Strigolactones: new plant hormones in action
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
26838034
PubMed Central
PMC4875949
DOI
10.1007/s00425-015-2455-5
PII: 10.1007/s00425-015-2455-5
Knihovny.cz E-zdroje
- Klíčová slova
- Karrikins, Mode of action, Signal transduction, Strigolactone analogs, Strigolactone mimics, Strigolactones,
- MeSH
- klíčení účinky léků MeSH
- laktony chemie metabolismus farmakologie MeSH
- mykorhiza účinky léků MeSH
- regulátory růstu rostlin chemie farmakologie fyziologie MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- laktony MeSH
- regulátory růstu rostlin MeSH
The key step in the mode of action of strigolactones is the enzymatic detachment of the D-ring. The thus formed hydroxy butenolide induces conformational changes of the receptor pocket which trigger a cascade of reactions in the signal transduction. Strigolactones (SLs) constitute a new class of plant hormones which are of increasing importance in plant science. For the last 60 years, they have been known as germination stimulants for parasitic plants. Recently, several new bio-properties of SLs have been discovered such as the branching factor for arbuscular mycorrhizal fungi, regulation of plant architecture (inhibition of bud outgrowth and of shoot branching) and the response to abiotic factors, etc. To broaden horizons and encourage new ideas for identifying and synthesising new and structurally simple SLs, this review is focused on molecular aspects of this new class of plant hormones. Special attention has been given to structural features, the mode of action of these phytohormones in various biological actions, the design of SL analogs and their applications.
Zobrazit více v PubMed
Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA. 2011;108:20242–20247. doi: 10.1073/pnas.1111902108. PubMed DOI PMC
Akiyama K, Hayashi H. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot. 2006;97:925–931. doi: 10.1093/aob/mcl063. PubMed DOI PMC
Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–827. doi: 10.1038/nature03608. PubMed DOI
Akiyama K, Ogasawara S, Ito S, Hayashi H. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 2010;51:1104–1117. doi: 10.1093/pcp/pcq058. PubMed DOI PMC
Al-Babili S, Bouwmeester HJ. Strigolactones, novel carotenoid-derived plant hormones. Annu Rev Plant Biol. 2015;66:161–186. doi: 10.1146/annurev-arplant-043014-114759. PubMed DOI
Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009;50:1416–1424. doi: 10.1093/pcp/pcp091. PubMed DOI
Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Becard G, Sejalon-Delmas N. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 2006;4:1239–1247. doi: 10.1371/journal.pbio.0040226. PubMed DOI PMC
Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P. A new class of conjugated strigolactone analogues with fluorescent properties: synthesis and biological activity. Org Biomol Chem. 2009;7:3413–3420. doi: 10.1039/b907026e. PubMed DOI
Bonfante P, Requena N. Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 2011;14:451–457. doi: 10.1016/j.pbi.2011.03.014. PubMed DOI
Boyer FD, de Saint GA, Pillot JP, Pouvreau JB, Chen VX, Ramos S, Stévenin A, Simier P, Delavault P, Beau JM, Rameau C. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 2012;159:1524–1544. doi: 10.1104/pp.112.195826. PubMed DOI PMC
Boyer FD, de Saint GA, Pouvreau JB, Clavé G, Pillot JP, Roux A, Rasmussen A, Depuydt S, Lauressergues D, Frei Dit Frey N, Heugebaert TS, Stevens CV, Geelen D, Goormachtig S, Rameau C. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol Plant. 2014;7:675–690. doi: 10.1093/mp/sst163. PubMed DOI
Brachmann A, Parniske M. The most widespread symbiosis on earth. PLoS Biol. 2006;4:1111–1112. doi: 10.1371/journal.pbio.0040239. PubMed DOI PMC
Brooks DW, Bevinakatti HS, Powell DR. The absolute structure of (+)-strigol. J Org Chem. 1985;50:3779–3781. doi: 10.1021/jo00220a020. DOI
Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host: a new dimension in allelochemistry. In: Inderji K, Einhellig FA (eds), Insights into allelopathy. ACS Symposium Series, ACS Books, Washington, DC, pp 158–168
Cavar S, Zwanenburg B, Tarkowski P. Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochem Rev. 2015;14:691–711. doi: 10.1007/s11101-014-9370-4. DOI
Chen VX, Boyer F-D, Rameau C, Retailleau P, Vors J-P, Beau J-M. Stereochemistry, total synthesis, and biological evaluation of the new plant hormone solanacol. Chem Eur J. 2010;16:13941–13945. doi: 10.1002/chem.201002817. PubMed DOI
Chen VX, Boyer F-D, Rameau C, Pillot J-P, Vors J-P, Beau J-M. New synthesis of A-ring aromatic strigolactone analogues and their evaluation as plant hormones in pea (Pisum sativum) Chem Eur J. 2013;19:4849–4857. doi: 10.1002/chem.201203585. PubMed DOI
Cheng X, Ruyter-Spira C, Bouwmeester H. The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci. 2013;4:199. doi: 10.3389/fpls.2013.00199. PubMed DOI PMC
Cook CE, Whichard LP, Turner B, Wall ME. Germination of witchweed (Striga lutea Lour): isolation and properties of a potent stimulant. Science. 1966;154:1189–1190. doi: 10.1126/science.154.3753.1189. PubMed DOI
Cook CE, Coggon P, McPhail AT, Wall ME, Whichard LP, Egley GH, Luhan PA. Germination stimulants. 2. Structure of strigol: potent seed-germination stimulant for witchweed (Striga-lutea Lour) J Am Chem Soc. 1972;94:6198–6199. doi: 10.1021/ja00772a048. DOI
de Saint GA, Ligerot Y, Dun EA, Pillot J-P, Ross JJ, Beveridge CA, Rameau C. Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol. 2013;163:1012–1025. doi: 10.1104/pp.113.220541. PubMed DOI PMC
Dun EA, de Saint GA, Rameau C, Beveridge CA. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol. 2012;158:487–498. doi: 10.1104/pp.111.186783. PubMed DOI PMC
Dun EA, de Saint GA, Rameau C, Beveridge CA. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol Plant. 2013;6:128–140. doi: 10.1093/mp/sss131. PubMed DOI
Fernandez-Aparicio M, Yoneyama K, Rubiales D. The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res. 2011;21:55–61. doi: 10.1017/S0960258510000371. DOI
Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. A compound from smoke that promotes seed germination. Science. 2004;305:977. doi: 10.1126/science.1099944. PubMed DOI
Flematti GR, Scaffidi A, Goddard-Borger ED, Heath CH, Nelson DC, Commander LE, Stick RV, Dixon KW, Smith SM, Ghisalberti EL. Structure-activity relationship of karrikin germination stimulants. J Agric Food Chem. 2010;58:8612–8617. doi: 10.1021/jf101690a. PubMed DOI
Fukui K, Ito S, Ueno K, Yamaguchi S, Kyozuka J, Asami T. New branching inhibitors and their potential as strigolactone mimics in rice. Bioorg Med Chem Lett. 2011;21:4905–4908. doi: 10.1016/j.bmcl.2011.06.019. PubMed DOI
Fukui K, Ito S, Asami T. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol Plant. 2013;6:88–99. doi: 10.1093/mp/sss138. PubMed DOI
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF. Strigolactone inhibition of shoot branching. Nature. 2008;455:189–194. doi: 10.1038/nature07271. PubMed DOI
Guo Y, Zheng Z, La Clair JJ, Chory J, Noel JP. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc Natl Acad Sci USA. 2013;110:8284–8289. doi: 10.1073/pnas.1306265110. PubMed DOI PMC
Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC. DAD2 is an a/b hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol. 2012;22:2032–2036. doi: 10.1016/j.cub.2012.08.007. PubMed DOI
Han J, Burgess K. Fluorescent indicators for intercellular pH. Chem Rev. 2010;110:2709–2728. doi: 10.1021/cr900249z. PubMed DOI
Hauck C, Muller S, Schildknecht H. A germination stimulant for parasitic flowering plants from Sorghum-bicolor, a genuine host plant. J Plant Physiol. 1992;139:474–478. doi: 10.1016/S0176-1617(11)80497-9. DOI
Hayward A, Stirnberg P, Beveridge C, Leyser O. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 2009;151:400–412. doi: 10.1104/pp.109.137646. PubMed DOI PMC
Hedden P. Gibberellins close the lid. Nature. 2008;456:455–456. doi: 10.1038/456455a. PubMed DOI
Hu Z, Yamauchi T, Yang J, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant Cell Physiol. 2014;55:30–41. doi: 10.1093/pcp/pct150. PubMed DOI
Janssen BJ, Snowden KC. Strigolactones and karrikin signal perception: receptors, enzymes, or both? Front Plant Sci. 2012;3:296. doi: 10.3389/fpls.2012.00296. PubMed DOI PMC
Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J. DWARF 53 acts as a repressor of strigolactone signaling in rice. Nature. 2013;504:401–405. doi: 10.1038/nature12870. PubMed DOI PMC
Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells. 2013;18:147–160. doi: 10.1111/gtc.12025. PubMed DOI
Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot. 2011;62:2915–2924. doi: 10.1093/jxb/erq464. PubMed DOI
Koltai H. Strigolactones are regulators of root development. New Phytol. 2011;190:545–549. doi: 10.1111/j.1469-8137.2011.03678.x. PubMed DOI
Koltai H. Receptors, repressors, PINs: a playground for strigolactone signaling. Trends Plant Sci. 2014;19:727–733. doi: 10.1016/j.tplants.2014.06.008. PubMed DOI
Koltai H. Cellular events of strigolactone signalling and their crosstalk with auxin in roots. J Exp Bot. 2015;66:4855–4861. doi: 10.1093/jxb/erv178. PubMed DOI
Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y. Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul. 2010;29:129–136. doi: 10.1007/s00344-009-9122-7. DOI
Kondo Y, Tadokoro E, Matsuura M, Iwasaki K, Sugimoto Y, Miyake H, Takikawa H, Sasaki M. Synthesis and seed germination stimulating activity of some imino analogs of strigolactones. Biosci Biotechnol Biochem. 2007;71:2781–2786. doi: 10.1271/bbb.70398. PubMed DOI
Lachia M, Wolf HC, Jung PJM, Screpanti C, De Mesmaeker A. Strigolactam: new potent strigolactone analogues for the germination of Orobanche cumana. Bioorg Med Chem Lett. 2015;25:2184–2188. doi: 10.1016/j.bmcl.2015.03.056. PubMed DOI
Lopez-Raez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H. Does abscisic acid affect strigolactone biosynthesis? New Phytol. 2010;187:343–354. doi: 10.1111/j.1469-8137.2010.03291.x. PubMed DOI
Mangnus EM, Zwanenburg B. Tentative molecular mechanism for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogs. J Agric Food Chem. 1992;40:1066–1070. doi: 10.1021/jf00018a032. DOI
Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 2010;51:1127–1135. doi: 10.1093/pcp/pcq083. PubMed DOI PMC
Mori K, Matsui J, Yokota T, Sakai H, Bando M, Takeuchi Y. Structure and synthesis of orobanchol, the germination stimulant for Orobanche minor. Tetrahedron Lett. 1999;40:943–946. doi: 10.1016/S0040-4039(98)02495-2. DOI
Muller S, Hauck C, Schildknecht H. Germination stimulants produced by VignaunguiculataWalp cv Saunders upright. J Plant Growth Regul. 1992;11:77–84. doi: 10.1007/BF00198018. DOI
Murase K, Hirano Y, Sun TP, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature. 2008;456:459–463. doi: 10.1038/nature07519. PubMed DOI
Nakamura H, Xue Y-L, Miyakawa T, Hou F, Qin H-M, Fukui K, Shi X, Ito E, Ito E, Ito S, Park S-H, Miayauchi Y, Totsuka N, Ueda T, Tanokura M, Asami T. Molecular mechanism of strigolactone perception by DWARF14. Nature Commun. 2013;4:2613. PubMed
Nefkens GHL, Thuring JWJF, Beenakkers MFM, Zwanenburg B. Synthesis of a phthaloylglycine-derived strigol analogue and is germination stimulatory activity towards seeds of the parasitic weeds Striga hermonthica and Orobanche crenata. J Agric Food Chem. 1997;45:2273–2277. doi: 10.1021/jf9604504. DOI
Parniske M. Plant-fungal associations: cue for the branching connection. Nature. 2005;435:750–751. doi: 10.1038/435750a. PubMed DOI
Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 2008;6:763–775. doi: 10.1038/nrmicro1987. PubMed DOI
Prandi C, Occhiato EG, Tabasso S, Bonfante P, Novero M, Scarpi D, Bova ME, Mileto I. New potent fluorescent analogues of strigolactones: synthesis and biological activity in parasitic weed germination and fungal branching. Eur J Org Chem. 2011;2011:3781–3793. doi: 10.1002/ejoc.201100616. DOI
Rasmussen A, Beveridge CA, Geelen D. Inhibition of strigolactones promotes adventitious root formation. Plant Signal Behav. 2012;7:694–697. doi: 10.4161/psb.20224. PubMed DOI PMC
Rasmussen A, Mason MD, Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol. 2012;158:1976–1987. doi: 10.1104/pp.111.187104. PubMed DOI PMC
Rasmussen A, Depuydt S, Goormachtig S, Geelen D. Strigolactones fine-tune the root system. Planta. 2013;238:615–626. doi: 10.1007/s00425-013-1911-3. PubMed DOI
Rasmussen A, Heugebaert T, Matthyse C, Van Deune R, Boyer F-D, Goormachtig S, Stevens C, Geelen D. A fluorescent alternative to the synthetic strigolactone GR24. Mol Plant. 2013;6:100–112. doi: 10.1093/mp/sss110. PubMed DOI
Reizelman A, Wigchert SCM, del-Bianco C, Zwanenburg B. Synthesis and bioactivity of labeled germination stimulants for the isolation and identification of the strigol receptor. Org Biol Chem. 2003;1:950–959. doi: 10.1039/b210678g. PubMed DOI
Sato D, Awad AA, Takeuchi Y, Yoneyama K. Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem. 2005;69:98–102. doi: 10.1271/bbb.69.98. PubMed DOI
Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL, Flematti GR. Exploring the molecular mechanism of karrikins and strigolactones. Bioorg Med Chem Lett. 2012;22:3743–3746. doi: 10.1016/j.bmcl.2012.04.016. PubMed DOI
Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 2014;165:1221–1232. doi: 10.1104/pp.114.240036. PubMed DOI PMC
Seto Y, Yamaguchi S. Strigolactone biosynthesis and perception. Curr Opin Plant Biol. 2014;21:1–6. doi: 10.1016/j.pbi.2014.06.001. PubMed DOI
Stirnberg P, Ward S, Leyser O. Auxin and strigolactones in shoot branching: intimately connected? Biochem Soc Trans. 2010;38:722–727. doi: 10.1042/BST0380717. PubMed DOI
Takikawa H, Jikumaru S, Sugimoto Y, Xie X, Yoneyama K, Sasaki M. Synthetic disproof of the structure proposed for solanacol, the germination stimulant for seeds of root parasitic weeds. Tetrahedron Lett. 2009;50:4549–4551. doi: 10.1016/j.tetlet.2009.05.078. DOI
Thorogood CJ, Rumsey FJ, Hiscock SJ. Seed viability determination in parasitic broomrapes (Orobanche and Phelipanche) using fluorescein diacetate staining. Weed Res. 2009;49:461–468. doi: 10.1111/j.1365-3180.2009.00716.x. DOI
Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science. 2015;350:203–207. doi: 10.1126/science.aac9476. PubMed DOI
Tsuchiya Y, McCourt P. Strigolactones: a new hormone with a past. Curr Opin Plant Biol. 2009;12:556–561. doi: 10.1016/j.pbi.2009.07.018. PubMed DOI
Tsuchiya Y, Yoshimura M, Sato Y, Kuwata TS, Holbrook-Smith D, Zhang H, McCourt P, Itami K, Kinoshita T, Hagihara S. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science. 2015;349:864–898. doi: 10.1126/science.aab3831. PubMed DOI
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M. Gibberellin insensitive DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005;2437(7059):693–698. doi: 10.1038/nature04028. PubMed DOI
Ueguchi-Tanaka M, Matsuoka M. The perception of gibberellins: clues from receptor structure. Curr Opin Plant Biol. 2010;13:503–508. doi: 10.1016/j.pbi.2010.08.004. PubMed DOI
Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y. Ent-2′-epi-orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem. 2011;59:10485–10490. doi: 10.1021/jf2024193. PubMed DOI
Ueno K, Sugimoto Y, Zwanenburg B. The genuine structure of alectrol: end of a long controversy. Phytochem Rev. 2015;14:835–847. doi: 10.1007/s11101-014-9380-2. DOI
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455:195–200. doi: 10.1038/nature07272. PubMed DOI
Umehara M, Cao M, Akiyama K, Akatsu T, Seto T, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S. Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol. 2015;56:10591072. doi: 10.1093/pcp/pcv028. PubMed DOI
Waldie T, McCulloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 2014;79:607–622. doi: 10.1111/tpj.12488. PubMed DOI
Waters MT, Scaffidi A, Flematti GR, Smith SM. Karrikins force a rethink of strigolactone mode of action. Plant Signal Behav. 2012;7:969–972. doi: 10.4161/psb.20977. PubMed DOI PMC
Welzel P, Rohrig S, Milkova Z. Strigol-type germination stimulants: the C-2′ configuration problem. Chem Commun. 1999;1999:2017–2022. doi: 10.1039/a901530b. DOI
Xie X, Kusomoto D, Tacheuchi Y, Yoneyama K, Yamada Y, Yoneyama K. 2′-epi-Orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Foood Chem. 2007;55:8067–8072. doi: 10.1021/jf0715121. PubMed DOI
Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta. 2014;240:399–408. doi: 10.1007/s00425-014-2096-0. PubMed DOI
Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu H. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 2013;23:436–439. doi: 10.1038/cr.2013.19. PubMed DOI PMC
Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature. 2013;504:406–410. doi: 10.1038/nature12878. PubMed DOI PMC
Zwanenburg B, Mwakaboko AS. Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorg Med Chem. 2011;19:7394–7400. doi: 10.1016/j.bmc.2011.10.057. PubMed DOI
Zwanenburg B, Pospisil T. Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant. 2013;6:38–62. doi: 10.1093/mp/sss141. PubMed DOI
Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D. Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci. 2009;65:478–491. doi: 10.1002/ps.1706. PubMed DOI
Zwanenburg B, Nayak SK, Charnikhova TV, Bouwmeester HJ. New strigolactone mimics: structure-activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorg Med Chem Lett. 2013;23:5182–5186. doi: 10.1016/j.bmcl.2013.07.004. PubMed DOI
Zwanenburg B, Cavar Zeljkovic S, Pospisil T. Synthesis of strigolactones, a strategic account. Pest Manag Sci. 2015 PubMed
Hybrid-type strigolactone analogues derived from auxins
Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics