Karrikin ‘Calisthenics’: Can Compounds Derived from Smoke Help in Stress Tolerance? Physiol. Plant. 2019;165:290–302. doi: 10.1111/ppl.12836. PubMed DOI
Meng Y., Shuai H., Luo X., Chen F., Zhou W., Yang W., Shu K. Karrikins: Regulators Involved in Phytohormone Signaling Networks during Seed Germination and Seedling Development. Front. Plant Sci. 2017;7:2021. doi: 10.3389/fpls.2016.02021. PubMed DOI PMC
Bu Q., Lv T., Shen H., Luong P., Wang J., Wang Z., Huang Z., Xiao L., Engineer C., Kim T.H., et al. Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis. Plant Physiol. 2014;164:424–439. doi: 10.1104/pp.113.226837. PubMed DOI PMC
Li W., Nguyen K.H., Chu H.D., Ha C.V., Watanabe Y., Osakabe Y., Leyva-González M.A., Sato M., Toyooka K., Voges L., et al. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet. 2017;13:e1007076. doi: 10.1371/journal.pgen.1007076. PubMed DOI PMC
Jain N., van Staden J. The potential of the smoke-derived compound 3-methyl-2Hfuro[2,3-c]pyran-2-one as a priming agent for tomato seeds. Seed Sci. Res. 2007;17:175–181. doi: 10.1017/S0960258507785896. DOI
Akeel A., Khan M.M.A., Jaleel H., Uddin M. Smoke-saturated Water and Karrikinolide Modulate Germination, Growth, Photosynthesis and Nutritional Values of Carrot (Daucus carota L.) J. Plant Growth Regul. 2019;38:1387–1401. doi: 10.1007/s00344-019-09941-w. DOI
Ngoroyemoto N., Gupta S., Kulkarni M.G., Finnie J.F., van Staden J. Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. S. Afr. J. Bot. 2019;124:87–93. doi: 10.1016/j.sajb.2019.03.040. DOI
Zhou J., Xu Z.-X., Sun H., Guo L.-P. Smoke-Isolated Karrikins Stimulated Tanshinones Biosynthesis in Salvia miltiorrhiza through Endogenous Nitric Oxide and Jasmonic Acid. Molecules. 2019;24:1229. doi: 10.3390/molecules24071229. PubMed DOI PMC
Kulkarni M.G., Ascough G.D., van Staden J. Smoke-water and a Smoke-isolated Butenolide Improve Growth and Yield of Tomatoes under Greenhouse Conditions. HortTechnology. 2008;18:449–454. doi: 10.21273/HORTTECH.18.3.449. DOI
Verschaeve L., Maes J., Light M.E., van Staden J. Genetic toxicity testing of 3-methyl-2H-furo[2,3-c]pyran-2-one, an important biologically active compound from plant-derived smoke. Mutat. Res. 2006;611:89–95. doi: 10.1016/j.mrgentox.2006.07.005. PubMed DOI
Partoens M., Kulkarni M.G., Light M.E., Chukwujekwu J.C., Verschaeve L., van Staden J. Genotoxicity studies on plant growth promoting smoke-water and smoke-derived compounds using Vicia faba and Persea Americana S10 metabolic activation. S. Afr. J. Bot. 2017;115:269–275. doi: 10.1016/j.sajb.2017.06.020. DOI
Kulkarni M.G., Ascough G.D., Verschaeve L., Baeten K., Arruda M.P., van Staden J. Effect of smoke-water and smoke-isolated butenolide on the growth and genotoxicity of commercial onion. Sci. Hortic. 2010;124:434–439. doi: 10.1016/j.scienta.2010.02.005. DOI
Jain N., van Staden J. A smoke-derived butenolide improves early growth of tomato seedlings. Plant Growth Regul. 2006;50:139–148. doi: 10.1007/s10725-006-9110-x. DOI
Kulkarni M.G., Ascough G.D., van Staden J. Effects of Foliar Applications of Smoke-Water and a Smoke-isolated Butenolide on Seedling Growth of Okra and Tomato. HortScience. 2007;42:179–182. doi: 10.21273/HORTSCI.42.1.179. DOI
Demir I., Ozuaydin I., Yasar F., van Staden J. Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. S. Afr. J. Bot. 2012;78:83–87. doi: 10.1016/j.sajb.2011.05.009. DOI