• Je něco špatně v tomto záznamu ?

The path to the G protein-coupled receptor structural landscape: Major milestones and future directions

MM. Kogut-Günthel, Z. Zara, A. Nicoli, A. Steuer, M. Lopez-Balastegui, J. Selent, S. Karanth, M. Koehler, A. Ciancetta, LA. Abiko, F. Hagn, A. Di Pizio

. 2025 ; 182 (14) : 3225-3248. [pub] 20240829

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc25015237

Grantová podpora
J112/2021 Leibniz Junior Research Groups programme
FAR 2022 Università di Ferrara, Fondo di Ateneo per la Ricerca
Ha6105-3 Deutsche Forschungsgemeinschaft
Ha6105-6 Deutsche Forschungsgemeinschaft
PI 1672/3-1 Deutsche Forschungsgemeinschaft
VH-NG-1039 Helmholtz Society
P116/2020 Leibniz Programme for Women Professors
FAR

G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25015237
003      
CZ-PrNML
005      
20250731090846.0
007      
ta
008      
250708s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/bph.17314 $2 doi
035    __
$a (PubMed)39209310
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kogut-Günthel, Małgorzata M $u Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
245    14
$a The path to the G protein-coupled receptor structural landscape: Major milestones and future directions / $c MM. Kogut-Günthel, Z. Zara, A. Nicoli, A. Steuer, M. Lopez-Balastegui, J. Selent, S. Karanth, M. Koehler, A. Ciancetta, LA. Abiko, F. Hagn, A. Di Pizio
520    9_
$a G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.
650    12
$a receptory spřažené s G-proteiny $x chemie $x metabolismus $7 D043562
650    _2
$a lidé $7 D006801
650    _2
$a zvířata $7 D000818
650    _2
$a konformace proteinů $7 D011487
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Zara, Zeenat $u Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany $u Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
700    1_
$a Nicoli, Alessandro $u Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany $u Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany $1 https://orcid.org/0000000161779749
700    1_
$a Steuer, Alexandra $u Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany $u Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
700    1_
$a Lopez-Balastegui, Marta $u Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
700    1_
$a Selent, Jana $u Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
700    1_
$a Karanth, Sanjai $u Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany $1 https://orcid.org/0000000271665371
700    1_
$a Koehler, Melanie $u Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany $u TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany $1 https://orcid.org/0000000330421749
700    1_
$a Ciancetta, Antonella $u Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy $1 https://orcid.org/0000000276122050
700    1_
$a Abiko, Layara Akemi $u Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
700    1_
$a Hagn, Franz $u Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany $u Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany $1 https://orcid.org/000000021315459X
700    1_
$a Di Pizio, Antonella $u Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany $u Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany $1 https://orcid.org/0000000285205165
773    0_
$w MED00009383 $t British journal of pharmacology $x 1476-5381 $g Roč. 182, č. 14 (2025), s. 3225-3248
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39209310 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731090840 $b ABA008
999    __
$a ok $b bmc $g 2366225 $s 1252362
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 182 $c 14 $d 3225-3248 $e 20240829 $i 1476-5381 $m British journal of pharmacology $n Br J Pharmacol $x MED00009383
GRA    __
$a J112/2021 $p Leibniz Junior Research Groups programme
GRA    __
$a FAR 2022 $p Università di Ferrara, Fondo di Ateneo per la Ricerca
GRA    __
$a Ha6105-3 $p Deutsche Forschungsgemeinschaft
GRA    __
$a Ha6105-6 $p Deutsche Forschungsgemeinschaft
GRA    __
$a PI 1672/3-1 $p Deutsche Forschungsgemeinschaft
GRA    __
$a VH-NG-1039 $p Helmholtz Society
GRA    __
$a P116/2020 $p Leibniz Programme for Women Professors
GRA    __
$p FAR
LZP    __
$a Pubmed-20250708

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...