The path to the G protein-coupled receptor structural landscape: Major milestones and future directions

. 2025 Jul ; 182 (14) : 3225-3248. [epub] 20240829

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39209310

Grantová podpora
J112/2021 Leibniz Junior Research Groups programme
FAR 2022 Università di Ferrara, Fondo di Ateneo per la Ricerca
Ha6105-3 Deutsche Forschungsgemeinschaft
Ha6105-6 Deutsche Forschungsgemeinschaft
PI 1672/3-1 Deutsche Forschungsgemeinschaft
VH-NG-1039 Helmholtz Society
P116/2020 Leibniz Programme for Women Professors
FAR

G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.

Zobrazit více v PubMed

Abiko, L. A., Dias Teixeira, R., Engilberge, S., Grahl, A., Mühlethaler, T., Sharpe, T., & Grzesiek, S. (2022). Filling of a water‐free void explains the allosteric regulation of the β1‐adrenergic receptor by cholesterol. Nature Chemistry, 14, 1133–1141. https://doi.org/10.1038/s41557-022-01009-9

Abiko, L. A., Grahl, A., & Grzesiek, S. (2019). High pressure shifts the β1‐adrenergic receptor to the active conformation in the absence of G protein. Journal of the American Chemical Society, 141, 16663–16670. https://doi.org/10.1021/jacs.9b06042

Abiko, L. A., Rogowski, M., Gautier, A., Schertler, G., & Grzesiek, S. (2021). Efficient production of a functional G protein‐coupled receptor in E. Coli for structural studies. Journal of Biomolecular NMR, 75, 25–38. https://doi.org/10.1007/s10858-020-00354-6

Ahuja, S., Hornak, V., Yan, E. C., Syrett, N., Goncalves, J. A., Hirshfeld, A., Ziliox, M., Sakmar, T. P., Sheves, M., Reeves, P. J., Smith, S. O., & Eilers, M. (2009). Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nature Structural & Molecular Biology, 16, 168–175. https://doi.org/10.1038/nsmb.1549

Albizu, L., Cottet, M., Kralikova, M., Stoev, S., Seyer, R., Brabet, I., Roux, T., Bazin, H., Bourrier, E., Lamarque, L., Breton, C., Rives, M. L., Newman, A., Javitch, J., Trinquet, E., Manning, M., Pin, J. P., Mouillac, B., & Durroux, T. (2010). Time‐resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chemical Biology, 6, 587–594. https://doi.org/10.1038/nchembio.396

Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., & Davies, J. A. (2023). The concise guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180, S23–S144.

Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The concise guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181

Alsteens, D., Pfreundschuh, M., Zhang, C., Spoerri, P. M., Coughlin, S. R., Kobilka, B. K., & Müller, D. J. (2015). Imaging G protein–coupled receptors while quantifying their ligand‐binding free‐energy landscape. Nature Methods, 12, 845–851. https://doi.org/10.1038/nmeth.3479

Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., … Baker, D. (2021a). Accurate prediction of protein structures and interactions using a three‐track neural network. Science, 373, 871–876. https://doi.org/10.1126/science.abj8754

Ballante, F., Kooistra, A. J., Kampen, S., de Graaf, C., & Carlsson, J. (2021). Structure‐based virtual screening for ligands of G protein‐coupled receptors: What can molecular docking do for You? Pharmacological Reviews, 73, 527–565. https://doi.org/10.1124/pharmrev.120.000246

Ballesteros, J. A., & Weinstein, H. (1995). [19] Integrated methods for the construction of three‐dimensional models and computational probing of structure‐function relations in G protein‐coupled receptors. In Methods in neurosciences (pp. 366–428). Elsevier.

Bansal, P. D., Dutta, S., & Shukla, D. (2023). Activation mechanism of the human smoothened receptor. Biophysical Journal, 122, 1400–1413. https://doi.org/10.1016/j.bpj.2023.03.007

Baumann, C., Chiang, W.‐C., Valsecchi, R., Jurt, S., Deluigi, M., Schuster, M., Rosengren, K. J., Plückthun, A., & Zerbe, O. (2023). Side‐Chain Dynamics of the α1B‐Adrenergic Receptor determined by NMR via Methyl Relaxation. bioRxiv: 2023.2005. 2009.539984.

Bender, B. J., Marlow, B., & Meiler, J. (2020). Improving homology modeling from low‐sequence identity templates in Rosetta: A case study in GPCRs. PLoS Computational Biology, 16, e1007597.

Bernhard, S. M., Han, J., & Che, T. (2023). GPCR‐G protein selectivity revealed by structural pharmacology. The FEBS Journal, 291, 2784–2791. https://doi.org/10.1111/febs.17049

Billesbølle, C. B., de March, C. A., van der Velden, W. J., Ma, N., Tewari, J., del Torrent, C., Li, L., Faust, B., Vaidehi, N., Matsunami, H., & Manglik, A. (2023). Structural basis of odorant recognition by a human odorant receptor. Nature, 615, 742–749. https://doi.org/10.1038/s41586-023-05798-y

Blaszczyk, M., Jamroz, M., Kmiecik, S., & Kolinski, A. (2013). CABS‐fold: Server for the de novo and consensus‐based prediction of protein structure. Nucleic Acids Research, 41, W406–W411. https://doi.org/10.1093/nar/gkt462

Bokoch, M. P., Zou, Y., Rasmussen, S. G., Liu, C. W., Nygaard, R., Rosenbaum, D. M., Fung, J. J., Choi, H. J., Thian, F. S., Kobilka, T. S., Puglisi, J. D., Weis, W. I., Pardo, L., Prosser, R. S., Mueller, L., & Kobilka, B. K. (2010). Ligand‐specific regulation of the extracellular surface of a G‐protein‐coupled receptor. Nature, 463, 108–112. https://doi.org/10.1038/nature08650

Bueno, A. B., Sun, B., Willard, F. S., Feng, D., Ho, J. D., Wainscott, D. B., Showalter, A. D., Vieth, M., Chen, Q., Stutsman, C., Chau, B., Ficorilli, J., Agejas, F. J., Cumming, G. R., Jiménez, A., Rojo, I., Kobilka, T. S., Kobilka, B. K., & Sloop, K. W. (2020). Structural insights into probe‐dependent positive allosterism of the GLP‐1 receptor. Nature Chemical Biology, 16, 1105–1110. https://doi.org/10.1038/s41589-020-0589-7

Bumbak, F., Pons, M., Inoue, A., Paniagua, J. C., Yan, F., Wu, H., Robson, S. A., Bathgate, R. A. D., Scott, D. J., Gooley, P. R., & Ziarek, J. J. (2023). Ligands selectively tune the local and global motions of neurotensin receptor 1 (NTS1). Cell Reports, 42, 112015. https://doi.org/10.1016/j.celrep.2023.112015

Burley, S. K., Arap, W., & Pasqualini, R. (2021). Predicting proteome‐scale protein structure with artificial intelligence. The New England Journal of Medicine, 385, 2191–2194. https://doi.org/10.1056/NEJMcibr2113027

Callaway, E. (2020). 'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures. Nature, 588, 203–204. https://doi.org/10.1038/d41586-020-03348-4

Callaway, E. (2022). What's next for AlphaFold and the AI protein‐folding revolution. Nature, 604, 234–238. https://doi.org/10.1038/d41586-022-00997-5

Casiraghi, M., Damian, M., Lescop, E., Point, E., Moncoq, K., Morellet, N., Levy, D., Marie, J., Guittet, E., Banères, J. L., & Catoire, L. J. (2016). Functional modulation of a G protein‐coupled receptor conformational landscape in a lipid bilayer. Journal of the American Chemical Society, 138, 11170–11175. https://doi.org/10.1021/jacs.6b04432

Chan, H. S., Li, Y., Dahoun, T., Vogel, H., & Yuan, S. (2019). New binding sites, new opportunities for GPCR drug discovery. Trends in Biochemical Sciences, 44, 312–330. https://doi.org/10.1016/j.tibs.2018.11.011

Chao, F.‐A., & Byrd, R. A. (2018). Protein dynamics revealed by NMR relaxation methods. Emerging Topics in Life Sciences, 2, 93–105.

Che, T., English, J., Krumm, B. E., Kim, K., Pardon, E., Olsen, R. H., Wang, S., Zhang, S., Diberto, J. F., Sciaky, N., & Carroll, F. I. (2020). Nanobody‐enabled monitoring of kappa opioid receptor states. Nature Communications, 11, 1145.

Che, T., Majumdar, S., Zaidi, S. A., Ondachi, P., McCorvy, J. D., Wang, S., Mosier, P. D., Uprety, R., Vardy, E., Krumm, B. E., & Han, G. W. (2018). Structure of the nanobody‐stabilized active state of the kappa opioid receptor. Cell, 172(55–67), e15.

Chen, G., Xu, J., Inoue, A., Schmidt, M. F., Bai, C., Lu, Q., Gmeiner, P., Liu, Z., & du, Y. (2022). Activation and allosteric regulation of the orphan GPR88‐Gi1 signaling complex. Nature Communications, 13, 2375. https://doi.org/10.1038/s41467-022-30081-5

Chen, Q., Plasencia, M., Li, Z., Mukherjee, S., Patra, D., Chen, C.‐L., Klose, T., Yao, X. Q., Kossiakoff, A. A., Chang, L., Andrews, P. C., & Tesmer, J. J. G. (2021). Structures of rhodopsin in complex with G‐protein‐coupled receptor kinase 1. Nature, 595, 600–605. https://doi.org/10.1038/s41586-021-03721-x

Chen, X., Wang, L., Cui, Q., Ding, Z., Han, L., Kou, Y., Zhang, W., Wang, H., Jia, X., Dai, M., Shi, Z., Li, Y., Li, X., & Geng, Y. (2021). Structural insights into the activation of human calcium‐sensing receptor. eLife, 10, e68578. https://doi.org/10.7554/eLife.68578

Cheng, R. K., Fiez‐Vandal, C., Schlenker, O., Edman, K., Aggeler, B., Brown, D. G., Brown, G. A., Cooke, R. M., Dumelin, C. E., Doré, A. S., Geschwindner, S., Grebner, C., Hermansson, N. O., Jazayeri, A., Johansson, P., Leong, L., Prihandoko, R., Rappas, M., Soutter, H., … Dekker, N. (2017). Structural insight into allosteric modulation of protease‐activated receptor 2. Nature, 545, 112–115. https://doi.org/10.1038/nature22309

Christopher, J. A., Orgován, Z., Congreve, M., Doré, A. S., Errey, J. C., Marshall, F. H., Mason, J. S., Okrasa, K., Rucktooa, P., Serrano‐Vega, M. J., & Ferenczy, G. G. (2018). Structure‐based optimization strategies for G protein‐coupled receptor (GPCR) allosteric modulators: A case study from analyses of new metabotropic glutamate receptor 5 (mGlu5) X‐ray structures. Journal of Medicinal Chemistry, 62, 207–222.

Chun, E., Thompson, A. A., Liu, W., Roth, C. B., Griffith, M. T., Katritch, V., Kunken, J., Xu, F., Cherezov, V., Hanson, M. A., & Stevens, R. C. (2012). Fusion partner toolchest for the stabilization and crystallization of G protein‐coupled receptors. Structure, 20, 967–976. https://doi.org/10.1016/j.str.2012.04.010

Chun, L., Zhang, W.‐h., & Liu, J.‐f. (2012). Structure and ligand recognition of class C GPCRs. Acta Pharmacologica Sinica, 33, 312–323. https://doi.org/10.1038/aps.2011.186

Ciancetta, A., Gill, A. K., Ding, T., Karlov, D. S., Chalhoub, G., McCormick, P. J., & Tikhonova, I. G. (2021). Probe confined dynamic mapping for G protein‐coupled receptor allosteric site prediction. ACS Central Science, 7, 1847–1862. https://doi.org/10.1021/acscentsci.1c00802

Cong, X., Maurel, D., Déméné, H., Vasiliauskaité‐Brooks, I., Hagelberger, J., Peysson, F., Saint‐Paul, J., Golebiowski, J., Granier, S., & Sounier, R. (2021). Molecular insights into the biased signaling mechanism of the μ‐opioid receptor. Molecular Cell, 81(4165–4175), e4166.

Congreve, M., Oswald, C., & Marshall, F. H. (2017). Applying structure‐based drug design approaches to allosteric modulators of GPCRs. Trends in Pharmacological Sciences, 38, 837–847. https://doi.org/10.1016/j.tips.2017.05.010

Cressey, D., & Callaway, E. (2017). Cryo‐electron microscopy wins chemistry Nobel. Nature, 550, 167. https://doi.org/10.1038/nature.2017.22738

Daaka, Y., Luttrell, L. M., Ahn, S., Della Rocca, G. J., Ferguson, S. S., Caron, M. G., & Lefkowitz, R. J. (1998). Essential role for G protein‐coupled receptor endocytosis in the activation of mitogen‐activated protein kinase. The Journal of Biological Chemistry, 273, 685–688. https://doi.org/10.1074/jbc.273.2.685

Dague, E., Pons, V., Roland, A., Azaïs, J.‐M., Arcucci, S., Lachaize, V., Velmont, S., Trevisiol, E., N'Guyen, D., Sénard, J. M., & Galés, C. (2022). Atomic force microscopy‐single‐molecule force spectroscopy unveils GPCR cell surface architecture. Communications Biology, 5, 221. https://doi.org/10.1038/s42003-022-03162-w

Danev, R., Belousoff, M., Liang, Y. L., Zhang, X., Eisenstein, F., Wootten, D., & Sexton, P. M. (2021). Routine sub‐2.5 a cryo‐EM structure determination of GPCRs. Nature Communications, 12, 4333. https://doi.org/10.1038/s41467-021-24650-3

Daniilidis, M., Brandl, M. J., & Hagn, F. (2022). The advanced properties of circularized MSP nanodiscs facilitate high‐resolution NMR studies of membrane proteins. Journal of Molecular Biology, 434, 167861. https://doi.org/10.1016/j.jmb.2022.167861

Davies, M. N., Secker, A., Halling‐Brown, M., Moss, D. S., Freitas, A. A., Timmis, J., Clark, E., & Flower, D. R. (2008). GPCRTree: Online hierarchical classification of GPCR function. BMC Research Notes, 1, 67. https://doi.org/10.1186/1756-0500-1-67

Deshpande, I., Liang, J., Hedeen, D., Roberts, K. J., Zhang, Y., Ha, B., Latorraca, N. R., Faust, B., Dror, R. O., Beachy, P. A., Myers, B. R., & Manglik, A. (2019). Smoothened stimulation by membrane sterols drives hedgehog pathway activity. Nature, 571, 284–288. https://doi.org/10.1038/s41586-019-1355-4

DeVree, B. T., Mahoney, J. P., Vélez‐Ruiz, G. A., Rasmussen, S. G., Kuszak, A. J., Edwald, E., Fung, J. J., Manglik, A., Masureel, M., du, Y., Matt, R. A., Pardon, E., Steyaert, J., Kobilka, B. K., & Sunahara, R. K. (2016). Allosteric coupling from G protein to the agonist‐binding pocket in GPCRs. Nature, 535, 182–186. https://doi.org/10.1038/nature18324

Di Marino, D., Conflitti, P., Motta, S., & Limongelli, V. (2023). Structural basis of dimerization of chemokine receptors CCR5 and CXCR4. Nature Communications, 14, 6439. https://doi.org/10.1038/s41467-023-42082-z

Di Pizio, A., Levit, A., Slutzki, M., Behrens, M., Karaman, R., & Niv, M. Y. (2016). Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist‐to‐antagonist ratios. In Methods in cell biology (pp. 401–427). Elsevier.

Dixon, A. D., Inoue, A., Robson, S. A., Culhane, K. J., Trinidad, J. C., Sivaramakrishnan, S., Bumbak, F., & Ziarek, J. J. (2022). Effect of ligands and transducers on the neurotensin receptor 1 conformational ensemble. Journal of the American Chemical Society, 144, 10241–10250. https://doi.org/10.1021/jacs.2c00828

Dodevski, I., & Plückthun, A. (2011). Evolution of three human GPCRs for higher expression and stability. Journal of Molecular Biology, 408, 599–615. https://doi.org/10.1016/j.jmb.2011.02.051

Doré, A. S., Okrasa, K., Patel, J. C., Serrano‐Vega, M., Bennett, K., Cooke, R. M., Errey, J. C., Jazayeri, A., Khan, S., Tehan, B., Weir, M., Wiggin, G. R., & Marshall, F. H. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511, 557–562. https://doi.org/10.1038/nature13396

Draper‐Joyce, C. J., Bhola, R., Wang, J., Bhattarai, A., Nguyen, A. T., Cowie‐Kent, I., O'Sullivan, K., Chia, L. Y., Venugopal, H., Valant, C., Thal, D. M., Wootten, D., Panel, N., Carlsson, J., Christie, M. J., White, P. J., Scammells, P., May, L. T., Sexton, P. M., … Christopoulos, A. (2021). Positive allosteric mechanisms of adenosine A1 receptor‐mediated analgesia. Nature, 597, 571–576. https://doi.org/10.1038/s41586-021-03897-2

Du, J., Wang, D., Fan, H., Xu, C., Tai, L., Lin, S., Han, S., Tan, Q., Wang, X., Xu, T., Zhang, H., Chu, X., Yi, C., Liu, P., Wang, X., Zhou, Y., Pin, J. P., Rondard, P., Liu, H., … Zhao, Q. (2021). Structures of human mGlu2 and mGlu7 homo‐and heterodimers. Nature, 594, 589–593. https://doi.org/10.1038/s41586-021-03641-w

Duan, J., Liu, H., Zhao, F., Yuan, Q., Ji, Y., Cai, X., He, X., Li, X., Li, J., Wu, K., Gao, T., Zhu, S., Lin, S., Wang, M. W., Cheng, X., Yin, W., Jiang, Y., Yang, D., & Xu, H. E. (2023). GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature, 620, 676–681. https://doi.org/10.1038/s41586-023-06395-9

Dumitru, A. C., Deepak, R. K., Liu, H., Koehler, M., Zhang, C., Fan, H., & Alsteens, D. (2020). Submolecular probing of the complement C5a receptor–ligand binding reveals a cooperative two‐site binding mechanism. Communications Biology, 3, 786. https://doi.org/10.1038/s42003-020-01518-8

Dumitru, A. C., & Koehler, M. (2023). Recent advances in the application of atomic force microscopy to structural biology. Journal of Structural Biology, 215, 107963.

Eddy, M. T., Gao, Z.‐G., Mannes, P., Patel, N., Jacobson, K. A., Katritch, V., Stevens, R. C., & Wüthrich, K. (2018). Extrinsic tryptophans as NMR probes of allosteric coupling in membrane proteins: Application to the A2A adenosine receptor. Journal of the American Chemical Society, 140, 8228–8235. https://doi.org/10.1021/jacs.8b03805

Eddy, M. T., Lee, M.‐Y., Gao, Z.‐G., White, K. L., Didenko, T., Horst, R., Audet, M., Stanczak, P., McClary, K. M., Han, G. W., Jacobson, K. A., Stevens, R. C., & Wüthrich, K. (2018). Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell, 172, e12. https://doi.org/10.1016/j.cell.2017.12.004

Fang, W., Yang, F., Xu, C., Ling, S., Lin, L., Zhou, Y., Sun, W., Wang, X., Liu, P., Rondard, P., Shi, P., Pin, J. P., Tian, C., & Liu, J. (2022). Structural basis of the activation of metabotropic glutamate receptor 3. Cell Research, 32, 695–698. https://doi.org/10.1038/s41422-022-00623-z

Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., & Palczewski, K. (2003). Rhodopsin dimers in native disc membranes. Nature, 421, 127–128. https://doi.org/10.1038/421127a

Fredriksson, R., Lagerström, M. C., Lundin, L.‐G., & Schiöth, H. B. (2003). The G‐protein‐coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272. https://doi.org/10.1124/mol.63.6.1256

Gao, Y., Robertson, M. J., Rahman, S. N., Seven, A. B., Zhang, C., Meyerowitz, J. G., Panova, O., Hannan, F. M., Thakker, R. V., Bräuner‐Osborne, H., Mathiesen, J. M., & Skiniotis, G. (2021). Asymmetric activation of the calcium‐sensing receptor homodimer. Nature, 595, 455–459. https://doi.org/10.1038/s41586-021-03691-0

Garcia‐Nafria, J., & Tate, C. G. (2019). Cryo‐EM structures of GPCRs coupled to Gs, Gi and go. Molecular and Cellular Endocrinology, 488, 1–13. https://doi.org/10.1016/j.mce.2019.02.006

Gater, D. L., Saurel, O., Iordanov, I., Liu, W., Cherezov, V., & Milon, A. (2014). Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR. Biophysical Journal, 107, 2305–2312. https://doi.org/10.1016/j.bpj.2014.10.011

Gervasoni, S., Guccione, C., Fanti, V., Bosin, A., Cappellini, G., Golosio, B., Ruggerone, P., & Malloci, G. (2023). Molecular simulations of SSTR2 dynamics and interaction with ligands. Scientific Reports, 13, 4768. https://doi.org/10.1038/s41598-023-31823-1

Goba, I., Goricanec, D., Schum, D., Hillenbrand, M., Plückthun, A., & Hagn, F. (2021). Probing the conformation states of neurotensin receptor 1 variants by NMR site‐directed methyl labeling. Chembiochem, 22, 139–146. https://doi.org/10.1002/cbic.202000541

Goldfeld, D. A., Zhu, K., Beuming, T., & Friesner, R. A. (2011). Successful prediction of the intra‐ and extracellular loops of four G‐protein‐coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 108, 8275–8280. https://doi.org/10.1073/pnas.1016951108

González‐Maeso, J. (2014). Family a GPCR heteromers in animal models. Frontiers Media, 5, 226. https://doi.org/10.3389/fphar.2014.00226

Grahl, A., Abiko, L. A., Isogai, S., Sharpe, T., & Grzesiek, S. (2020). A high‐resolution description of β1‐adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nature Communications, 11, 2216. https://doi.org/10.1038/s41467-020-15864-y

Grimes, J., Koszegi, Z., Lanoiselée, Y., Miljus, T., O'Brien, S. L., Stepniewski, T. M., Medel‐Lacruz, B., Baidya, M., Makarova, M., Mistry, R., & Goulding, J. (2023). Plasma membrane preassociation drives β‐arrestin coupling to receptors and activation. Cell, 186(2238–2255), e2220.

Günsel, U., & Hagn, F. (2021). Lipid nanodiscs for high‐resolution NMR studies of membrane proteins. Chemical Reviews, 122, 9395–9421.

Guo, Q., He, B., Zhong, Y., Jiao, H., Ren, Y., Wang, Q., Ge, Q., Gao, Y., Liu, X., du, Y., Hu, H., & Tao, Y. (2024). A method for structure determination of GPCRs in various states. Nature Chemical Biology, 20, 74–82. https://doi.org/10.1038/s41589-023-01389-0

Gurevich, E. V., Tesmer, J. J., Mushegian, A., & Gurevich, V. V. (2012). G protein‐coupled receptor kinases: More than just kinases and not only for GPCRs. Pharmacology & Therapeutics, 133, 40–69. https://doi.org/10.1016/j.pharmthera.2011.08.001

Hagn, F., Etzkorn, M., Raschle, T., & Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high‐resolution structure determination of membrane proteins. Journal of the American Chemical Society, 135, 1919–1925. https://doi.org/10.1021/ja310901f

Harding, S. D., Sharman, J. L., Faccenda, E., Southan, C., Pawson, A. J., Ireland, S., Gray, A. J. G., Bruce, L., Alexander, S. P. H., Anderton, S., Bryant, C., Davenport, A. P., Doerig, C., Fabbro, D., Levi‐Schaffer, F., Spedding, M., Davies, J. A., & NC‐IUPHAR. (2018). The IUPHAR/BPS guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 46, D1091–D1106. https://doi.org/10.1093/nar/gkx1121

Hauser, A. S., Attwood, M. M., Rask‐Andersen, M., Schiöth, H. B., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16, 829–842. https://doi.org/10.1038/nrd.2017.178

Hauser, A. S., Avet, C., Normand, C., Mancini, A., Inoue, A., Bouvier, M., & Gloriam, D. E. (2022). Common coupling map advances GPCR‐G protein selectivity. eLife, 11, e74107. https://doi.org/10.7554/eLife.74107

He, X. H., You, C. Z., Jiang, H. L., Jiang, Y., Xu, H. E., & Cheng, X. (2022). AlphaFold2 versus experimental structures: Evaluation on G protein‐coupled receptors. Acta Pharmacologica Sinica, 44, 1–7. https://doi.org/10.1038/s41401-022-00938-y

Hedderich, J. B., Persechino, M., Becker, K., Heydenreich, F. M., Gutermuth, T., Bouvier, M., Bünemann, M., & Kolb, P. (2022). The pocketome of G‐protein‐coupled receptors reveals previously untargeted allosteric sites. Nature Communications, 13, 2567. https://doi.org/10.1038/s41467-022-29609-6

Heo, L., & Feig, M. (2022). Multi‐state modeling of G‐protein coupled receptors at experimental accuracy. Proteins, 90, 1873–1885. https://doi.org/10.1002/prot.26382

Heydenreich, F. M., Vuckovic, Z., Matkovic, M., & Veprintsev, D. B. (2015). Stabilization of G protein‐coupled receptors by point mutations. Frontiers in Pharmacology, 6, 82.

Hilger, D., Masureel, M., & Kobilka, B. K. (2018). Structure and dynamics of GPCR signaling complexes. Nature Structural & Molecular Biology, 25, 4–12. https://doi.org/10.1038/s41594-017-0011-7

Hollenstein, K., de Graaf, C., Bortolato, A., Wang, M.‐W., Marshall, F. H., & Stevens, R. C. (2014). Insights into the structure of class B GPCRs. Trends in Pharmacological Sciences, 35, 12–22. https://doi.org/10.1016/j.tips.2013.11.001

Horst, R., Liu, J. J., Stevens, R. C., & Wüthrich, K. (2013). β2‐adrenergic receptor activation by agonists studied with 19F NMR spectroscopy. Angewandte Chemie, 125, 10962–10965. https://doi.org/10.1002/ange.201305286

Huang, P., Zheng, S., Wierbowski, B. M., Kim, Y., Nedelcu, D., Aravena, L., Liu, J., Kruse, A. C., & Salic, A. (2018). Structural basis of smoothened activation in hedgehog signaling. Cell, 174(312–324), e316.

Huang, S., Xu, P., Shen, D. D., Simon, I. A., Mao, C., Tan, Y., Zhang, H., Harpsøe, K., Li, H., Zhang, Y., You, C., Yu, X., Jiang, Y., Zhang, Y., Gloriam, D. E., & Xu, H. E. (2022). GPCRs steer G(i) and G(s) selectivity via TM5‐TM6 switches as revealed by structures of serotonin receptors. Molecular Cell, 82, e2686. https://doi.org/10.1016/j.molcel.2022.05.031

Huang, S. K., Almurad, O., Pejana, R. J., Morrison, Z. A., Pandey, A., Picard, L.‐P., Nitz, M., Sljoka, A., & Prosser, R. S. (2022). Allosteric modulation of the adenosine A2A receptor by cholesterol. eLife, 11, e73901. https://doi.org/10.7554/eLife.73901

Huang, T., Yuan, Q., Zuo, S., Li, B., Wu, Q., & Xie, Y. (2021). Evaluation of microstructural changes in fresh cement paste using AC impedance spectroscopy vs. oscillation rheology and 1H NMR relaxometry. Cement and Concrete Research, 149, 106556. https://doi.org/10.1016/j.cemconres.2021.106556

Huang, W., Manglik, A., Venkatakrishnan, A., Laeremans, T., Feinberg, E. N., Sanborn, A. L., Kato, H. E., Livingston, K. E., Thorsen, T. S., Kling, R. C., Granier, S., Gmeiner, P., Husbands, S. M., Traynor, J. R., Weis, W. I., Steyaert, J., Dror, R. O., & Kobilka, B. K. (2015). Structural insights into μ‐opioid receptor activation. Nature, 524, 315–321. https://doi.org/10.1038/nature14886

Imai, S., Yokomizo, T., Kofuku, Y., Shiraishi, Y., Ueda, T., & Shimada, I. (2020). Structural equilibrium underlying ligand‐dependent activation of β2‐adrenoreceptor. Nature Chemical Biology, 16, 430–439. https://doi.org/10.1038/s41589-019-0457-5

Inoue, A., Raimondi, F., Kadji, F. M. N., Singh, G., Kishi, T., Uwamizu, A., Ono, Y., Shinjo, Y., Ishida, S., Arang, N., & Kawakami, K. (2019). Illuminating G‐protein‐coupling selectivity of GPCRs. Cell, 177(1933–1947), e1925.

Irannejad, R., Tomshine, J. C., Tomshine, J. R., Chevalier, M., Mahoney, J. P., Steyaert, J., Rasmussen, S. G. F., Sunahara, R. K., el‐Samad, H., Huang, B., & von Zastrow, M. (2013). Conformational biosensors reveal GPCR signalling from endosomes. Nature, 495, 534–538. https://doi.org/10.1038/nature12000

Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., Mordalski, S., Pin, J. P., Stevens, R. C., Vriend, G., & Gloriam, D. E. (2015). Generic GPCR residue numbers–aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36, 22–31. https://doi.org/10.1016/j.tips.2014.11.001

Isogai, S., Deupi, X., Opitz, C., Heydenreich, F. M., Tsai, C.‐J., Brueckner, F., Schertler, G. F. X., Veprintsev, D. B., & Grzesiek, S. (2016). Backbone NMR reveals allosteric signal transduction networks in the β1‐adrenergic receptor. Nature, 530, 237–241. https://doi.org/10.1038/nature16577

Jazayeri, A., Doré, A. S., Lamb, D., Krishnamurthy, H., Southall, S. M., Baig, A. H., Bortolato, A., Koglin, M., Robertson, N. J., Errey, J. C., Andrews, S. P., Teobald, I., Brown, A. J. H., Cooke, R. M., Weir, M., & Marshall, F. H. (2016). Extra‐helical binding site of a glucagon receptor antagonist. Nature, 533, 274–277. https://doi.org/10.1038/nature17414

Jin, B.‐k., Odongo, S., Radwanska, M., & Magez, S. (2023). Nanobodies: A review of generation, diagnostics and therapeutics. International Journal of Molecular Sciences, 24, 5994. https://doi.org/10.3390/ijms24065994

Joedicke, L., Mao, J., Kuenze, G., Reinhart, C., Kalavacherla, T., Jonker, H. R., Richter, C., Schwalbe, H., Meiler, J., Preu, J., Michel, H., & Glaubitz, C. (2018). The molecular basis of subtype selectivity of human kinin G‐protein‐coupled receptors. Nature Chemical Biology, 14, 284–290. https://doi.org/10.1038/nchembio.2551

Jones, A. J., Gabriel, F., Tandale, A., & Nietlispach, D. (2020). Structure and dynamics of GPCRs in lipid membranes: Physical principles and experimental approaches. Molecules, 25, 4729. https://doi.org/10.3390/molecules25204729

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera‐Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2

Kamal, M., Maurice, P., & Jockers, R. (2011). Expanding the concept of G protein‐coupled receptor (GPCR) dimer asymmetry towards GPCR‐interacting proteins. Pharmaceuticals, 4, 273–284. https://doi.org/10.3390/ph4020273

Kaneko, S., Imai, S., Asao, N., Kofuku, Y., Ueda, T., & Shimada, I. (2022). Activation mechanism of the μ‐opioid receptor by an allosteric modulator. Proceedings of the National Academy of Sciences, 119, e2121918119. https://doi.org/10.1073/pnas.2121918119

Kapla, J., Rodríguez‐Espigares, I., Ballante, F., Selent, J., & Carlsson, J. (2021). Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models? PLoS Computational Biology, 17, e1008936. https://doi.org/10.1371/journal.pcbi.1008936

Karanth, S., Azinfar, A., Helm, C. A., & Delcea, M. (2021). Identification of a critical lipid ratio in raft‐like phases exposed to nitric oxide: An AFM study. Biophysical Journal, 120, 3103–3111. https://doi.org/10.1016/j.bpj.2021.06.009

Kim, H. R., Xu, J., Maeda, S., Duc, N. M., Ahn, D., du, Y., & Chung, K. Y. (2020). Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family. Nature Communications, 11, 3160. https://doi.org/10.1038/s41467-020-16975-2

Kim, T. H., Chung, K. Y., Manglik, A., Hansen, A. L., Dror, R. O., Mildorf, T. J., Shaw, D. E., Kobilka, B. K., & Prosser, R. S. (2013). The role of ligands on the equilibria between functional states of a G protein‐coupled receptor. Journal of the American Chemical Society, 135, 9465–9474. https://doi.org/10.1021/ja404305k

Kim, Y., Jeong, E., Jeong, J.‐H., Kim, Y., & Cho, Y. (2020). Structural basis for activation of the heterodimeric GABAB receptor. Journal of Molecular Biology, 432, 5966–5984. https://doi.org/10.1016/j.jmb.2020.09.023

Kleist, A. B., Jenjak, S., Sente, A., Laskowski, L. J., Szpakowska, M., Calkins, M. M., Anderson, E. I., McNally, L. M., Heukers, R., Bobkov, V., Peterson, F. C., Thomas, M. A., Chevigné, A., Smit, M. J., McCorvy, J. D., Babu, M. M., & Volkman, B. F. (2022). Conformational selection guides β‐arrestin recruitment at a biased G protein–coupled receptor. Science, 377, 222–228. https://doi.org/10.1126/science.abj4922

Klenk, C., Scrivens, M., Niederer, A., Shi, S., Mueller, L., Gersz, E., Zauderer, M., Smith, E. S., Strohner, R., & Plückthun, A. (2023). A vaccinia‐based system for directed evolution of GPCRs in mammalian cells. Nature Communications, 14, 1770. https://doi.org/10.1038/s41467-023-37191-8

Kmiecik, S., Jamroz, M., & Kolinski, M. (2014). Structure prediction of the second extracellular loop in G‐protein‐coupled receptors. Biophysical Journal, 106, 2408–2416. https://doi.org/10.1016/j.bpj.2014.04.022

Kobilka, B. (2013). The structural basis of G‐protein‐coupled receptor signaling (Nobel lecture). Angewandte Chemie (International Ed. in English), 52, 6380–6388. https://doi.org/10.1002/anie.201302116

Koehl, A., Hu, H., Feng, D., Sun, B., Zhang, Y., Robertson, M. J., Chu, M., Kobilka, T. S., Laeremans, T., Steyaert, J., Tarrasch, J., Dutta, S., Fonseca, R., Weis, W. I., Mathiesen, J. M., Skiniotis, G., & Kobilka, B. K. (2019). Structural insights into the activation of metabotropic glutamate receptors. Nature, 566, 79–84. https://doi.org/10.1038/s41586-019-0881-4

Kofuku, Y., Ueda, T., Okude, J., Shiraishi, Y., Kondo, K., Mizumura, T., Suzuki, S., & Shimada, I. (2014). Functional dynamics of deuterated β2‐adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angewandte Chemie, 126, 13594–13597. https://doi.org/10.1002/ange.201406603

Kolb, P., Kenakin, T., Alexander, S. P. H., Bermudez, M., Bohn, L. M., Breinholt, C. S., Bouvier, M., Hill, S. J., Kostenis, E., Martemyanov, K. A., Neubig, R. R., Onaran, H. O., Rajagopal, S., Roth, B. L., Selent, J., Shukla, A. K., Sommer, M. E., & Gloriam, D. E. (2022). Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 179, 3651–3674. https://doi.org/10.1111/bph.15811

Kooijman, L., Ansorge, P., Schuster, M., Baumann, C., Löhr, F., Jurt, S., Güntert, P., & Zerbe, O. (2020). Backbone and methyl assignment of bacteriorhodopsin incorporated into nanodiscs. Journal of Biomolecular NMR, 74, 45–60. https://doi.org/10.1007/s10858-019-00289-7

Kruse, A. C., Ring, A. M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hübner, H., Pardon, E., Valant, C., Sexton, P. M., Christopoulos, A., Felder, C. C., Gmeiner, P., Steyaert, J., Weis, W. I., Garcia, K. C., Wess, J., & Kobilka, B. K. (2013). Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 504, 101–106. https://doi.org/10.1038/nature12735

Latorraca, N. R., Venkatakrishnan, A., & Dror, R. O. (2017). GPCR dynamics: Structures in motion. Chemical Reviews, 117, 139–155. https://doi.org/10.1021/acs.chemrev.6b00177

Lazim, R., Suh, D., Lee, J. W., Vu, T. N. L., Yoon, S., & Choi, S. (2021). Structural characterization of receptor–receptor interactions in the allosteric modulation of G protein‐coupled receptor (Gpcr) dimers. International Journal of Molecular Sciences, 22, 3241. https://doi.org/10.3390/ijms22063241

Lee, C., Su, B.‐H., & Tseng, Y. J. (2022). Comparative studies of AlphaFold, RoseTTAFold and Modeller: A case study involving the use of G‐protein‐coupled receptors. Briefings in Bioinformatics, 23, bbac308. https://doi.org/10.1093/bib/bbac308

Lee, S., Kim, S., Lee, G. R., Kwon, S., Woo, H., Seok, C., & Park, H. (2023). Evaluating GPCR modeling and docking strategies in the era of deep learning‐based protein structure prediction. Computational and Structural Biotechnology Journal, 21, 158–167. https://doi.org/10.1016/j.csbj.2022.11.057

Lee, Y., Lazim, R., Macalino, S. J. Y., & Choi, S. (2019). Importance of protein dynamics in the structure‐based drug discovery of class AG protein‐coupled receptors (GPCRs). Current Opinion in Structural Biology, 55, 147–153. https://doi.org/10.1016/j.sbi.2019.03.015

Lee, Y., Warne, T., Nehmé, R., Pandey, S., Dwivedi‐Agnihotri, H., Chaturvedi, M., Edwards, P. C., García‐Nafría, J., Leslie, A. G. W., Shukla, A. K., & Tate, C. G. (2020). Molecular basis of β‐arrestin coupling to formoterol‐bound β1‐adrenoceptor. Nature, 583, 862–866. https://doi.org/10.1038/s41586-020-2419-1

Lefkowitz, R. J. (2013). A brief history of G‐protein coupled receptors (Nobel lecture). Angewandte Chemie (International Ed. in English), 52, 6366–6378. https://doi.org/10.1002/anie.201301924

Liang, Y.‐L., Khoshouei, M., Radjainia, M., Zhang, Y., Glukhova, A., Tarrasch, J., Thal, D. M., Furness, S. G. B., Christopoulos, G., Coudrat, T., Danev, R., Baumeister, W., Miller, L. J., Christopoulos, A., Kobilka, B. K., Wootten, D., Skiniotis, G., & Sexton, P. M. (2017). Phase‐plate cryo‐EM structure of a class B GPCR–G‐protein complex. Nature, 546, 118–123. https://doi.org/10.1038/nature22327

Lin, S., Han, S., Cai, X., Tan, Q., Zhou, K., Wang, D., Wang, X., du, J., Yi, C., Chu, X., Dai, A., Zhou, Y., Chen, Y., Zhou, Y., Liu, H., Liu, J., Yang, D., Wang, M. W., Zhao, Q., & Wu, B. (2021). Structures of Gi‐bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature, 594, 583–588. https://doi.org/10.1038/s41586-021-03495-2

Ling, S., Shi, P., Liu, S., Meng, X., Zhou, Y., Sun, W., Chang, S., Zhang, X., Zhang, L., Shi, C., Sun, D., Liu, L., & Tian, C. (2021). Structural mechanism of cooperative activation of the human calcium‐sensing receptor by Ca2+ ions and L‐tryptophan. Cell Research, 31, 383–394. https://doi.org/10.1038/s41422-021-00474-0

Liu, J., Tang, H., Xu, C., Zhou, S., Zhu, X., Li, Y., Prézeau, L., Xu, T., Pin, J. P., Rondard, P., Ji, W., & Liu, J. (2022). Biased signaling due to oligomerization of the G protein‐coupled platelet‐activating factor receptor. Nature Communications, 13, 6365. https://doi.org/10.1038/s41467-022-34056-4

Liu, J. J., Horst, R., Katritch, V., Stevens, R. C., & Wüthrich, K. (2012). Biased signaling pathways in β2‐adrenergic receptor characterized by 19F‐NMR. Science, 335, 1106–1110. https://doi.org/10.1126/science.1215802

Liu, X., Masoudi, A., Kahsai, A. W., Huang, L.‐Y., Pani, B., Staus, D. P., Shim, P. J., Hirata, K., Simhal, R. K., Schwalb, A. M., Rambarat, P. K., Ahn, S., Lefkowitz, R. J., & Kobilka, B. (2019). Mechanism of β2AR regulation by an intracellular positive allosteric modulator. Science, 364, 1283–1287. https://doi.org/10.1126/science.aaw8981

Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G., & Lefkowitz, R. J. (1990). Beta‐Arrestin: A protein that regulates beta‐adrenergic receptor function. Science, 248, 1547–1550. https://doi.org/10.1126/science.2163110

Lu, J., Byrne, N., Wang, J., Bricogne, G., Brown, F. K., Chobanian, H. R., Colletti, S. L., di Salvo, J., Thomas‐Fowlkes, B., Guo, Y., Hall, D. L., Hadix, J., Hastings, N. B., Hermes, J. D., Ho, T., Howard, A. D., Josien, H., Kornienko, M., Lumb, K. J., … Soisson, S. M. (2017). Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nature Structural & Molecular Biology, 24, 570–577. https://doi.org/10.1038/nsmb.3417

Macey, T. A., Gurevich, V. V., & Neve, K. A. (2004). Preferential interaction between the dopamine D2 receptor and Arrestin2 in neostriatal neurons. Molecular Pharmacology, 66, 1635–1642. https://doi.org/10.1124/mol.104.001495

Manglik, A., Kim, T. H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M. T., Kobilka, T. S., Thian, F. S., Hubbell, W. L., Prosser, R. S., & Kobilka, B. K. (2015). Structural insights into the dynamic process of β2‐adrenergic receptor signaling. Cell, 161, 1101–1111. https://doi.org/10.1016/j.cell.2015.04.043

Manglik, A., Kobilka, B. K., & Steyaert, J. (2017). Nanobodies to study G protein‐coupled receptor structure and function. Annual Review of Pharmacology and Toxicology, 57, 19–37. https://doi.org/10.1146/annurev-pharmtox-010716-104710

Mao, C., Shen, C., Li, C., Shen, D.‐D., Xu, C., Zhang, S., Zhou, R., Shen, Q., Chen, L. N., Jiang, Z., Liu, J., & Zhang, Y. (2020). Cryo‐EM structures of inactive and active GABAB receptor. Cell Research, 30, 564–573. https://doi.org/10.1038/s41422-020-0350-5

May, L. T., Leach, K., Sexton, P. M., & Christopoulos, A. (2007). Allosteric modulation of G protein–coupled receptors. Annual Review of Pharmacology and Toxicology, 47, 1–51. https://doi.org/10.1146/annurev.pharmtox.47.120505.105159

Michino, M., Abola, E., GPCR Dock 2008 participants, Brooks CL 3rd, Dixon, J. S., Moult, J., & Stevens, R. C. (2009). Community‐wide assessment of GPCR structure modelling and ligand docking: GPCR dock 2008. Nature Reviews Drug Discovery, 8, 455–463. https://doi.org/10.1038/nrd2877

Miehling, J., Goricanec, D., & Hagn, F. (2018). A Split‐Intein‐based method for the efficient production of circularized Nanodiscs for structural studies of membrane proteins. Chembiochem, 19, 1927–1933. https://doi.org/10.1002/cbic.201800345

Milić, D., & Veprintsev, D. B. (2015). Large‐scale production and protein engineering of G protein‐coupled receptors for structural studies. Frontiers in Pharmacology, 6, 66.

Min, K., Yoon, H. J., Park, J. Y., Baidya, M., Dwivedi‐Agnihotri, H., Maharana, J., Chaturvedi, M., Chung, K. Y., Shukla, A. K., & Lee, H. H. (2020). Crystal structure of beta‐Arrestin 2 in complex with CXCR7 Phosphopeptide. Structure, 28(1014–1023), e1014.

Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods, 19, 679–682. https://doi.org/10.1038/s41592-022-01488-1

Miszta, P., Pasznik, P., Jakowiecki, J., Sztyler, A., Latek, D., & Filipek, S. (2018). GPCRM: A homology modeling web service with triple membrane‐fitted quality assessment of GPCR models. Nucleic Acids Research, 46, W387–W395. https://doi.org/10.1093/nar/gky429

Mizumura, T., Kondo, K., Kurita, M., Kofuku, Y., Natsume, M., Imai, S., Shiraishi, Y., Ueda, T., & Shimada, I. (2020). Activation of adenosine A2A receptor by lipids from docosahexaenoic acid revealed by NMR. Science. Advances, 6, eaay8544.

Mohamadi, M., Goricanec, D., Wagner, G., & Hagn, F. (2023). NMR sample optimization and backbone assignment of a stabilized neurotensin receptor. Journal of Structural Biology, 215, 107970. https://doi.org/10.1016/j.jsb.2023.107970

Monn, J. A., Prieto, L., Taboada, L., Pedregal, C., Hao, J., Reinhard, M. R., Henry, S. S., Goldsmith, P. J., Beadle, C. D., Walton, L., Man, T., Rudyk, H., Clark, B., Tupper, D., Baker, S. R., Lamas, C., Montero, C., Marcos, A., Blanco, J., … McKinzie, D. (2015). Synthesis and pharmacological characterization of C4‐disubstituted analogs of 1 S, 2 S, 5 R, 6 S‐2‐aminobicyclo [3.1. 0] hexane‐2, 6‐dicarboxylate: Identification of a potent, selective metabotropic glutamate receptor agonist and determination of agonist‐bound human mGlu2 and mGlu3 amino terminal domain structures. Journal of Medicinal Chemistry, 58, 1776–1794. https://doi.org/10.1021/jm501612y

Müller, D. J., Dumitru, A. C., Lo Giudice, C., Gaub, H. E., Hinterdorfer, P., Hummer, G., De Yoreo, J. J., Dufrêne, Y. F., & Alsteens, D. (2020). Atomic force microscopy‐based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chemical Reviews, 121, 11701–11725.

Nakane, T., Kotecha, A., Sente, A., McMullan, G., Masiulis, S., Brown, P., Grigoras, I. T., Malinauskaite, L., Malinauskas, T., Miehling, J., Uchański, T., Yu, L., Karia, D., Pechnikova, E. V., de Jong, E., Keizer, J., Bischoff, M., McCormack, J., Tiemeijer, P., … Scheres, S. H. W. (2020). Single‐particle cryo‐EM at atomic resolution. Nature, 587, 152–156. https://doi.org/10.1038/s41586-020-2829-0

Nasrallah, C., Cannone, G., Briot, J., Rottier, K., Berizzi, A. E., Huang, C.‐Y., Quast, R. B., Hoh, F., Banères, J. L., Malhaire, F., Berto, L., Dumazer, A., Font‐Ingles, J., Gómez‐Santacana, X., Catena, J., Kniazeff, J., Goudet, C., Llebaria, A., Pin, J. P., … Lebon, G. (2021). Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Reports, 36, 109648. https://doi.org/10.1016/j.celrep.2021.109648

Nicoli, A., Dunkel, A., Giorgino, T., de Graaf, C., & Di Pizio, A. (2022). Classification model for the second extracellular loop of class a GPCRs. Journal of Chemical Information and Modeling, 62, 511–522. https://doi.org/10.1021/acs.jcim.1c01056

Nicoli, A., Haag, F., Marcinek, P., He, R., Kreißl, J., Stein, J., Marchetto, A., Dunkel, A., Hofmann, T., Krautwurst, D., & di Pizio, A. (2023). Modeling the orthosteric binding site of the G protein‐coupled odorant receptor OR5K1. Journal of Chemical Information and Modeling, 63, 2014–2029. https://doi.org/10.1021/acs.jcim.2c00752

Nussinov, R., & Tsai, C.‐J. (2013). Allostery in disease and in drug discovery. Cell, 153, 293–305. https://doi.org/10.1016/j.cell.2013.03.034

Nygaard, R., Zou, Y., Dror, R. O., Mildorf, T. J., Arlow, D. H., Manglik, A., Pan, A. C., Liu, C. W., Fung, J. J., Bokoch, M. P., Thian, F. S., Kobilka, T. S., Shaw, D. E., Mueller, L., Prosser, R. S., & Kobilka, B. K. (2013). The dynamic process of β2‐adrenergic receptor activation. Cell, 152, 532–542. https://doi.org/10.1016/j.cell.2013.01.008

Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G., & Barak, L. S. (2000). Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein‐coupled receptors delineate two major classes of receptors. The Journal of Biological Chemistry, 275, 17201–17210. https://doi.org/10.1074/jbc.M910348199

Okude, J., Ueda, T., Kofuku, Y., Sato, M., Nobuyama, N., Kondo, K., Shiraishi, Y., Mizumura, T., Onishi, K., Natsume, M., Maeda, M., Tsujishita, H., Kuranaga, T., Inoue, M., & Shimada, I. (2015). Identification of a conformational equilibrium that determines the efficacy and functional selectivity of the μ‐opioid receptor. Angewandte Chemie International Edition, 54, 15771–15776. https://doi.org/10.1002/anie.201508794

Opitz, C., Isogai, S., & Grzesiek, S. (2015). An economic approach to efficient isotope labeling in insect cells using homemade 15 N‐, 13 C‐and 2 H‐labeled yeast extracts. Journal of Biomolecular NMR, 62, 373–385. https://doi.org/10.1007/s10858-015-9954-3

Oswald, C., Rappas, M., Kean, J., Doré, A. S., Errey, J. C., Bennett, K., Deflorian, F., Christopher, J. A., Jazayeri, A., Mason, J. S., Congreve, M., Cooke, R. M., & Marshall, F. H. (2016). Intracellular allosteric antagonism of the CCR9 receptor. Nature, 540, 462–465. https://doi.org/10.1038/nature20606

Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Trong, I. L., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., & Miyano, M. (2000). Crystal structure of rhodopsin: AG protein‐coupled receptor. Science, 289, 739–745. https://doi.org/10.1126/science.289.5480.739

Pándy‐Szekeres, G., Caroli, J., Mamyrbekov, A., Kermani, A. A., Keserű, G. M., Kooistra, A. J., & Gloriam, D. E. (2023). GPCRdb in 2023: State‐specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Research, 51, D395–D402. https://doi.org/10.1093/nar/gkac1013

Pándy‐Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsøe, K., Hauser, A. S., Bojarski, A. J., & Gloriam, D. E. (2018). GPCRdb in 2018: Adding GPCR structure models and ligands. Nucleic Acids Research, 46, D440–D446. https://doi.org/10.1093/nar/gkx1109

Pándy‐Szekeres, G., Taracena Herrera, L. P., Caroli, J., Kermani, A. A., Kulkarni, Y., Keserű, G. M., & Gloriam, D. E. (2024). GproteinDb in 2024: New G protein‐GPCR couplings, AlphaFold2‐multimer models and interface interactions. Nucleic Acids Research, 52, D466–D475. https://doi.org/10.1093/nar/gkad1089

Papasergi‐Scott, M. M., Robertson, M. J., Seven, A. B., Panova, O., Mathiesen, J. M., & Skiniotis, G. (2020). Structures of metabotropic GABAB receptor. Nature, 584, 310–314. https://doi.org/10.1038/s41586-020-2469-4

Paradis, J. S., Feng, X., Murat, B., Jefferson, R. E., Sokrat, B., Szpakowska, M., Hogue, M., Bergkamp, N. D., Heydenreich, F. M., Smit, M. J., Chevigné, A., Bouvier, M., & Barth, P. (2022). Computationally designed GPCR quaternary structures bias signaling pathway activation. Nature Communications, 13, 6826. https://doi.org/10.1038/s41467-022-34382-7

Park, J., Fu, Z., Frangaj, A., Liu, J., Mosyak, L., Shen, T., Slavkovich, V. N., Ray, K. M., Taura, J., Cao, B., Geng, Y., Zuo, H., Kou, Y., Grassucci, R., Chen, S., Liu, Z., Lin, X., Williams, J. P., Rice, W. J., … Fan, Q. R. (2020). Structure of human GABAB receptor in an inactive state. Nature, 584, 304–309. https://doi.org/10.1038/s41586-020-2452-0

Park, J., Zuo, H., Frangaj, A., Fu, Z., Yen, L. Y., Zhang, Z., Mosyak, L., Slavkovich, V. N., Liu, J., Ray, K. M., Cao, B., Vallese, F., Geng, Y., Chen, S., Grassucci, R., Dandey, V. P., Tan, Y. Z., Eng, E., Lee, Y., … Fan, Q. R. (2021). Symmetric activation and modulation of the human calcium‐sensing receptor. Proceedings of the National Academy of Sciences, 118, e2115849118. https://doi.org/10.1073/pnas.2115849118

Park, S. H., Casagrande, F., Das, B. B., Albrecht, L., Chu, M., & Opella, S. J. (2011). Local and global dynamics of the G protein‐coupled receptor CXCR1. Biochemistry, 50, 2371–2380. https://doi.org/10.1021/bi101568j

Park, S. H., Prytulla, S., De Angelis, A. A., Brown, J. M., Kiefer, H., & Opella, S. J. (2006). High‐resolution NMR spectroscopy of a GPCR in aligned bicelles. Journal of the American Chemical Society, 128, 7402–7403. https://doi.org/10.1021/ja0606632

Perrino, A. P., Miyagi, A., & Scheuring, S. (2021). Single molecule kinetics of bacteriorhodopsin by HS‐AFM. Nature Communications, 12, 7225. https://doi.org/10.1038/s41467-021-27580-2

Persechino, M., Hedderich, J. B., Kolb, P., & Hilger, D. (2022). Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacology & Therapeutics, 237, 108242. https://doi.org/10.1016/j.pharmthera.2022.108242.

Pin, J.‐P., Galvez, T., & Prézeau, L. (2003). Evolution, structure, and activation mechanism of family 3/C G‐protein‐coupled receptors. Pharmacology & Therapeutics, 98, 325–354. https://doi.org/10.1016/S0163-7258(03)00038-X

Ping, Y.‐Q., Mao, C., Xiao, P., Zhao, R.‐J., Jiang, Y., Yang, Z., An, W. T., Shen, D. D., Yang, F., Zhang, H., Qu, C., Shen, Q., Tian, C., Li, Z. J., Li, S., Wang, G. Y., Tao, X., Wen, X., Zhong, Y. N., … Sun, J. P. (2021). Structures of the glucocorticoid‐bound adhesion receptor GPR97–go complex. Nature, 589, 620–626. https://doi.org/10.1038/s41586-020-03083-w

Qin, L., Kufareva, I., Holden, L. G., Wang, C., Zheng, Y., Zhao, C., Fenalti, G., Wu, H., Han, G. W., Cherezov, V., Abagyan, R., Stevens, R. C., & Handel, T. M. (2015). Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science, 347, 1117–1122. https://doi.org/10.1126/science.1261064

Radhakrishnan, A., Rohatgi, R., & Siebold, C. (2020). Cholesterol access in cellular membranes controls hedgehog signaling. Nature Chemical Biology, 16, 1303–1313. https://doi.org/10.1038/s41589-020-00678-2

Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M., & Shukla, A. K. (2017). Novel structural insights into GPCR–β‐arrestin interaction and signaling. Trends in Cell Biology, 27, 851–862. https://doi.org/10.1016/j.tcb.2017.05.008

Rasmussen, S. G., Choi, H.‐J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., Devree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., & Kobilka, B. K. (2011). Structure of a nanobody‐stabilized active state of the β2 adrenoceptor. Nature, 469, 175–180. https://doi.org/10.1038/nature09648

Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., & Kobilka, B. K. (2011). Crystal structure of the beta2 adrenergic receptor‐Gs protein complex. Nature, 477, 549–555. https://doi.org/10.1038/nature10361

Reiter, E., Ahn, S., Shukla, A. K., & Lefkowitz, R. J. (2012). Molecular mechanism of beta‐arrestin‐biased agonism at seven‐transmembrane receptors. Annual Review of Pharmacology and Toxicology, 52, 179–197. https://doi.org/10.1146/annurev.pharmtox.010909.105800

Robertson, M. J., Papasergi‐Scott, M. M., He, F., Seven, A. B., Meyerowitz, J. G., Panova, O., Peroto, M. C., Che, T., & Skiniotis, G. (2022). Structure determination of inactive‐state GPCRs with a universal nanobody. Nature Structural & Molecular Biology, 29, 1188–1195. https://doi.org/10.1038/s41594-022-00859-8

Robertson, N., Jazayeri, A., Errey, J., Baig, A., Hurrell, E., Zhukov, A., Langmead, C. J., Weir, M., & Marshall, F. H. (2011). The properties of thermostabilised G protein‐coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology, 60, 36–44. https://doi.org/10.1016/j.neuropharm.2010.07.001

Robertson, N., Rappas, M., Doré, A. S., Brown, J., Bottegoni, G., Koglin, M., Cansfield, J., Jazayeri, A., Cooke, R. M., & Marshall, F. H. (2018). Structure of the complement C5a receptor bound to the extra‐helical antagonist NDT9513727. Nature, 553, 111–114. https://doi.org/10.1038/nature25025

Rodríguez‐Espigares, I., Torrens‐Fontanals, M., Tiemann, J. K. S., Aranda‐García, D., Ramírez‐Anguita, J. M., Stepniewski, T. M., Worp, N., Varela‐Rial, A., Morales‐Pastor, A., Medel‐Lacruz, B., Pándy‐Szekeres, G., Mayol, E., Giorgino, T., Carlsson, J., Deupi, X., Filipek, S., Filizola, M., Gómez‐Tamayo, J. C., Gonzalez, A., … Selent, J. (2020). GPCRmd uncovers the dynamics of the 3D‐GPCRome. Nature Methods, 17, 777–787. https://doi.org/10.1038/s41592-020-0884-y

Rosenbaum, D. M., Cherezov, V., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Yao, X. J., Weis, W. I., Stevens, R. C., & Kobilka, B. K. (2007). GPCR engineering yields high‐resolution structural insights into β2‐adrenergic receptor function. Science, 318, 1266–1273. https://doi.org/10.1126/science.1150609

Rößler, P., Mayer, D., Tsai, C.‐J., Veprintsev, D. B., Schertler, G. F., & Gossert, A. D. (2020). GPCR activation states induced by nanobodies and mini‐G proteins compared by NMR spectroscopy. Molecules, 25, 5984. https://doi.org/10.3390/molecules25245984

Roth, B. L., Irwin, J. J., & Shoichet, B. K. (2017). Discovery of new GPCR ligands to illuminate new biology. Nature Chemical Biology, 13, 1143–1151. https://doi.org/10.1038/nchembio.2490

Roth, C. B., Hanson, M. A., & Stevens, R. C. (2008). Stabilization of the human β2‐adrenergic receptor TM4–TM3–TM5 helix interface by mutagenesis of Glu1223. 41, a critical residue in GPCR structure. Journal of Molecular Biology, 376, 1305–1319. https://doi.org/10.1016/j.jmb.2007.12.028

Saarenpää, T., Jaakola, V.‐P., & Goldman, A. (2015). Baculovirus‐mediated expression of GPCRs in insect cells. In Methods in enzymology (pp. 185–218). Elsevier.

Sandal, M., Duy, T. P., Cona, M., Zung, H., Carloni, P., Musiani, F., & Giorgetti, A. (2013). GOMoDo: A GPCRs online modeling and docking webserver. PLoS ONE, 8, e74092. https://doi.org/10.1371/journal.pone.0074092

Sandhu, M., Cho, A., Ma, N., Mukhaleva, E., Namkung, Y., Lee, S., Ghosh, S., Lee, J. H., Gloriam, D. E., Laporte, S. A., Babu, M. M., & Vaidehi, N. (2022). Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity. Nature Communications, 13, 7428. https://doi.org/10.1038/s41467-022-34055-5

Sanni, S. J., Hansen, J. T., Bonde, M. M., Speerschneider, T., Christensen, G. L., Munk, S., Gammeltoft, S., & Hansen, J. L. (2010). Beta‐Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high‐affinity conformations. British Journal of Pharmacology, 161, 150–161. https://doi.org/10.1111/j.1476-5381.2010.00875.x

Sarkar, C. A., Dodevski, I., Kenig, M., Dudli, S., Mohr, A., Hermans, E., & Plückthun, A. (2008). Directed evolution of a G protein‐coupled receptor for expression, stability, and binding selectivity. Proceedings of the National Academy of Sciences, 105, 14808–14813. https://doi.org/10.1073/pnas.0803103105

Scharf, M. M., Humphrys, L. J., Berndt, S., di Pizio, A., Lehmann, J., Liebscher, I., Nicoli, A., Niv, M. Y., Peri, L., Schihada, H., & Schulte, G. (2024). The dark sides of the GPCR tree‐research progress on understudied GPCRs. British Journal of Pharmacology. https://doi.org/10.1111/bph.16325

Schlinkmann, K. M., Hillenbrand, M., Rittner, A., Künz, M., Strohner, R., & Plückthun, A. (2012). Maximizing detergent stability and functional expression of a GPCR by exhaustive recombination and evolution. Journal of Molecular Biology, 422, 414–428. https://doi.org/10.1016/j.jmb.2012.05.039

Schuster, M., Deluigi, M., Pantić, M., Vacca, S., Baumann, C., Scott, D. J., Plückthun, A., & Zerbe, O. (2020). Optimizing the α1B‐adrenergic receptor for solution NMR studies. Biochimica et Biophysica Acta (BBA)‐Biomembranes, 1862, 183354.

Serrano‐Vega, M. J., Magnani, F., Shibata, Y., & Tate, C. G. (2008). Conformational thermostabilization of the β1‐adrenergic receptor in a detergent‐resistant form. Proceedings of the National Academy of Sciences, 105, 877–882. https://doi.org/10.1073/pnas.0711253105

Service R. (2020). ‘The game has changed.’ AI triumphs at solving protein structures. Science.

Seven, A. B., Barros‐Álvarez, X., de Lapeyrière, M., Papasergi‐Scott, M. M., Robertson, M. J., Zhang, C., Nwokonko, R. M., Gao, Y., Meyerowitz, J. G., Rocher, J. P., Schelshorn, D., Kobilka, B. K., Mathiesen, J. M., & Skiniotis, G. (2021). G‐protein activation by a metabotropic glutamate receptor. Nature, 595, 450–454. https://doi.org/10.1038/s41586-021-03680-3

Seyedabadi, M., Gharghabi, M., Gurevich, E. V., & Gurevich, V. V. (2021). Receptor‐arrestin interactions: The GPCR perspective. Biomolecules, 11, 218.

Shao, Z., Yan, W., Chapman, K., Ramesh, K., Ferrell, A. J., Yin, J., Wang, X., Xu, Q., & Rosenbaum, D. M. (2019). Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nature Chemical Biology, 15, 1199–1205. https://doi.org/10.1038/s41589-019-0387-2

Shaye, H., Ishchenko, A., Lam, J. H., Han, G. W., Xue, L., Rondard, P., Pin, J. P., Katritch, V., Gati, C., & Cherezov, V. (2020). Structural basis of metabotropic GABA receptor activation. Nature, 584, 298–303. https://doi.org/10.1038/s41586-020-2408-4

Shen, C., Mao, C., Xu, C., Jin, N., Zhang, H., Shen, D.‐D., Shen, Q., Wang, X., Hou, T., Chen, Z., Rondard, P., Pin, J. P., Zhang, Y., & Liu, J. (2021). Structural basis of GABAB receptor–Gi protein coupling. Nature, 594, 594–598. https://doi.org/10.1038/s41586-021-03507-1

Shibata, Y., White, J. F., Serrano‐Vega, M. J., Magnani, F., Aloia, A. L., Grisshammer, R., & Tate, C. G. (2009). Thermostabilization of the neurotensin receptor NTS1. Journal of Molecular Biology, 390, 262–277. https://doi.org/10.1016/j.jmb.2009.04.068

Solt, A. S., Bostock, M. J., Shrestha, B., Kumar, P., Warne, T., Tate, C. G., & Nietlispach, D. (2017). Insight into partial agonism by observing multiple equilibria for ligand‐bound and Gs‐mimetic nanobody‐bound β1‐adrenergic receptor. Nature Communications, 8, 1795. https://doi.org/10.1038/s41467-017-02008-y

Sounier, R., Mas, C., Steyaert, J., Laeremans, T., Manglik, A., Huang, W., Kobilka, B. K., Déméné, H., & Granier, S. (2015). Propagation of conformational changes during μ‐opioid receptor activation. Nature, 524, 375–378. https://doi.org/10.1038/nature14680

Srivastava, A., Yano, J., Hirozane, Y., Kefala, G., Gruswitz, F., Snell, G., Lane, W., Ivetac, A., Aertgeerts, K., Nguyen, J., Jennings, A., & Okada, K. (2014). High‐resolution structure of the human GPR40 receptor bound to allosteric agonist TAK‐875. Nature, 513, 124–127. https://doi.org/10.1038/nature13494

Staus, D. P., Strachan, R. T., Manglik, A., Pani, B., Kahsai, A. W., Kim, T. H., Wingler, L. M., Ahn, S., Chatterjee, A., Masoudi, A., Kruse, A. C., Pardon, E., Steyaert, J., Weis, W. I., Prosser, R. S., Kobilka, B. K., Costa, T., & Lefkowitz, R. J. (2016). Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G‐protein‐coupled receptor activation. Nature, 535, 448–452. https://doi.org/10.1038/nature18636

Stehle, J., Silvers, R., Werner, K., Chatterjee, D., Gande, S., Scholz, F., Dutta, A., Wachtveitl, J., Klein‐Seetharaman, J., & Schwalbe, H. (2014). Characterization of the simultaneous decay kinetics of Metarhodopsin states II and III in rhodopsin by solution‐state NMR spectroscopy. Angewandte Chemie International Edition, 53, 2078–2084. https://doi.org/10.1002/anie.201309581

Stoeber, M., Jullié, D., Lobingier, B. T., Laeremans, T., Steyaert, J., Schiller, P. W., Manglik, A., & von Zastrow, M. (2018). A genetically encoded biosensor reveals location bias of opioid drug action. Neuron, 98(963–976), e965.

Sušac, L., Eddy, M. T., Didenko, T., Stevens, R. C., & Wüthrich, K. (2018). A2A adenosine receptor functional states characterized by 19F‐NMR. Proceedings of the National Academy of Sciences, 115, 12733–12738. https://doi.org/10.1073/pnas.1813649115

Tate, C. G. (2010). Practical considerations of membrane protein instability during purification and crystallisation. Heterologous Expression of Membrane Proteins: Methods and Protocols, 601, 601, 187–203.

Terwilliger, T. C., Liebschner, D., Croll, T. I., Williams, C. J., McCoy, A. J., Poon, B. K., Afonine, P. V., Oeffner, R. D., Richardson, J. S., Read, R. J., & Adams, P. D. (2022). AlphaFold predictions: great hypotheses but no match for experiment. bioRxiv.

Thakur, N., Ray, A. P., Sharp, L., Jin, B., Duong, A., Pour, N. G., Obeng, S., Wijesekara, A. V., Gao, Z. G., McCurdy, C. R., Jacobson, K. A., Lyman, E., & Eddy, M. T. (2023). Anionic phospholipids control mechanisms of GPCR‐G protein recognition. Nature Communications, 14, 794. https://doi.org/10.1038/s41467-023-36425-z

Thomas, L., Kahr, J., Schmidt, P., Krug, U., Scheidt, H. A., & Huster, D. (2015). The dynamics of the G protein‐coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid‐state NMR spectroscopy. Journal of Biomolecular NMR, 61, 347–359. https://doi.org/10.1007/s10858-014-9892-5

Tucker, J., & Grisshammer, R. (1996). Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochemical Journal, 317, 891–899. https://doi.org/10.1042/bj3170891

Uchański, T., Masiulis, S., Fischer, B., Kalichuk, V., López‐Sánchez, U., Zarkadas, E., Weckener, M., Sente, A., Ward, P., Wohlkönig, A., Zögg, T., Remaut, H., Naismith, J. H., Nury, H., Vranken, W., Aricescu, A. R., Pardon, E., & Steyaert, J. (2021). Megabodies expand the nanobody toolkit for protein structure determination by single‐particle cryo‐EM. Nature Methods, 18, 60–68. https://doi.org/10.1038/s41592-020-01001-6

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Research, 50, D439–D444. https://doi.org/10.1093/nar/gkab1061

Vass, M., Kooistra, A. J., Yang, D., Stevens, R. C., Wang, M. W., & de Graaf, C. (2018). Chemical diversity in the G protein‐coupled receptor superfamily. Trends in Pharmacological Sciences, 39, 494–512. https://doi.org/10.1016/j.tips.2018.02.004

Velazhahan, V., Ma, N., Pándy‐Szekeres, G., Kooistra, A. J., Lee, Y., Gloriam, D. E., Vaidehi, N., & Tate, C. G. (2021). Structure of the class D GPCR Ste2 dimer coupled to two G proteins. Nature, 589, 148–153. https://doi.org/10.1038/s41586-020-2994-1

Velazhahan, V., Ma, N., Vaidehi, N., & Tate, C. G. (2022). Activation mechanism of the class D fungal GPCR dimer Ste2. Nature, 603, 743–748. https://doi.org/10.1038/s41586-022-04498-3

Venkatakrishnan, A., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G‐protein‐coupled receptors. Nature, 494, 185–194. https://doi.org/10.1038/nature11896

Wang, C., Wu, H., Evron, T., Vardy, E., Han, G. W., Huang, X.‐P., Hufeisen, S. J., Mangano, T. J., Urban, D. J., Katritch, V., Cherezov, V., Caron, M. G., Roth, B. L., & Stevens, R. C. (2014). Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nature Communications, 5, 4355. https://doi.org/10.1038/ncomms5355

Wang, F., & Yang, W. (2009). Structural insight into translesion synthesis by DNA pol II. Cell, 139, 1279–1289. https://doi.org/10.1016/j.cell.2009.11.043

Weichert, D., Kruse, A. C., Manglik, A., Hiller, C., Zhang, C., Hübner, H., Kobilka, B. K., & Gmeiner, P. (2014). Covalent agonists for studying G protein‐coupled receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 111, 10744–10748. https://doi.org/10.1073/pnas.1410415111

Whorton, M. R., Bokoch, M. P., Rasmussen, S. G., Huang, B., Zare, R. N., Kobilka, B., & Sunahara, R. K. (2007). A monomeric G protein‐coupled receptor isolated in a high‐density lipoprotein particle efficiently activates its G protein. Proceedings of the National Academy of Sciences, 104, 7682–7687. https://doi.org/10.1073/pnas.0611448104

Wingler, L. M., McMahon, C., Staus, D. P., Lefkowitz, R. J., & Kruse, A. C. (2019). Distinctive activation mechanism for angiotensin receptor revealed by a synthetic nanobody. Cell, 176(479–490), e412.

Wink, L. H., Baker, D. L., Cole, J. A., & Parrill, A. L. (2019). A benchmark study of loop modeling methods applied to G protein‐coupled receptors. Journal of Computer‐Aided Molecular Design, 33, 573–595. https://doi.org/10.1007/s10822-019-00196-x

Wodak, S. J., Paci, E., Dokholyan, N. V., Berezovsky, I. N., Horovitz, A., Li, J., Hilser, V. J., Bahar, I., Karanicolas, J., Stock, G., Hamm, P., Stote, R. H., Eberhardt, J., Chebaro, Y., Dejaegere, A., Cecchini, M., Changeux, J. P., Bolhuis, P. G., Vreede, J., … McLeish, T. (2019). Allostery in its many disguises: From theory to applications. Structure, 27, 566–578. https://doi.org/10.1016/j.str.2019.01.003

Won, J., Lee, G. R., Park, H., & Seok, C. (2018). GalaxyGPCRloop: Template‐based and ab initio structure sampling of the extracellular loops of G‐protein‐coupled receptors. Journal of Chemical Information and Modeling, 58, 1234–1243. https://doi.org/10.1021/acs.jcim.8b00148

Wootten, D., Simms, J., Miller, L. J., Christopoulos, A., & Sexton, P. M. (2013). Polar transmembrane interactions drive formation of ligand‐specific and signal pathway‐biased family BG protein‐coupled receptor conformations. Proceedings of the National Academy of Sciences, 110, 5211–5216. https://doi.org/10.1073/pnas.1221585110

Worth, C. L., Kreuchwig, A., Kleinau, G., & Krause, G. (2011). GPCR‐SSFE: A comprehensive database of G‐protein‐coupled receptor template predictions and homology models. BMC Bioinformatics, 12, 185. https://doi.org/10.1186/1471-2105-12-185

Wu, B., Chien, E. Y., Mol, C. D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F. C., Hamel, D. J., Kuhn, P., Handel, T. M., Cherezov, V., & Stevens, R. C. (2010). Structures of the CXCR4 chemokine GPCR with small‐molecule and cyclic peptide antagonists. Science, 330, 1066–1071. https://doi.org/10.1126/science.1194396

Wu, F.‐J., Rieder, P. S., Abiko, L. A., Rößler, P., Gossert, A. D., Häussinger, D., & Grzesiek, S. (2022). Nanobody GPS by PCS: An efficient new NMR analysis method for G protein coupled receptors and other large proteins. Journal of the American Chemical Society, 144, 21728–21740. https://doi.org/10.1021/jacs.2c09692

Wu, H., Ling, H., Gao, L., Fu, Q., Lu, W., Ding, Y., Jiang, M., & Li, H. (2020). Empirical potential energy function toward ab initio folding G protein‐coupled receptors. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18, 1752–1762.

Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., Niswender, C. M., Katritch, V., Meiler, J., Cherezov, V., Conn, P. J., & Stevens, R. C. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344, 58–64. https://doi.org/10.1126/science.1249489

Xiang, J., Chun, E., Liu, C., Jing, L., al‐Sahouri, Z., Zhu, L., & Liu, W. (2016). Successful strategies to determine high‐resolution structures of GPCRs. Trends in Pharmacological Sciences, 37, 1055–1069. https://doi.org/10.1016/j.tips.2016.09.009

Xiao, R. P. (2001). Beta‐adrenergic signaling in the heart: Dual coupling of the beta2‐adrenergic receptor to G(s) and G(i) proteins. Science's STKE, 2001, re15.

Xu, P., Huang, S., Zhang, H., Mao, C., Zhou, X. E., Cheng, X., Simon, I. A., Shen, D. D., Yen, H. Y., Robinson, C. V., Harpsøe, K., Svensson, B., Guo, J., Jiang, H., Gloriam, D. E., Melcher, K., Jiang, Y., Zhang, Y., & Xu, H. E. (2021). Structural insights into the lipid and ligand regulation of serotonin receptors. Nature, 592, 469–473. https://doi.org/10.1038/s41586-021-03376-8

Yang, D., Zhou, Q., Labroska, V., Qin, S., Darbalaei, S., Wu, Y., Yuliantie, E., Xie, L., Tao, H., Cheng, J., Liu, Q., Zhao, S., Shui, W., Jiang, Y., & Wang, M. W. (2021). G protein‐coupled receptors: Structure‐ and function‐based drug discovery. Signal Transduction and Targeted Therapy, 6, 7. https://doi.org/10.1038/s41392-020-00435-w

Ye, L., Van Eps, N., Zimmer, M., Ernst, O. P., & Scott Prosser, R. (2016). Activation of the A2A adenosine G‐protein‐coupled receptor by conformational selection. Nature, 533, 265–268. https://doi.org/10.1038/nature17668

Yeliseev, A. A., Wong, K. K., Soubias, O., & Gawrisch, K. (2005). Expression of human peripheral cannabinoid receptor for structural studies. Protein Science, 14, 2638–2653. https://doi.org/10.1110/ps.051550305

Yin, J., Chen, K.‐Y. M., Clark, M. J., Hijazi, M., Kumari, P., Bai, X.‐c., Sunahara, R. K., Barth, P., & Rosenbaum, D. M. (2020). Structure of a D2 dopamine receptor–G‐protein complex in a lipid membrane. Nature, 584, 125–129. https://doi.org/10.1038/s41586-020-2379-5

Yong, K. J., Vaid, T. M., Shilling, P. J., Wu, F.‐J., Williams, L. M., Deluigi, M., Plückthun, A., Bathgate, R. A. D., Gooley, P. R., & Scott, D. J. (2018). Determinants of ligand subtype‐selectivity at α1A‐adrenoceptor revealed using saturation transfer difference (STD) NMR. ACS Chemical Biology, 13, 1090–1102. https://doi.org/10.1021/acschembio.8b00191

Yu, J., Kumar, A., Zhang, X., Martin, C., Raia, P., Koehl, A., Laeremans, T., Steyaert, J., Manglik, A., Ballet, S., & Boland, A. (2023). Structural Basis of mu‐Opioid Receptor‐Targeting by a Nanobody Antagonist. bioRxiv.

Yue, Y., Liu, L., Wu, L.‐J., Wu, Y., Wang, L., Li, F., Liu, J., Han, G. W., Chen, B., Lin, X., Brouillette, R. L., Breault, É., Longpré, J. M., Shi, S., Lei, H., Sarret, P., Stevens, R. C., Hanson, M. A., & Xu, F. (2022). Structural insight into apelin receptor‐G protein stoichiometry. Nature Structural & Molecular Biology, 29, 688–697. https://doi.org/10.1038/s41594-022-00797-5

Zhang, D., Gao, Z.‐G., Zhang, K., Kiselev, E., Crane, S., Wang, J., Paoletta, S., Yi, C., Ma, L., Zhang, W., Han, G. W., Liu, H., Cherezov, V., Katritch, V., Jiang, H., Stevens, R. C., Jacobson, K. A., Zhao, Q., & Wu, B. (2015). Two disparate ligand‐binding sites in the human P2Y1 receptor. Nature, 520, 317–321. https://doi.org/10.1038/nature14287

Zhang, D., Zhao, Q., & Wu, B. (2015). Structural studies of G protein‐coupled receptors. Molecules and Cells, 38, 836–842. https://doi.org/10.14348/molcells.2015.0263

Zhang, J., Qu, L., Wu, L., Tang, X., Luo, F., Xu, W., Xu, Y., Liu, Z. J., & Hua, T. (2021). Structural insights into the activation initiation of full‐length mGlu1. Protein & Cell, 12, 662–667. https://doi.org/10.1007/s13238-020-00808-5

Zhang, K., Wu, H., Hoppe, N., Manglik, A., & Cheng, Y. (2022). Fusion protein strategies for cryo‐EM study of G protein‐coupled receptors. Nature Communications, 13, 1–11.

Zhang, M., Gui, M., Wang, Z.‐F., Gorgulla, C., Yu, J. J., Wu, H., Sun, Z. Y. J., Klenk, C., Merklinger, L., Morstein, L., Hagn, F., Plückthun, A., Brown, A., Nasr, M. L., & Wagner, G. (2021). Cryo‐EM structure of an activated GPCR–G protein complex in lipid nanodiscs. Nature Structural & Molecular Biology, 28, 258–267. https://doi.org/10.1038/s41594-020-00554-6

Zhang, R., Li, D., Mao, H., Wei, X., Xu, M., Zhang, S., Jiang, Y., Wang, C., Xin, Q., Chen, X., Li, G., wJi, B., Yan, M., Cai, X., Dong, B., Randeva, H. S., Liu, C., & Chen, J. (2022). Disruption of 5‐hydroxytryptamine 1A receptor and orexin receptor 1 heterodimer formation affects novel G protein‐dependent signaling pathways and has antidepressant effects in vivo. Translational Psychiatry, 12, 122. https://doi.org/10.1038/s41398-022-01886-1

Zhao, D. Y., Pöge, M., Morizumi, T., Gulati, S., van Eps, N., Zhang, J., Miszta, P., Filipek, S., Mahamid, J., Plitzko, J. M., Baumeister, W., Ernst, O. P., & Palczewski, K. (2019). Cryo‐EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry, 294, 14215–14230. https://doi.org/10.1074/jbc.RA119.010089

Zhao, L.‐H., He, Q., Yuan, Q., Gu, Y., He, X., Shan, H., Li, J., Wang, K., Li, Y., Hu, W., Wu, K., Shen, J., & Xu, H. E. (2023). Conserved class B GPCR activation by a biased intracellular agonist. Nature, 621, 635–641. https://doi.org/10.1038/s41586-023-06467-w

Zheng, Y., Qin, L., Zacarías, N. V. O., de Vries, H., Han, G. W., Gustavsson, M., Dabros, M., Zhao, C., Cherney, R. J., Carter, P., Stamos, D., Abagyan, R., Cherezov, V., Stevens, R. C., IJzerman, A. P., Heitman, L. H., Tebben, A., Kufareva, I., & Handel, T. M. (2016). Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 540, 458–461. https://doi.org/10.1038/nature20605

Zocher, M., Bippes, C. A., Zhang, C., & Müller, D. J. (2013). Single‐molecule force spectroscopy of G‐protein‐coupled receptors. Chemical Society Reviews, 42, 7801–7815. https://doi.org/10.1039/c3cs60085h

Zocher, M., Zhang, C., Rasmussen, S. G., Kobilka, B. K., & Müller, D. J. (2012). Cholesterol increases kinetic, energetic, and mechanical stability of the human β2‐adrenergic receptor. Proceedings of the National Academy of Sciences, 109, E3463–E3472.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...