Discovery of tert-Butyl Ester Based 6-Diazo-5-oxo-l-norleucine Prodrugs for Enhanced Metabolic Stability and Tumor Delivery

. 2023 Nov 23 ; 66 (22) : 15493-15510. [epub] 20231110

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37949450

Grantová podpora
R01 CA193895 NCI NIH HHS - United States
R01 CA229451 NCI NIH HHS - United States
R01 NS103927 NINDS NIH HHS - United States

The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) exhibits remarkable anticancer efficacy; however, its therapeutic potential is hindered by its toxicity to gastrointestinal (GI) tissues. We recently reported the discovery of DRP-104, a tumor-targeted DON prodrug with excellent efficacy and tolerability, which is currently in clinical trials. However, DRP-104 exhibits limited aqueous solubility, and the instability of its isopropyl ester promoiety leads to the formation of an inactive M1-metabolite, reducing overall systemic prodrug exposure. Herein, we aimed to synthesize DON prodrugs with various ester and amide promoieties with improved solubility, GI stability, and DON tumor delivery. Twenty-one prodrugs were synthesized and characterized in stability and pharmacokinetics studies. Of these, P11, tert-butyl-(S)-6-diazo-2-((S)-2-(2-(dimethylamino)acetamido)-3-phenylpropanamido)-5-oxo-hexanoate, showed excellent metabolic stability in plasma and intestinal homogenate, high aqueous solubility, and high tumor DON exposures and preserved the ideal tumor-targeting profile of DRP-104. In conclusion, we report a new generation of glutamine antagonist prodrugs with improved physicochemical and pharmacokinetic attributes.

Zobrazit více v PubMed

Cruzat V.; Macedo Rogero M.; Noel Keane K.; Curi R.; Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10 (11), 1564.10.3390/nu10111564. PubMed DOI PMC

Meynial-Denis D.Glutamine: Biochemistry, Physiology, and Clinical Applications; CRC Press: 2017.

Wise D. R.; Thompson C. B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 2010, 35 (8), 427–33. 10.1016/j.tibs.2010.05.003. PubMed DOI PMC

Tarnowski G. S.; Stock C. C. Effects of combinations of azaserine and of 6-diazo-5-oxo-L-norleucine with purine analogs and other antimetabolites on the growth of two mouse mammary carcinomas. Cancer research 1957, 17 (10), 1033–1039. PubMed

Shelton L. M.; Huysentruyt L. C.; Seyfried T. N. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. International journal of cancer 2010, 127 (10), 2478–85. 10.1002/ijc.25431. PubMed DOI PMC

Ovejera A. A.; Houchens D. P.; Catane R.; Sheridan M. A.; Muggia F. M. Efficacy of 6-diazo-5-oxo-L-norleucine and N-[N-gamma-glutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer research 1979, 39 (8), 3220–3224. PubMed

Catane R.; Von Hoff D. D.; Glaubiger D. L.; Muggia F. M. Azaserine, DON, and azotomycin: three diazo analogs of L-glutamine with clinical antitumor activity. Cancer treatment reports 1979, 63 (6), 1033–1038. PubMed

Rahman A.; Smith F. P.; Luc P. T.; Woolley P. V. Phase I study and clinical pharmacology of 6-diazo-5-oxo-L-norleucine (DON). Investigational new drugs 1985, 3 (4), 369–74. 10.1007/BF00170760. PubMed DOI

Kovach J. S.; Eagan R. T.; Powis G.; Rubin J.; Creagan E. T.; Moertel C. G. Phase I and pharmacokinetic studies of DON. Cancer treatment reports 1981, 65 (11–12), 1031–1036. PubMed

Sullivan M. P.; Nelson J. A.; Feldman S.; Van Nguyen B. Pharmacokinetic and phase I study of intravenous DON (6-diazo-5-oxo-L-norleucine) in children. Cancer chemotherapy and pharmacology 1988, 21 (1), 78–84. 10.1007/BF00262746. PubMed DOI

Sklaroff R. B.; Casper E. S.; Magill G. B.; Young C. W. Phase I study of 6-diazo-5-oxo-L-norleucine (DON). Cancer treatment reports 1980, 64 (12), 1247–1251. PubMed

Lynch G.; Kemeny N.; Casper E. Phase II evaluation of DON (6-diazo-5-oxo-L-norleucine) in patients with advanced colorectal carcinoma. American journal of clinical oncology 1982, 5 (5), 541–3. 10.1097/00000421-198210000-00014. PubMed DOI

Earhart R. H.; Koeller J. M.; Davis H. L. Phase I trial of 6-diazo-5-oxo-L-norleucine (DON) administered by 5-day courses. Cancer treatment reports 1982, 66 (5), 1215–1217. PubMed

Earhart R. H.; Amato D. J.; Chang A. Y.-C.; Borden E. C.; Shiraki M.; Dowd M. E.; Comis R. L.; Davis T. E.; Smith T. J. Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas. Investigational new drugs 1990, 8 (1), 113–119. 10.1007/BF00216936. PubMed DOI

Eagan R. T.; Frytak S.; Nichols W. C.; Creagan E. T.; Ingle J. N. Phase II study on DON in patients with previously treated advanced lung cancer. Cancer treatment reports 1982, 66 (8), 1665–1666. PubMed

Magill G. B.; Myers W. P.; Reilly H. C.; Putnam R. C.; Magill J. W.; Sykes M. P.; Escher G. C.; Karnofsky D. A.; Burchenal J. H. Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-1-norleucine (DON) in human neoplastic disease. Cancer 1957, 10 (6), 1138–50. 10.1002/1097-0142(195711/12)10:6<1138::AID-CNCR2820100608>3.0.CO;2-K. PubMed DOI

Sullivan M. P.; Beatty E. C. Jr.; Hyman C. B.; Murphy M. L.; Pierce M. I.; Severo N. C. A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in treatment of the acute leukemias of childhood: results of a coperative study. Cancer chemotherapy reports 1962, 18, 83–95. PubMed

Rais R.; Jančařík A.; Tenora L.; Nedelcovych M.; Alt J.; Englert J.; Rojas C.; Le A.; Elgogary A.; Tan J.; Monincová L.; Pate K.; Adams R.; Ferraris D.; Powell J.; Majer P.; Slusher B. S. Discovery of 6-Diazo-5-oxo-l-norleucine (DON) Prodrugs with Enhanced CSF Delivery in Monkeys: A Potential Treatment for Glioblastoma. Journal of medicinal chemistry 2016, 59 (18), 8621–33. 10.1021/acs.jmedchem.6b01069. PubMed DOI

Tenora L.; Alt J.; Dash R. P.; Gadiano A. J.; Novotná K.; Veeravalli V.; Lam J.; Kirkpatrick Q. R.; Lemberg K. M.; Majer P.; Rais R.; Slusher B. S. Tumor-Targeted Delivery of 6-Diazo-5-oxo-l-norleucine (DON) Using Substituted Acetylated Lysine Prodrugs. Journal of medicinal chemistry 2019, 62 (7), 3524–3538. 10.1021/acs.jmedchem.8b02009. PubMed DOI PMC

Hanaford A. R.; Alt J.; Rais R.; Wang S. Z.; Kaur H.; Thorek D. L. J.; Eberhart C. G.; Slusher B. S.; Martin A. M.; Raabe E. H. Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Translational oncology 2019, 12 (10), 1314–1322. 10.1016/j.tranon.2019.05.013. PubMed DOI PMC

Oh M. H.; Sun I. H.; Zhao L.; Leone R. D.; Sun I. M.; Xu W.; Collins S. L.; Tam A. J.; Blosser R. L.; Patel C. H.; Englert J. M.; Arwood M. L.; Wen J.; Chan-Li Y.; Tenora L.; Majer P.; Rais R.; Slusher B. S.; Horton M. R.; Powell J. D. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 2020, 130 (7), 3865–3884. 10.1172/JCI131859. PubMed DOI PMC

Yamashita A. S.; da Costa Rosa M.; Stumpo V.; Rais R.; Slusher B. S.; Riggins G. J. The glutamine antagonist prodrug JHU-083 slows malignant glioma growth and disrupts mTOR signaling. Neuro-oncology advances 2021, 3 (1), vdaa149.10.1093/noajnl/vdaa149. PubMed DOI PMC

Chen J.; Wang R.; Liu Z.; Fan J.; Liu S.; Tan S.; Li X.; Li B.; Yang X. Unbalanced Glutamine Partitioning between CD8T Cells and Cancer Cells Accompanied by Immune Cell Dysfunction in Hepatocellular Carcinoma. Cells 2022, 11 (23), 3924.10.3390/cells11233924. PubMed DOI PMC

Leone R. D.; Zhao L.; Englert J. M.; Sun I. M.; Oh M. H.; Sun I. H.; Arwood M. L.; Bettencourt I. A.; Patel C. H.; Wen J.; Tam A.; Blosser R. L.; Prchalova E.; Alt J.; Rais R.; Slusher B. S.; Powell J. D. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science (New York, N.Y.) 2019, 366 (6468), 1013–1021. 10.1126/science.aav2588. PubMed DOI PMC

Rais R.; Lemberg K. M.; Tenora L.; Arwood M. L.; Pal A.; Alt J.; Wu Y.; Lam J.; Aguilar J. M. H.; Zhao L.; Peters D. E.; Tallon C.; Pandey R.; Thomas A. G.; Dash R. P.; Seiwert T.; Majer P.; Leone R. D.; Powell J. D.; Slusher B. S. Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. Science advances 2022, 8 (46), eabq592510.1126/sciadv.abq5925. PubMed DOI PMC

Yokoyama Y.; Estok T. M.; Wild R. Sirpiglenastat (DRP-104) Induces Antitumor Efficacy through Direct, Broad Antagonism of Glutamine Metabolism and Stimulation of the Innate and Adaptive Immune Systems. Molecular cancer therapeutics 2022, 21 (10), 1561–1572. 10.1158/1535-7163.MCT-22-0282. PubMed DOI

Johnson M. L.; Doroshow D. B.; Seiwert T. Y.; Gibson M. K.; Velcheti V.; Lisberg A. E.; Patel S. A.; Scheffler M.; Lafleur F.; Dugan M. H.; Sharma S. Phase 1 and phase 2a, first-in-human (FIH) study, of DRP-104, a broad glutamine antagonist, in adult patients with advanced solid tumors. Journal of clinical oncology 2021, 39, TPS3149.10.1200/JCO.2021.39.15_suppl.TPS3149. DOI

Johnson M. L.; Doroshow D. B.; Seiwert T. Y.; Gibson M. K.; Velcheti V.; Lisberg A. E.; Patel S. A.; Scheffler M.; Lafleur F.; Dugan M. H.; Sharma S. Phase 1 and phase 2a, first-in-human (FIH) study, of DRP-104, a broad glutamine antagonist, in adult patients with advanced solid tumors. Journal of Clinical Oncology 2021, 39 (15_suppl), TPS3149.10.1200/JCO.2021.39.15_suppl.TPS3149. DOI

Zangaglia R.; Stocchi F.; Sciarretta M.; Antonini A.; Mancini F.; Guidi M.; Martignoni E.; Pacchetti C. Clinical experiences with levodopa methylester (melevodopa) in patients with Parkinson disease experiencing motor fluctuations: an open-label observational study. Clinical neuropharmacology 2010, 33 (2), 61–6. 10.1097/WNF.0b013e3181c5e60c. PubMed DOI

Davies R. O.; Gomez H. J.; Irvin J. D.; Walker J. F. An overview of the clinical pharmacology of enalapril. British journal of clinical pharmacology 1984, 18 (S2), 215S–229S. 10.1111/j.1365-2125.1984.tb02601.x. PubMed DOI PMC

Davies R. O.; Gomez H. J.; Irvin J. D.; Walker J. F. An overview of the clinical pharmacology of enalapril. Br. J. Clin. Pharmacol. 1984, 18 (S2), 215S–229S. 10.1111/j.1365-2125.1984.tb02601.x. PubMed DOI PMC

Mackman R. L.; Ray A. S.; Hui H. C.; Zhang L.; Birkus G.; Boojamra C. G.; Desai M. C.; Douglas J. L.; Gao Y.; Grant D.; Laflamme G.; Lin K. Y.; Markevitch D. Y.; Mishra R.; McDermott M.; Pakdaman R.; Petrakovsky O. V.; Vela J. E.; Cihlar T. Discovery of GS-9131: Design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148. Bioorganic & medicinal chemistry 2010, 18 (10), 3606–17. 10.1016/j.bmc.2010.03.041. PubMed DOI

Davey M. S.; Malde R.; Mykura R. C.; Baker A. T.; Taher T. E.; Le Duff C. S.; Willcox B. E.; Mehellou Y. Synthesis and Biological Evaluation of (E)-4-Hydroxy-3-methylbut-2-enyl Phosphate (HMBP) Aryloxy Triester Phosphoramidate Prodrugs as Activators of Vγ9/Vδ2 T-Cell Immune Responses. Journal of medicinal chemistry 2018, 61 (5), 2111–2117. 10.1021/acs.jmedchem.7b01824. PubMed DOI PMC

Qandil A. M. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review. International journal of molecular sciences 2012, 13 (12), 17244–74. 10.3390/ijms131217244. PubMed DOI PMC

Ferrara S. J.; Meinig J. M.; Placzek A. T.; Banerji T.; McTigue P.; Hartley M. D.; Sanford-Crane H. S.; Banerji T.; Bourdette D.; Scanlan T. S. Ester-to-amide rearrangement of ethanolamine-derived prodrugs of sobetirome with increased blood-brain barrier penetration. Bioorganic & medicinal chemistry 2017, 25 (10), 2743–2753. 10.1016/j.bmc.2017.03.047. PubMed DOI PMC

Cisar J. S.; Grice C. A.; Jones T. K.; Wang D.-H.; Weber O.; Cravat B. F.; Niphakis M. J.; Cognetta A.; Chang J. W.. Preparation of carbamate compounds as modulators of MAGL and/or ABHD6. WO 2013103973 A1, 2013.

Duysen E. G.; Koentgen F.; Williams G. R.; Timperley C. M.; Schopfer L. M.; Cerasoli D. M.; Lockridge O. Production of ES1 plasma carboxylesterase knockout mice for toxicity studies. Chemical research in toxicology 2011, 24 (11), 1891–8. 10.1021/tx200237a. PubMed DOI PMC

Li B.; Sedlacek M.; Manoharan I.; Boopathy R.; Duysen E. G.; Masson P.; Lockridge O. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol. 2005, 70 (11), 1673–1684. 10.1016/j.bcp.2005.09.002. PubMed DOI

Alt J.; Gori S. S.; Lemberg K. M.; Pal A.; Veeravalli V.; Wu Y.; Aguilar J. M. H.; Dash R. P.; Tenora L.; Majer P.; Sun Q.; Slusher B. S.; Rais R. Glutamine Antagonist GA-607 Causes a Dramatic Accumulation of FGAR which can be used to Monitor Target Engagement. Current drug metabolism 2021, 22 (9), 735–745. 10.2174/1389200222666210831125041. PubMed DOI PMC

Lemberg K. M.; Zhao L.; Wu Y.; Veeravalli V.; Alt J.; Aguilar J. M. H.; Dash R. P.; Lam J.; Tenora L.; Rodriguez C.; Nedelcovych M. T.; Brayton C.; Majer P.; Blakeley J. O.; Rais R.; Slusher B. S. The Novel Glutamine Antagonist Prodrug JHU395 Has Antitumor Activity in Malignant Peripheral Nerve Sheath Tumor. Molecular cancer therapeutics 2020, 19 (2), 397–408. 10.1158/1535-7163.MCT-19-0319. PubMed DOI PMC

Tenora L.; Alt J.; Dash R. P.; Gadiano A. J.; Novotna K.; Veeravalli V.; Lam J.; Kirkpatrick Q. R.; Lemberg K. M.; Majer P.; Rais R.; Slusher B. S. Tumor-Targeted Delivery of 6-Diazo-5-oxo-l-norleucine (DON) Using Substituted Acetylated Lysine Prodrugs. Journal of medicinal chemistry 2019, 62 (7), 3524–3538. 10.1021/acs.jmedchem.8b02009. PubMed DOI PMC

Gharpure S. J.; Nanda L. N.; Kumari D. Enantiospecific Total Synthesis of (+)-3-epi-Epohelmin A Using a Nitrogen-Substituted Donor-Acceptor Cyclopropane. Eur. J. Org. Chem. 2017, 2017 (27), 3917–3920. 10.1002/ejoc.201700498. DOI

Zaminer J.; Brockmann C.; Huy P.; Opitz R.; Reuter C.; Beyermann M.; Freund C.; Müller M.; Oschkinat H.; Kühne R.; Schmalz H. G. Addressing protein-protein interactions with small molecules: a Pro-Pro dipeptide mimic with a PPII helix conformation as a module for the synthesis of PRD-binding ligands. Angewandte Chemie (International ed. in English) 2010, 49 (39), 7111–5. 10.1002/anie.201001739. PubMed DOI

Chiha S.; Soicke A.; Barone M.; Müller M.; Bruns J.; Opitz R.; Neudörfl J.-M.; Kühne R.; Schmalz H.-G. Design and Synthesis of Building Blocks for PPII-Helix Secondary-Structure Mimetics: A Stereoselective Entry to 4-Substituted 5-Vinylprolines. Eur. J. Org. Chem. 2018, 2018 (4), 455–460. 10.1002/ejoc.201701584. DOI

Calimsiz S.; Lipton M. A. Synthesis of N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine: An application of lanthanide-catalyzed transamidation. Journal of organic chemistry 2005, 70 (16), 6218–21. 10.1021/jo050518r. PubMed DOI PMC

Pal A.; Gori S.; Yoo S. W.; Thomas A. G.; Wu Y.; Friedman J.; Tenora L.; Bhasin H.; Alt J.; Haughey N.; Slusher B. S.; Rais R. Discovery of Orally Bioavailable and Brain-Penetrable Prodrugs of the Potent nSMase2 Inhibitor DPTIP. Journal of medicinal chemistry 2022, 65 (16), 11111–11125. 10.1021/acs.jmedchem.2c00562. PubMed DOI PMC

Thakare R.; Chhonker Y. S.; Gautam N.; Alamoudi J. A.; Alnouti Y. Quantitative analysis of endogenous compounds. J. Pharm. Biomed. Anal. 2016, 128, 426–437. 10.1016/j.jpba.2016.06.017. PubMed DOI

Zimmermann S. C.; Tichý T.; Vávra J.; Dash R. P.; Slusher C. E.; Gadiano A. J.; Wu Y.; Jančařík A.; Tenora L.; Monincová L.; Prchalová E.; Riggins G. J.; Majer P.; Slusher B. S.; Rais R. N-Substituted Prodrugs of Mebendazole Provide Improved Aqueous Solubility and Oral Bioavailability in Mice and Dogs. Journal of medicinal chemistry 2018, 61 (9), 3918–3929. 10.1021/acs.jmedchem.7b01792. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...