Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug

. 2022 Nov 18 ; 8 (46) : eabq5925. [epub] 20221116

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36383674

Grantová podpora
R01 CA229451 NCI NIH HHS - United States
T32 CA060441 NCI NIH HHS - United States

6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.

Zobrazit více v PubMed

Hanahan D., Weinberg R. A., Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011). PubMed

Lemberg K. M., Gori S. S., Tsukamoto T., Rais R., Slusher B. S., Clinical development of metabolic inhibitors for oncology. J. Clin. Invest. 132, e148550 (2022). PubMed PMC

Hirayama C., Suyama K., Horie Y., Tanimoto K., Kato S., Plasma amino acid patterns in hepatocellular carcinoma. Biochem. Med. Metab. Biol. 38, 127–133 (1987). PubMed

DeBerardinis R. J., Mancuso A., Daikhin E., Nissim I., Yudkoff M., Wehrli S., Thompson C. B., Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345–19350 (2007). PubMed PMC

Flier J. S., Mueckler M. M., Usher P., Lodish H. F., Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492–1495 (1987). PubMed

Ying H., Kimmelman A. C., Lyssiotis C. A., Hua S., Chu G. C., Fletcher-Sananikone E., Locasale J. W., Son J., Zhang H., Coloff J. L., Yan H., Wang W., Chen S., Viale A., Zheng H., Paik J. H., Lim C., Guimaraes A. R., Martin E. S., Chang J., Hezel A. F., Perry S. R., Hu J., Gan B., Xiao Y., Asara J. M., Weissleder R., Wang Y. A., Chin L., Cantley L. C., DePinho R. A., Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012). PubMed PMC

D. Meynial-Denis, Glutamine: Biochemistry, Physiology, and Clinical Applications (CRC Press, 2017).

Choi Y.-K., Park K.-G., Targeting glutamine metabolism for cancer treatment. Biomol. Ther. 26, 19–28 (2018). PubMed PMC

Wise D. R., Thompson C. B., Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433 (2010). PubMed PMC

Thangavelu K., Pan C. Q., Karlberg T., Balaji G., Uttamchandani M., Suresh V., Schuler H., Low B. C., Sivaraman J., Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc. Natl. Acad. Sci. U.S.A. 109, 7705–7710 (2012). PubMed PMC

Rosenbluth R. J., Cooney D. A., Jayaram H. N., Milman H. A., Homan E. R., DON, CONV and DONV-II. Inhibition of l-asparagine synthetase in vivo. Biochem. Pharmacol. 25, 1851–1858 (1976). PubMed

Barclay R. K., Phillipps M. A., Effects of 6-diazo-5-oxo-l-norleucine and other tumor inhibitors on the biosynthesis of nicotinamide adenine dinucleotide in mice. Cancer Res. 26, 282–286 (1966). PubMed

Ahluwalia G. S., Grem J. L., Hao Z., Cooney D. A., Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther. 46, 243–271 (1990). PubMed

Levenberg B., Melnick I., Buchanan J. M., Biosynthesis of the purines. XV. The effect of aza-l-serine and 6-diazo-5-oxo-l-norleucine on inosinic acid biosynthesis de novo. J. Biol. Chem. 225, 163–176 (1957). PubMed

Eidinoff M. L., Knoll J. E., Marano B., Cheong L., Pyrimidine studies: I. Effect of DON (6-diazo-5-oxo-l-norleucine) on incorporation of precursors into nucleic acid pyrimidines. Cancer Res. 18, 105–109 (1958).

L. M. Pinkus, [45] Glutamine binding sites, in Methods in Enzymology (Elsevier, 1977), vol. 46, pp. 414–427. PubMed

Dion H. W., Fusari S. A., Jakubowski Z. L., Zora J. G., Bartz Q. R., 6-Diazo-5-oxo-l-norleucine, a new tumor-inhibitory substance. II. Isolation and characterization. J. Am. Chem. Soc. 78, 3075–3077 (1956).

Leone R. D., Zhao L., Englert J. M., Sun I. M., Oh M. H., Sun I. H., Arwood M. L., Bettencourt I. A., Patel C. H., Wen J., Tam A., Blosser R. L., Prchalova E., Alt J., Rais R., Slusher B. S., Powell J. D., Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019). PubMed PMC

Magill G. B., Myers W. P., Reilly H. C., Putnam R. C., Magill J. W., Sykes M. P., Escher G. C., Karnofsky D. A., Burchenal J. H., Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-l-norleucine (DON) in human neoplastic disease. Cancer 10, 1138–1150 (1957). PubMed

Sullivan M. P., Nelson J. A., Feldman S., Van Nguyen B., Pharmacokinetic and phase I study of intravenous DON (6-diazo-5-oxo-l-norleucine) in children. Cancer Chemother. Pharmacol. 21, 78–84 (1988). PubMed

Earhart R. H., Amato D. J., Chang A. Y., Borden E. C., Shiraki M., Dowd M. E., Comis R. L., Davis T. E., Smith T. J., Phase II trial of 6-diazo-5-oxo-l-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas. Invest. New Drugs 8, 113–119 (1990). PubMed

Rahman A., Smith F. P., Luc P. T., Woolley P. V., Phase I study and clinical pharmacology of 6-diazo-5-oxo-l-norleucine (DON). Invest. New Drugs 3, 369–374 (1985). PubMed

Eagan R. T., Frytak S., Nichols W. C., Creagan E. T., Ingle J. N., Phase II study on DON in patients with previously treated advanced lung cancer. Cancer Treat. Rep. 66, 1665–1666 (1982). PubMed

Earhart R. H., Koeller J. M., Davis H. L., Phase I trial of 6-diazo-5-oxo-l-norleucine (DON) administered by 5-day courses. Cancer Treat. Rep. 66, 1215–1217 (1982). PubMed

Kovach J. S., Eagan R. T., Powis G., Rubin J., Creagan E. T., Moertel C. G., Phase I and pharmacokinetic studies of DON. Cancer Treat. Rep. 65, 1031–1036 (1981). PubMed

Lynch G., Kemeny N., Casper E., Phase II evaluation of DON (6-diazo-5-oxo-l-norleucine) in patients with advanced colorectal carcinoma. Am. J. Clin. Oncol. 5, 541–543 (1982). PubMed

Ovejera A. A., Houchens D. P., Catane R., Sheridan M. A., Muggia F. M., Efficacy of 6-diazo-5-oxo-l-norleucine and N-[N-γ-glutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer Res. 39, 3220–3224 (1979). PubMed

Rubin J., Sorensen S., Schutt A. J., van Hazel G. A., O’Connell M. J., Moertel C. G., A phase II study of 6-diazo-5-oxo-l-norleucine (DON, NSC-7365) in advanced large bowel carcinoma. Am. J. Clin. Oncol. 6, 325–326 (1983). PubMed

Shelton L. M., Huysentruyt L. C., Seyfried T. N., Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int. J. Cancer 127, 2478–2485 (2010). PubMed PMC

Tarnowski G. S., Stock C. C., Effects of combinations of azaserine and of 6-diazo-5-oxo-l-norleucine with purine analogs and other antimetabolites on the growth of two mouse mammary carcinomas. Cancer Res. 17, 1033–1039 (1957). PubMed

Catane R., Von Hoff D. D., Glaubiger D. L., Muggia F. M., Azaserine, DON, and azotomycin: Three diazo analogs of l-glutamine with clinical antitumor activity. Cancer Treat. Rep. 63, 1033–1038 (1979). PubMed

Sullivan M., Beatty E. Jr., Hyman C., Murphy M., Pierce M., Severo N., A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in treatment of the acute leukemias of childhood: Results of a coperative study. Cancer Chemother. Rep. 18, 83–95 (1962). PubMed

Hensley C. T., Wasti A. T., DeBerardinis R. J., Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013). PubMed PMC

Calithera, Calithera Biosciences announces decision to discontinue KEAPSAKE clinical trial (2021).

Wyatt C., Baeten J. M., Tenofovir alafenamide for HIV infection: Is less more? Lancet 385, 2559–2560 (2015). PubMed

Nedelcovych M. T., Tenora L., Kim B.-H., Kelschenbach J., Chao W., Hadas E., Jancarik A., Prchalova E., Zimmermann S. C., Dash R. P., Gadiano A. J., Garrett C., Furtmuller G., Oh B., Brandacher G., Alt J., Majer P., Volsky D. J., Rais R., Slusher B. S., N-(Pivaloyloxy)alkoxy-carbonyl prodrugs of the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) as a potential treatment for HIV associated nseurocognitive disorders. J. Med. Chem. 60, 7186–7198 (2017). PubMed PMC

Rais R., Jančařík A., Tenora L., Nedelcovych M., Alt J., Englert J., Rojas C., Le A., Elgogary A., Tan J., Monincová L., Pate K., Adams R., Ferraris D., Powell J., Majer P., Slusher B. S., Discovery of 6-diazo-5-oxo-l-norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: A potential treatment for glioblastoma. J. Med. Chem. 59, 8621–8633 (2016). PubMed

Choi K. Y., Swierczewska M., Lee S., Chen X., Protease-activated drug development. Theranostics 2, 156–178 (2012). PubMed PMC

Ueki N., Lee S., Sampson N. S., Hayman M. J., Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease. Nat. Commun. 4, 2735 (2013). PubMed

Carl P. L., Chakravarty P. K., Katzenellenbogen J. A., Weber M. J., Protease-activated "prodrugs" for cancer chemotherapy. Proc. Natl. Acad. Sci. U.S.A. 77, 2224–2228 (1980). PubMed PMC

Thomas A. G., Rojas C., Tanega C., Shen M., Simeonov A., Boxer M. B., Auld D. S., Ferraris D. V., Tsukamoto T., Slusher B. S., Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem. Biophys. Res. Commun. 438, 243–248 (2013). PubMed PMC

Li B., Sedlacek M., Manoharan I., Boopathy R., Duysen E. G., Masson P., Lockridge O., Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol. 70, 1673–1684 (2005). PubMed

Duysen E. G., Koentgen F., Williams G. R., Timperley C. M., Schopfer L. M., Cerasoli D. M., Lockridge O., Production of ES1 plasma carboxylesterase knockout mice for toxicity studies. Chem. Res. Toxicol. 24, 1891–1898 (2011). PubMed PMC

Lemberg K. M., Zhao L., Wu Y., Veeravalli V., Alt J., Aguilar J. M. H., Dash R. P., Lam J., Tenora L., Rodriguez C., Nedelcovych M. T., Brayton C., Majer P., Blakeley J. O., Rais R., Slusher B. S., The novel glutamine antagonist prodrug JHU395 has antitumor activity in malignant peripheral nerve sheath tumor. Mol. Cancer Ther. 19, 397–408 (2020). PubMed PMC

Alt J., Gori S. S., Lemberg K. M., Pal A., Veeravalli V., Wu Y., Aguilar J. M. H., Dash R. P., Tenora L., Majer P., Sun Q., Slusher B. S., Rais R., Glutamine antagonist GA-607 causes a dramatic accumulation of FGAR which can be used to monitor target engagement. Curr. Drug Metab. 22, 735–745 (2021). PubMed PMC

Le A., Lane A. N., Hamaker M., Bose S., Gouw A., Barbi J., Tsukamoto T., Rojas C. J., Slusher B. S., Zhang H., Zimmerman L. J., Liebler D. C., Slebos R. J., Lorkiewicz P. K., Higashi R. M., Fan T. W., Dang C. V., Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012). PubMed PMC

DeBerardinis R. J., Cheng T., Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010). PubMed PMC

Tennant D. A., Durán R. V., Gottlieb E., Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010). PubMed

Lemberg K. M., Vornov J. J., Rais R., Slusher B. S., We’re not “DON” yet: Optimal dosing and prodrug delivery of 6-diazo-5-oxo-l-norleucine. Mol. Cancer Ther. 17, 1824–1832 (2018). PubMed PMC

Kratz F., Abu Ajaj K., Warnecke A., Anticancer carrier-linked prodrugs in clinical trials. Expert Opin. Investig. Drugs 16, 1037–1058 (2007). PubMed

Souza C., Pellosi D. S., Tedesco A. C., Prodrugs for targeted cancer therapy. Expert Rev. Anticancer Ther. 19, 483–502 (2019). PubMed

Mahato R., Tai W., Cheng K., Prodrugs for improving tumor targetability and efficiency. Adv. Drug Deliv. Rev. 63, 659–670 (2011). PubMed PMC

He H., Sun L., Ye J., Liu E., Chen S., Liang Q., Shin M. C., Yang V. C., Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J. Control. Release 240, 67–76 (2016). PubMed

Zhong Y. J., Shao L. H., Li Y., Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int. J. Oncol. 42, 373–383 (2013). PubMed PMC

Shao L.-H., Liu S.-P., Hou J.-X., Zhang Y.-H., Peng C.-W., Zhong Y.-J., Liu X., Liu X.-L., Hong Y.-P., Firestone R. A., Li Y., Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: An experimental study. Cancer 118, 2986–2996 (2012). PubMed

Rautio J., Meanwell N. A., Di L., Hageman M. J., The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018). PubMed

Najjar A., Najjar A., Karaman R., Newly developed prodrugs and prodrugs in development; an insight of the recent years. Molecules 25, 884 (2020). PubMed PMC

Kramer M. D., Robinson P., Vlodavsky I., Barz D., Friberger P., Fuks Z., Schirrmacher V., Characterization of an extracellular matrix-degrading protease derived from a highly metastatic tumor cell line. Eur. J. Cancer Clin. Oncol. 21, 307–316 (1985). PubMed

DiStefano J. F., Beck G., Lane B., Zucker S., Role of tumor cell membrane-bound serine proteases in tumor-induced target cytolysis. Cancer Res. 42, 207–218 (1982). PubMed

Joyce J. A., Hanahan D., Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3, 1516–1519 (2004). PubMed

Sanghani S. P., Quinney S. K., Fredenburg T. B., Sun Z. J., Davis W. I., Murry D. J., Cummings O. W., Seitz D. E., Bosron W. F., Carboxylesterases expressed in human colon tumor tissue and their role in CPT-11 hydrolysis. Clin. Cancer Res. 9, 4983–4991 (2003). PubMed

Senter P. D., Beam K. S., Mixan B., Wahl A. F., Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjug. Chem. 12, 1074–1080 (2001). PubMed

Reigner B., Blesch K., Weidekamm E., Clinical pharmacokinetics of capecitabine. Clin. Pharmacokinet. 40, 85–104 (2001). PubMed

Bissery M. C., Vrignaud P., Lavelle F., Chabot G. G., Experimental antitumor activity and pharmacokinetics of the camptothecin analog irinotecan (CPT-11) in mice. Anticancer Drugs 7, 437–460 (1996). PubMed

Kirwan I. G., Loadman P. M., Swaine D. J., Anthoney D. A., Pettit G. R., Lippert J. W. 3rd, Shnyder S. D., Cooper P. A., Bibby M. C., Comparative preclinical pharmacokinetic and metabolic studies of the combretastatin prodrugs combretastatin A4 phosphate and A1 phosphate. Clin. Cancer Res. 10, 1446–1453 (2004). PubMed

Shan L., Zhuo X., Zhang F., Dai Y., Zhu G., Yung B. C., Fan W., Zhai K., Jacobson O., Kiesewetter D. O., Ma Y., Gao G., Chen X., A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy. Theranostics 8, 2018–2030 (2018). PubMed PMC

Thomas A. G., O’Driscoll C. M., Bressler J., Kaufmann W., Rojas C. J., Slusher B. S., Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochem. Biophys. Res. Commun. 443, 32–36 (2014). PubMed PMC

Liederer B. M., Borchardt R. T., Enzymes involved in the bioconversion of ester-based prodrugs. J. Pharm. Sci. 95, 1177–1195 (2006). PubMed

Huttunen K. M., Raunio H., Rautio J., Prodrugs—From serendipity to rational design. Pharmacol. Rev. 63, 750–771 (2011). PubMed

Mathijssen R. H., van Alphen R. J., Verweij J., Loos W. J., Nooter K., Stoter G., Sparreboom A., Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 7, 2182–2194 (2001). PubMed

Oh M.-H., Sun I.-H., Zhao L., Leone R. D., Sun I.-M., Xu W., Collins S. L., Tam A. J., Blosser R. L., Patel C. H., Englert J. M., Arwood M. L., Wen J., Chan-Li Y., Tenora L., Majer P., Rais R., Slusher B. S., Horton M. R., Powell J. D., Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020). PubMed PMC

Sharma N. S., Gupta V. K., Garrido V. T., Hadad R., Durden B. C., Kesh K., Giri B., Ferrantella A., Dudeja V., Saluja A., Banerjee S., Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J. Clin. Invest. 130, 451–465 (2020). PubMed PMC

Zimmermann S. C., Tichý T., Vávra J., Dash R. P., Slusher C. E., Gadiano A. J., Wu Y., Jančařík A., Tenora L., Monincová L., Prchalová E., Riggins G. J., Majer P., Slusher B. S., Rais R., N-substituted prodrugs of mebendazole provide improved aqueous solubility and oral bioavailability in mice and dogs. J. Med. Chem. 61, 3918–3929 (2018). PubMed

Tenora L., Alt J., Dash R. P., Gadiano A. J., Novotna K., Veeravalli V., Lam J., Kirkpatrick Q. R., Lemberg K. M., Majer P., Rais R., Slusher B. S., Tumor-targeted delivery of 6-diazo-5-oxo-l-norleucine (DON) using substituted acetylated lysine prodrugs. J. Med. Chem. 62, 3524–3538 (2019). PubMed PMC

Erben U., Loddenkemper C., Doerfel K., Spieckermann S., Haller D., Heimesaat M. M., Zeitz M., Siegmund B., Kühl A. A., A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 7, 4557–4576 (2014). PubMed PMC

Evans A. M., Br B., Liu Q., Mitchell M. W., Rj R., Dai H., Sj S., DeHaven C. D., Lad M., High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4, 1–3 (2014).

Dehaven C. D., Evans A. M., Dai H., Lawton K. A., Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2, 9 (2010). PubMed PMC

Xia J., Wishart D. S., Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinformatics 55, 14.10.11–14.10.91 (2016). PubMed

Hollinger K. R., Zhu X., Khoury E. S., Thomas A. G., Liaw K., Tallon C., Wu Y., Prchalova E., Kamiya A., Rojas C., Kannan S., Slusher B. S., Glutamine antagonist JHU-083 normalizes aberrant hippocampal glutaminase activity and improves cognition in APOE4 mice. J. Alzheimers Dis. 77, 437–447 (2020). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace