Signal transduction
Dotaz
Zobrazit nápovědu
Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of the BBSome, a cargo adaptor essential for export of transmembrane receptors from cilia. Although actin-dependent ectocytosis has been proposed to compensate defective cargo retrieval, its molecular basis remains unclear, especially in relation to BBS pathology. In this study, we investigated how actin polymerization and ectocytosis are regulated within the cilium. Our findings reveal that ciliary CDC42, a RHO-family GTPase triggers in situ actin polymerization, ciliary ectocytosis, and cilia shortening in BBSome-deficient cells. Activation of the Sonic Hedgehog pathway further enhances CDC42 activity specifically in BBSome-deficient cilia. Inhibition of CDC42 in BBSome-deficient cells decreases the frequency and duration of ciliary actin polymerization events, causing buildup of G protein coupled receptor 161 (GPR161) in bulges along the axoneme during Sonic Hedgehog signaling. Overall, our study identifies CDC42 as a key trigger of ciliary ectocytosis. Hyperactive ciliary CDC42 and ectocytosis and the resulting loss of ciliary material might contribute to BBS disease severity.
- MeSH
- aktiny * metabolismus MeSH
- Bardetův-Biedlův syndrom metabolismus genetika patologie MeSH
- cdc42 protein vázající GTP * metabolismus genetika MeSH
- cilie * metabolismus MeSH
- lidé MeSH
- myši MeSH
- proteiny hedgehog * metabolismus MeSH
- receptory spřažené s G-proteiny metabolismus genetika MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The E3 ubiquitin ligase Cbl-b is a novel target in immune-oncology, with critical roles in regulating T-cell activation and signaling pathways. By facilitating the ubiquitination and degradation of key signaling proteins, Cbl-b modulates immune responses, maintaining immune homeostasis and preventing unwarranted T-cell proliferation. The therapeutic potential of Cbl-b as a cancer immunotherapy target is underscored by its contribution to an immunosuppressive tumor microenvironment, with efforts currently underway to develop small-molecule inhibitors. AREAS COVERED: We reviewed the small molecules, and antibody-drug conjugates targeting Cbl-b from 2018 to 2024. The patents were gathered through publicly available databases and analyzed with in-house developed cheminformatic workflow, described within the manuscript. EXPERT OPINION: Targeting Cbl-b presents a promising approach in immuno-oncology, offering a novel pathway to potentiate the immune system's ability to combat cancer beyond PDL1/PD1 inhibition. The development and clinical advancement of Cbl-b inhibitors, as evidenced by the ongoing trials, mark a significant step toward harnessing this target for therapeutic benefits. Overall, the strategic inhibition of Cbl-b holds substantial promise for improving cancer immunotherapy outcomes, heralding a new era in the fight against cancer.
- MeSH
- adaptorové proteiny signální transdukční MeSH
- cílená molekulární terapie * MeSH
- imunokonjugáty farmakologie MeSH
- imunoterapie * metody MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory * imunologie farmakoterapie MeSH
- patenty jako téma * MeSH
- protinádorové látky farmakologie MeSH
- protoonkogenní proteiny c-cbl * imunologie antagonisté a inhibitory MeSH
- signální transdukce účinky léků MeSH
- T-lymfocyty imunologie účinky léků MeSH
- vyvíjení léků * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE: Genetic testing in consanguineous families advances the general comprehension of pathophysiological pathways. However, short stature (SS) genetics remain unexplored in a defined consanguineous cohort. This study examines a unique pediatric cohort from Sulaimani, Iraq, aiming to inspire a genetic testing algorithm for similar populations. METHODS: Among 280 SS referrals from 2018-2020, 64 children met inclusion criteria (from consanguineous families; height ≤ -2.25 SD), 51 provided informed consent (30 females; 31 syndromic SS) and underwent investigation, primarily via exome sequencing. Prioritized variants were evaluated by the American College of Medical Genetics and Genomics standards. A comparative analysis was conducted by juxtaposing our findings against published gene panels for SS. RESULTS: A genetic cause of SS was elucidated in 31 of 51 (61%) participants. Pathogenic variants were found in genes involved in the GH-IGF-1 axis (GHR and SOX3), thyroid axis (TSHR), growth plate (CTSK, COL1A2, COL10A1, DYM, FN1, LTBP3, MMP13, NPR2, and SHOX), signal transduction (PTPN11), DNA/RNA replication (DNAJC21, GZF1, and LIG4), cytoskeletal structure (CCDC8, FLNA, and PCNT), transmembrane transport (SLC34A3 and SLC7A7), enzyme coding (CYP27B1, GALNS, and GNPTG), and ciliogenesis (CFAP410). Two additional participants had Silver-Russell syndrome and 1 had del22q.11.21. Syndromic SS was predictive in identifying a monogenic condition. Using a gene panel would yield positive results in only 10% to 33% of cases. CONCLUSION: A tailored testing strategy is essential to increase diagnostic yield in children with SS from consanguineous populations.
- MeSH
- algoritmy MeSH
- dítě MeSH
- genetické testování * metody MeSH
- lidé MeSH
- mladiství MeSH
- mutace genetika MeSH
- nanismus genetika diagnóza MeSH
- pokrevní příbuzenství * MeSH
- poruchy růstu genetika diagnóza MeSH
- předškolní dítě MeSH
- rodokmen MeSH
- sekvenování exomu metody MeSH
- tělesná výška genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Irák MeSH
Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.
- MeSH
- lidé MeSH
- ligandy MeSH
- objevování léků * MeSH
- receptory spřažené s G-proteiny * metabolismus agonisté MeSH
- signální transdukce účinky léků MeSH
- vyvíjení léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.
- MeSH
- konformace proteinů MeSH
- lidé MeSH
- receptory spřažené s G-proteiny * chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A ubiquitous property of bacteria is their ability to move toward more suitable environments, which can also facilitate host-associated activities like colonization and offer the cell several benefits such as bacteria moving towards a favorable gradient or away from a harmful gradient is known as chemotaxis. Bacteria achieve this by rotating flagella in clockwise and anticlockwise directions resulting in "run" and "tumble." This ability of bacteria to sense and respond to any type of change in the environmental factors like pH, osmolarity, redox potential, and temperature is a standard signal transduction system that depends on coupling proteins, which is the bacterial chemotaxis system. There are two architectures for the coupling proteins in the chemotaxis system: CheW and CheV. Typically, a signal transduction system for chemotaxis to form a core signaling complex couples CheA activity to chemoreceptor control: two CheW coupling protein molecules span a histidine kinase CheA dimer and two chemoreceptors (also known as methyl-accepting chemotaxis protein, MCP) trimers of dimers which further transfer the signal to the flagellar motor through CheY. The current review summarizes and highlights the molecular mechanism involved in bacterial chemotaxis, its physiological benefits such as locating suitable nutrients and niches for bacterial growth, and various assay techniques used for the detection of chemotactic motility.
Dermatomyositis (DM) is a rare and debilitating, systemic, autoimmune disease. While heterogenous in presentation and severity, DM is primarily characterised by a spectrum of skin and muscle disease, which may include proximal muscle weakness and recalcitrant cutaneous eruptions. DM may also be associated with joint pain and stiffness, inflammatory arthritis, dysphagia, fatigue, and calcinosis. The current standard of care for DM includes glucocorticoids, immunosuppressants, and intravenous immunoglobulin (IVIg). Unfortunately, these medications are not uniformly effective and can lead to adverse events, particularly with chronic use, necessitating discontinuation of therapy. Therefore, a substantial unmet need exists for more tailored and efficacious therapies that target DM pathogenesis. Brepocitinib is an oral, once-daily, novel, and specific TYK2/JAK1 inhibitor. Brepocitinib's potent inhibition of TYK2 and JAK1 reduces the signalling of pro-inflammatory cytokines, including IFN-α/β, IL-12, IL-23, and IFNγ, that have been implicated in the pathogenesis of DM. Other JAK inhibitors have been used off-label in both case series and open-label clinical trials in patients with DM; and brepocitinib has demonstrated efficacy in phase 2 clinical trials of several other autoimmune diseases, including plaque psoriasis, psoriatic arthritis, Crohn's disease, hidradenitis suppurativa, and ulcerative colitis. Therefore, there is a strong scientific and clinical rationale for the utility and potential effectiveness of brepocitinib in the treatment of DM patients. Currently, the safety, tolerability, and efficacy of brepocitinib is being evaluated in the largest (n=225) double-blind placebo-controlled phase 3 trial in DM patients to date (VALOR - NCT0543726).
- MeSH
- dermatomyozitida * farmakoterapie diagnóza imunologie MeSH
- inhibitory proteinkinas * terapeutické užití škodlivé účinky MeSH
- Janus kinasa 1 * antagonisté a inhibitory MeSH
- kinasa TYK2 * antagonisté a inhibitory MeSH
- lidé MeSH
- signální transdukce účinky léků MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Although chronic inflammation is implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL), the mechanisms responsible are unknown. We demonstrate that the overexpression of the collagen receptor, DDR1, correlates with reduced expression of spindle checkpoint genes, with three transcriptional signatures of aneuploidy and with a higher frequency of copy number alterations, pointing to a potential role for DDR1 in the acquisition of aneuploidy in DLBCL. In support of this, we found that collagen treatment of primary germinal centre B cells transduced with DDR1, not only partially recapitulated the aberrant transcriptional programme of DLBCL but also downregulated the expression of CENPE, a mitotic spindle that has a crucial role in preventing chromosome mis-segregation. CENPE expression was also downregulated following DDR1 activation in two B-cell lymphoma lines and was lost in most DDR1-expressing primary tumours. Crucially, the inhibition of CENPE and the overexpression of a constitutively activated DDR1 were able to induce aneuploidy in vitro. Our findings identify a novel mechanistic link between DDR1 signalling and chromosome instability in B cells and provide novel insights into factors driving aneuploidy in DLBCL.
- MeSH
- aneuploidie * MeSH
- B-lymfocyty metabolismus MeSH
- chromozomální nestabilita * genetika MeSH
- difúzní velkobuněčný B-lymfom * genetika patologie metabolismus MeSH
- kolagen farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- receptor DDR1 * genetika metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
CssRS is a two-component system that plays a pivotal role in mediating the secretion stress response in Bacillus subtilis. This system upregulates the synthesis of membrane-bound HtrA family proteases that cope with misfolded proteins that accumulate within the cell envelope as a result of overexpression or heat shock. Recent studies have shown the induction of CssRS-regulated genes in response to cell envelope stress. We investigated the induction of the CssRS-regulated htrA promoter in the presence of different cell wall- and membrane-active substances and observed induction of the CssRS-controlled genes by glycopeptides (vancomycin and teicoplanin), polymyxins B and E, certain β-lactams, and detergents. Teicoplanin was shown to elicit remarkably stronger induction than vancomycin and polymyxin B. Teicoplanin and polymyxin B induced the spxO gene expression in a CssRS-dependent fashion, resulting in increased activity of Spx, a master regulator of disulfide stress in Bacillus subtilis. The CssRS signaling pathway and Spx activity were demonstrated to be involved in Bacillus subtilis resistance to teicoplanin and polymyxin B.
- MeSH
- antibakteriální látky * farmakologie MeSH
- Bacillus subtilis * genetika účinky léků metabolismus MeSH
- bakteriální proteiny * genetika metabolismus MeSH
- polymyxin B * farmakologie MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u bakterií * účinky léků MeSH
- signální transdukce MeSH
- teikoplanin * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Diabetic kidney disease (DKD) is a chronic kidney condition that arises from prolonged hyperglycaemia that can progress to kidney failure, severe morbidity, and mortality if left untreated. It is the major cause of chronic kidney disease among people who have diabetes, accounting for a significant percentage of patients with end-stage kidney disease who require kidney replacement therapy. MAIN BODY: In DKD, numerous dysbalanced metabolic, haemodynamic, inflammatory signalling pathways, and molecular mediators interconnect, creating a feedback loop that promotes general kidney damage. Hyperglycaemia is the primary trigger for DKD and leads gradually to oxidative stress, inflammation, extracellular matrix deposition and fibrosis, glomerular hypertension, and intrarenal hypoxia. Key interconnected metabolic pathways are the hyperglycaemia-mediated polyol, hexosamine, protein kinase C, and advanced glycation end-products pathway hyperactivity. Concurrently, hyperglycaemia-induced renin-angiotensin-aldosterone system stimulation, alters the kidney intraglomerular haemodynamic leading to inflammation through Toll-like receptors, Janus kinase/signal transducer and activator of transcription, and nuclear factor-kappa B, transforming growth factor-beta-mediated excessive extracellular matrix accumulation and fibrosis. The resulting death signals trigger apoptosis and autophagy through Hippo, Notch, and Wnt/β-catenin pathway activation and microRNA dysregulation. These signals synergistically remodel the kidneys culminating in intrarenal hypoxia, podocyte dysfunction, hyperfiltration, epithelial-mesenchymal transition, and loss of kidney function. The resulting renal failure further upregulates these death pathways and mediators, giving rise to a vicious cycle that further worsens DKD. CONCLUSION: This review provides an overview of the primary molecular mediators and signalling pathways leading to DKD; their interconnectivity at the onset and during DKD progression, the central role of transforming growth factor-beta via different pathways, the Hippo pathway kidney-specific response to hyperglycaemia, and how all mediators and transduction signals result in a vicious circle that exacerbates renal failure. The review gives therapeutic sights to these pathways as druggable targets for DKD management. Understanding these molecular events underlying the pathogenesis of DKD can bridge basic research and clinical application, facilitating the development of innovative management strategies.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH