Glutamine Antagonist GA-607 Causes a Dramatic Accumulation of FGAR which can be used to Monitor Target Engagement
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 CA193895
NCI NIH HHS - United States
R01CA193895R, R01CA229451
NIH Grant
T32 CA060441
NCI NIH HHS - United States
R01 CA229451
NCI NIH HHS - United States
RVO 61388963
Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic-CureSearch Young Investigator Award
LTAUSA18166
Bloomberg Kimmel Institute for Cancer Immunotherapy-Ministry of Education, Youth and Sports of the Czech Republic (Program INTER-EXCELLENCE)
PubMed
34488583
PubMed Central
PMC8684803
DOI
10.2174/1389200222666210831125041
PII: CDM-EPUB-117567
Knihovny.cz E-zdroje
- Klíčová slova
- Glutamine antagonist, LC-MS., biomarker, cancer, formylglycinamide ribonucleotide, formylglycinamidine ribonucleotide, purine synthesis,
- MeSH
- biomarkery farmakologické analýza metabolismus MeSH
- chromatografie kapalinová metody MeSH
- glutamin antagonisté a inhibitory MeSH
- glycin analogy a deriváty analýza metabolismus MeSH
- hmotnostní spektrometrie metody MeSH
- metabolické sítě a dráhy účinky léků MeSH
- myši MeSH
- nádorové biomarkery analýza metabolismus MeSH
- nádory * farmakoterapie metabolismus MeSH
- ribonukleotidy * analýza metabolismus MeSH
- vyvíjení léků metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biomarkery farmakologické MeSH
- glutamin MeSH
- glycin MeSH
- nádorové biomarkery MeSH
- phosphoribosyl-N-formylglycineamide MeSH Prohlížeč
- ribonukleotidy * MeSH
BACKGROUND: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE: Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS: Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS: GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION: These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
Drug Metabolism Covance Laboratories Inc Madison WI 53704 United States
Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 China
Johns Hopkins Drug Discovery Johns Hopkins School of Medicine Baltimore MD 21205 United States
Zobrazit více v PubMed
Pedley A.M., Benkovic S.J. A new view into the regulation of purine metabolism: The purinosome. Trends Biochem. Sci. 2017;42(2):141–154. doi: 10.1016/j.tibs.2016.09.009. PubMed DOI PMC
Yin J., Ren W., Huang X., Deng J., Li T., Yin Y. Potential mechanisms connecting purine metabolism and cancer therapy. Front. Immunol. 2018;9:1697. doi: 10.3389/fimmu.2018.01697. PubMed DOI PMC
Wang Y., Wang W., Xu L., Zhou X., Shokrollahi E., Felczak K., van der Laan L.J., Pankiewicz K.W., Sprengers D., Raat N.J., Metselaar H.J., Peppelenbosch M.P., Pan Q. Cross talk between nucleotide synthesis pathways with cellular immunity in constraining hepatitis E virus replication. Antimicrob. Agents Chemother. 2016;60(5):2834–2848. doi: 10.1128/AAC.02700-15. PubMed DOI PMC
Aleo F. The hormonal regulation of purine biosynthesis: basal levels of different hormones in primary gout. 1984. PubMed
Hershfield M.S., Seegmiller J.E. Gout and the regulation of purine biosynthesis. Horiz. Biochem. Biophys. 1976;2:134–162. PubMed
Grayzel A.I., Seegmiller J.E., Love E. Suppression of uric acid synthesis in the gouty human by the use of 6-diazo-5-oxo-L-norleucine. J. Clin. Invest. 1960;39:447–454. doi: 10.1172/JCI104057. PubMed DOI PMC
Hoskins A.A., Anand R., Ealick S.E., Stubbe J. The formylglycinamide ribonucleotide amidotransferase complex from Bacillus subtilis: metabolite-mediated complex formation. Biochemistry. 2004;43(32):10314–10327. doi: 10.1021/bi049127h. PubMed DOI
Levenberg B., Melnick I., Buchanan J.M. Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J. Biol. Chem. 1957;225(1):163–176. doi: 10.1016/S0021-9258(18)64919-1. PubMed DOI
Lyons S.D., Sant M.E., Christopherson R.I. Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia. J. Biol. Chem. 1990;265(19):11377–11381. doi: 10.1016/S0021-9258(19)38603-X. PubMed DOI
Mádrová L., Krijt M., Barešová V., Václavík J., Friedecký D., Dobešová D., Součková O., Škopová V., Adam T., Zikánová M. Mass spectrometric analysis of purine de novo biosynthesis intermediates. PLoS One. 2018;13(12):e0208947. doi: 10.1371/journal.pone.0208947. PubMed DOI PMC
Tenora L., Alt J., Dash R.P., Gadiano A.J., Novotná K., Veeravalli V., Lam J., Kirkpatrick Q.R., Lemberg K.M., Majer P., Rais R., Slusher B.S. Tumor-targeted delivery of 6-diazo-5-oxo-l-norleucine (DON) using substituted acetylated lysine prodrugs. J. Med. Chem. 2019;62(7):3524–3538. doi: 10.1021/acs.jmedchem.8b02009. PubMed DOI PMC
Wang S.Z., Poore B., Alt J., Price A., Allen S.J., Hanaford A.R., Kaur H., Orr B.A., Slusher B.S., Eberhart C.G., Raabe E.H., Rubens J.A. Unbiased metabolic profiling predicts sensitivity of high MYC-expressing atypical teratoid/rhabdoid tumors to glutamine inhibition with 6-diazo-5-oxo-l-norleucine. Clin. Cancer Res. 2019;25(19):5925–5936. doi: 10.1158/1078-0432.CCR-19-0189. PubMed DOI PMC
Leone R.D., Zhao L., Englert J.M., Sun I.M., Oh M.H., Sun I.H., Arwood M.L., Bettencourt I.A., Patel C.H., Wen J., Tam A., Blosser R.L., Prchalova E., Alt J., Rais R., Slusher B.S., Powell J.D. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366(6468):1013–1021. doi: 10.1126/science.aav2588. PubMed DOI PMC
Sharma N.S., Gupta V.K., Garrido V.T., Hadad R., Durden B.C., Kesh K., Giri B., Ferrantella A., Dudeja V., Saluja A., Banerjee S. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J. Clin. Invest. 2020;130(1):451–465. doi: 10.1172/JCI127515. PubMed DOI PMC
Lemberg K.M., Zhao L., Wu Y., Veeravalli V., Alt J., Aguilar J.M.H., Dash R.P., Lam J., Tenora L., Rodriguez C., Nedelcovych M.T., Brayton C., Majer P., Blakeley J.O., Rais R., Slusher B.S. The novel glutamine antagonist prodrug JHU395 has antitumor activity in malignant peripheral nerve sheath tumor. Mol. Cancer Ther. 2020;19(2):397–408. doi: 10.1158/1535-7163.MCT-19-0319. PubMed DOI PMC
Tcyganov E., Mastio J., Chen E., Gabrilovich D.I. Plasticity of myeloid-derived suppressor cells in cancer. Curr. Opin. Immunol. 2018;51:76–82. doi: 10.1016/j.coi.2018.03.009. PubMed DOI PMC
Oh M-H., Sun I.H., Zhao L., Leone R.D., Sun I.M., Xu W., Collins S.L., Tam A.J., Blosser R.L., Patel C.H., Englert J.M., Arwood M.L., Wen J., Chan-Li Y., Tenora L., Majer P., Rais R., Slusher B.S., Horton M.R., Powell J.D. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 2020;130(7):3865–3884. doi: 10.1172/JCI131859. PubMed DOI PMC
Cervantes-Madrid D., Romero Y., Dueñas-González A. Reviving lonidamine and 6-diazo-5-oxo-l-norleucine to be used in combination for metabolic cancer therapy. BioMed Res. Int. 2015;2015:690492. doi: 10.1155/2015/690492. PubMed DOI PMC
Alt J., Potter M.C., Rojas C., Slusher B.S. Bioanalysis of 6-diazo-5-oxo-l-norleucine in plasma and brain by ultra-performance liquid chromatography mass spectrometry. Anal. Biochem. 2015;474:28–34. doi: 10.1016/j.ab.2015.01.001. PubMed DOI PMC
Clasquin M.F., Melamud E., Rabinowitz J.D. 2012. PubMed PMC
Thakare R., Chhonker Y.S., Gautam N., Alamoudi J.A., Alnouti Y. Quantitative analysis of endogenous compounds. J. Pharm. Biomed. Anal. 2016;128:426–437. doi: 10.1016/j.jpba.2016.06.017. PubMed DOI
Strassburg K., Huijbrechts A.M., Kortekaas K.A., Lindeman J.H., Pedersen T.L., Dane A., Berger R., Brenkman A., Hankemeier T., van Duynhoven J., Kalkhoven E., Newman J.W., Vreeken R.J. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal. Bioanal. Chem. 2012;404(5):1413–1426. doi: 10.1007/s00216-012-6226-x. PubMed DOI PMC
Magill G.B., Myers W.P., Reilly H.C., Putnam R.C., Magill J.W., Sykes M.P., Escher G.C., Karnofsky D.A., Burchenal J.H. Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-1-norleucine (DON) in human neoplastic disease. Cancer. 1957;10(6):1138–1150. doi: 10.1002/1097-0142(195711/12)10:6<1138:AID-CNCR2820100608>3.0.CO;2-K. PubMed DOI
Earhart R.H., Amato D.J., Chang A.Y., Borden E.C., Shiraki M., Dowd M.E., Comis R.L., Davis T.E., Smith T.J. Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas. Invest. New Drugs. 1990;8(1):113–119. doi: 10.1007/BF00216936. PubMed DOI
Rahman A., Smith F.P., Luc P.T., Woolley P.V. Phase I study and clinical pharmacology of 6-diazo-5-oxo-L-norleucine (DON). Invest. New Drugs. 1985;3(4):369–374. doi: 10.1007/BF00170760. PubMed DOI
DeWald H.A., Moore A.M. 6-diazo-5-oxo-l-norleucine, a new tumor-inhibitory substance.1a preparation of l-, d- and dl-forms1b. J. Am. Chem. Soc. 1958;80(15):3941–3945. doi: 10.1021/ja01548a036. DOI
Li M.C., Whitmore W.F., Jr, Golbey R., Grabstald H. Effects of combined drug therapy on metastatic cancer of the testis. JAMA. 1960;174:1291–1299. doi: 10.1001/jama.1960.03030100059013. PubMed DOI
A clinical study of the comparative effect of nitrogen mustard and DON in patients with bronchogenic carcinoma, Hodgkin’s disease, lymphosarcoma, and melanoma. J. Natl. Cancer Inst. 1959;22(2):433–439. doi: 10.1093/jnci/22.2.433. PubMed DOI
Sullivan M.P., Beatty E.C., Jr, Hyman C.B., Murphy M.L., Pierce M.I., Severo N.C. A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in treatment of the acute leukemias of childhood: results of a coperative study. Cancer Chemother. Rep. 1962;18:83–95. PubMed
Eagan R.T., Frytak S., Nichols W.C., Creagan E.T., Ingle J.N. Phase II study on DON in patients with previously treated advanced lung cancer. Cancer Treat. Rep. 1982;66(8):1665–1666. PubMed
Lemberg K.M., Vornov J.J., Rais R., Slusher B.S. We’re not “don” yet: Optimal dosing and prodrug delivery of 6-diazo-5-oxo-l-norleucine. Mol. Cancer Ther. 2018;17(9):1824–1832. doi: 10.1158/1535-7163.MCT-17-1148. PubMed DOI PMC
Yamashita A.S., da Costa Rosa M., Stumpo V., Rais R., Slusher B.S., Riggins G.J. The glutamine antagonist prodrug JHU-083 slows malignant glioma growth and disrupts mTOR signaling. Neurooncol. Adv. 2020;3(1):a149. doi: 10.1093/noajnl/vdaa149. PubMed DOI PMC
Hanaford A.R., Alt J., Rais R., Wang S.Z., Kaur H., Thorek D.L.J., Eberhart C.G., Slusher B.S., Martin A.M., Raabe E.H. Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Transl. Oncol. 2019;12(10):1314–1322. doi: 10.1016/j.tranon.2019.05.013. PubMed DOI PMC
Baresova V., Krijt M., Skopova V., Souckova O., Kmoch S., Zikanova M. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol. Genet. Metab. 2016;119(3):270–277. doi: 10.1016/j.ymgme.2016.08.004. PubMed DOI
Krijt M., Souckova O., Baresova V., Skopova V., Zikanova M. Metabolic tools for identification of new mutations of enzymes engaged in purine synthesis leading to neurological impairment. Folia Biol. (Praha) 2019;65(3):152–157. PubMed
Bagnara A.S., Letter A.A., Henderson J.F. Multiple mechanisms of regulation of purine biosynthesis de novo in intact tumor cells. Biochim. Biophys. Acta. 1974;374(3):259–270. doi: 10.1016/0005-2787(74)90247-0. PubMed DOI
Jones B.R., Schultz G.A., Eckstein J.A., Ackermann B.L. Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules. Bioanalysis. 2012;4(19):2343–2356. doi: 10.4155/bio.12.200. PubMed DOI
Ho S., Gao H. Surrogate matrix: opportunities and challenges for tissue sample analysis. Bioanalysis. 2015;7(18):2419–2433. doi: 10.4155/bio.15.161. PubMed DOI
Fan T.W.M., Lorkiewicz P.K., Sellers K., Moseley H.N., Higashi R.M., Lane A.N. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 2012;133(3):366–391. doi: 10.1016/j.pharmthera.2011.12.007. PubMed DOI PMC
Parker S.L., Pandey S., Sime F.B., Stuart J., Lipman J., Roberts J.A., Wallis S.C. A validated LC-MS/MS method for the simultaneous quantification of the novel combination antibiotic, ceftolozane-tazobactam, in plasma (total and unbound), CSF, urine and renal replacement therapy effluent: application to pilot pharmacokinetic studies. Clin. Chem. Lab. Med. 2020;59(5):921–933. doi: 10.1515/cclm-2020-1196. PubMed DOI
Tan A., Awaiye K., Trabelsi F. Impact of calibrator concentrations and their distribution on accuracy of quadratic regression for liquid chromatography-mass spectrometry bioanalysis. Anal. Chim. Acta. 2014;815:33–41. doi: 10.1016/j.aca.2014.01.036. PubMed DOI
Gu H., Liu G., Wang J., Aubry A.F., Arnold M.E. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. Anal. Chem. 2014;86(18):8959–8966. doi: 10.1021/ac5018265. PubMed DOI
Park H.Y., Kim M.J., Lee S., Jin J., Lee S., Kim J.G., Choi Y.K., Park K.G. Inhibitory effect of a glutamine antagonist on proliferation and migration of VSMCs via simultaneous attenuation of glycolysis and oxidative phosphorylation. Int. J. Mol. Sci. 2021;22(11):5602. doi: 10.3390/ijms22115602. PubMed DOI PMC
Pham K., Maxwell M.J., Sweeney H., Alt J., Rais R., Eberhart C.G., Slusher B.S., Raabe E.H. Novel glutamine antagonist JHU395 suppresses MYC-driven medulloblastoma growth and induces apoptosis. J. Neuropathol. Exp. Neurol. 2021;80(4):336–344. doi: 10.1093/jnen/nlab018. PubMed DOI PMC
Lemberg K.M. Abstract 1293: A novel protide purine antimetabolite combines with the prodrug glutamine antagonist JHU395 in preclinical models of Ras-driven sarcomas. Cancer Res. 2021;81(13) Suppl.:1293. PubMed
Johnson M.L. Phase 1 and phase 2a, first-in-human (FIH) study, of DRP-104, a broad glutamine antagonist, in adult patients with advanced solid tumors. J. Clin. Oncol. 2021;39(15) Suppl.:TPS3149–TPS3149. doi: 10.1200/JCO.2021.39.15_suppl.TPS3149. DOI
Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug