Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 CA229451
NCI NIH HHS - United States
T32 CA060441
NCI NIH HHS - United States
PubMed
36383674
PubMed Central
PMC9668306
DOI
10.1126/sciadv.abq5925
Knihovny.cz E-zdroje
- MeSH
- CD8-pozitivní T-lymfocyty metabolismus MeSH
- diazooxonorleucin farmakologie terapeutické užití MeSH
- glutamin metabolismus MeSH
- inhibitory enzymů terapeutické užití MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- prekurzory léčiv * farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diazooxonorleucin MeSH
- glutamin MeSH
- inhibitory enzymů MeSH
- prekurzory léčiv * MeSH
6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.
Department of Medicine Johns Hopkins School of Medicine Baltimore MD 21205 USA
Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21205 USA
Department of Neuroscience Johns Hopkins School of Medicine Baltimore MD 21205 USA
Department of Oncology Johns Hopkins School of Medicine Baltimore MD 21205 USA
Johns Hopkins Drug Discovery Johns Hopkins School of Medicine Baltimore MD 21205 USA
Zobrazit více v PubMed
Hanahan D., Weinberg R. A., Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011). PubMed
Lemberg K. M., Gori S. S., Tsukamoto T., Rais R., Slusher B. S., Clinical development of metabolic inhibitors for oncology. J. Clin. Invest. 132, e148550 (2022). PubMed PMC
Hirayama C., Suyama K., Horie Y., Tanimoto K., Kato S., Plasma amino acid patterns in hepatocellular carcinoma. Biochem. Med. Metab. Biol. 38, 127–133 (1987). PubMed
DeBerardinis R. J., Mancuso A., Daikhin E., Nissim I., Yudkoff M., Wehrli S., Thompson C. B., Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345–19350 (2007). PubMed PMC
Flier J. S., Mueckler M. M., Usher P., Lodish H. F., Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492–1495 (1987). PubMed
Ying H., Kimmelman A. C., Lyssiotis C. A., Hua S., Chu G. C., Fletcher-Sananikone E., Locasale J. W., Son J., Zhang H., Coloff J. L., Yan H., Wang W., Chen S., Viale A., Zheng H., Paik J. H., Lim C., Guimaraes A. R., Martin E. S., Chang J., Hezel A. F., Perry S. R., Hu J., Gan B., Xiao Y., Asara J. M., Weissleder R., Wang Y. A., Chin L., Cantley L. C., DePinho R. A., Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012). PubMed PMC
D. Meynial-Denis, Glutamine: Biochemistry, Physiology, and Clinical Applications (CRC Press, 2017).
Choi Y.-K., Park K.-G., Targeting glutamine metabolism for cancer treatment. Biomol. Ther. 26, 19–28 (2018). PubMed PMC
Wise D. R., Thompson C. B., Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433 (2010). PubMed PMC
Thangavelu K., Pan C. Q., Karlberg T., Balaji G., Uttamchandani M., Suresh V., Schuler H., Low B. C., Sivaraman J., Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc. Natl. Acad. Sci. U.S.A. 109, 7705–7710 (2012). PubMed PMC
Rosenbluth R. J., Cooney D. A., Jayaram H. N., Milman H. A., Homan E. R., DON, CONV and DONV-II. Inhibition of l-asparagine synthetase in vivo. Biochem. Pharmacol. 25, 1851–1858 (1976). PubMed
Barclay R. K., Phillipps M. A., Effects of 6-diazo-5-oxo-l-norleucine and other tumor inhibitors on the biosynthesis of nicotinamide adenine dinucleotide in mice. Cancer Res. 26, 282–286 (1966). PubMed
Ahluwalia G. S., Grem J. L., Hao Z., Cooney D. A., Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther. 46, 243–271 (1990). PubMed
Levenberg B., Melnick I., Buchanan J. M., Biosynthesis of the purines. XV. The effect of aza-l-serine and 6-diazo-5-oxo-l-norleucine on inosinic acid biosynthesis de novo. J. Biol. Chem. 225, 163–176 (1957). PubMed
Eidinoff M. L., Knoll J. E., Marano B., Cheong L., Pyrimidine studies: I. Effect of DON (6-diazo-5-oxo-l-norleucine) on incorporation of precursors into nucleic acid pyrimidines. Cancer Res. 18, 105–109 (1958).
L. M. Pinkus, [45] Glutamine binding sites, in Methods in Enzymology (Elsevier, 1977), vol. 46, pp. 414–427. PubMed
Dion H. W., Fusari S. A., Jakubowski Z. L., Zora J. G., Bartz Q. R., 6-Diazo-5-oxo-l-norleucine, a new tumor-inhibitory substance. II. Isolation and characterization. J. Am. Chem. Soc. 78, 3075–3077 (1956).
Leone R. D., Zhao L., Englert J. M., Sun I. M., Oh M. H., Sun I. H., Arwood M. L., Bettencourt I. A., Patel C. H., Wen J., Tam A., Blosser R. L., Prchalova E., Alt J., Rais R., Slusher B. S., Powell J. D., Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019). PubMed PMC
Magill G. B., Myers W. P., Reilly H. C., Putnam R. C., Magill J. W., Sykes M. P., Escher G. C., Karnofsky D. A., Burchenal J. H., Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-l-norleucine (DON) in human neoplastic disease. Cancer 10, 1138–1150 (1957). PubMed
Sullivan M. P., Nelson J. A., Feldman S., Van Nguyen B., Pharmacokinetic and phase I study of intravenous DON (6-diazo-5-oxo-l-norleucine) in children. Cancer Chemother. Pharmacol. 21, 78–84 (1988). PubMed
Earhart R. H., Amato D. J., Chang A. Y., Borden E. C., Shiraki M., Dowd M. E., Comis R. L., Davis T. E., Smith T. J., Phase II trial of 6-diazo-5-oxo-l-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas. Invest. New Drugs 8, 113–119 (1990). PubMed
Rahman A., Smith F. P., Luc P. T., Woolley P. V., Phase I study and clinical pharmacology of 6-diazo-5-oxo-l-norleucine (DON). Invest. New Drugs 3, 369–374 (1985). PubMed
Eagan R. T., Frytak S., Nichols W. C., Creagan E. T., Ingle J. N., Phase II study on DON in patients with previously treated advanced lung cancer. Cancer Treat. Rep. 66, 1665–1666 (1982). PubMed
Earhart R. H., Koeller J. M., Davis H. L., Phase I trial of 6-diazo-5-oxo-l-norleucine (DON) administered by 5-day courses. Cancer Treat. Rep. 66, 1215–1217 (1982). PubMed
Kovach J. S., Eagan R. T., Powis G., Rubin J., Creagan E. T., Moertel C. G., Phase I and pharmacokinetic studies of DON. Cancer Treat. Rep. 65, 1031–1036 (1981). PubMed
Lynch G., Kemeny N., Casper E., Phase II evaluation of DON (6-diazo-5-oxo-l-norleucine) in patients with advanced colorectal carcinoma. Am. J. Clin. Oncol. 5, 541–543 (1982). PubMed
Ovejera A. A., Houchens D. P., Catane R., Sheridan M. A., Muggia F. M., Efficacy of 6-diazo-5-oxo-l-norleucine and N-[N-γ-glutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer Res. 39, 3220–3224 (1979). PubMed
Rubin J., Sorensen S., Schutt A. J., van Hazel G. A., O’Connell M. J., Moertel C. G., A phase II study of 6-diazo-5-oxo-l-norleucine (DON, NSC-7365) in advanced large bowel carcinoma. Am. J. Clin. Oncol. 6, 325–326 (1983). PubMed
Shelton L. M., Huysentruyt L. C., Seyfried T. N., Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int. J. Cancer 127, 2478–2485 (2010). PubMed PMC
Tarnowski G. S., Stock C. C., Effects of combinations of azaserine and of 6-diazo-5-oxo-l-norleucine with purine analogs and other antimetabolites on the growth of two mouse mammary carcinomas. Cancer Res. 17, 1033–1039 (1957). PubMed
Catane R., Von Hoff D. D., Glaubiger D. L., Muggia F. M., Azaserine, DON, and azotomycin: Three diazo analogs of l-glutamine with clinical antitumor activity. Cancer Treat. Rep. 63, 1033–1038 (1979). PubMed
Sullivan M., Beatty E. Jr., Hyman C., Murphy M., Pierce M., Severo N., A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in treatment of the acute leukemias of childhood: Results of a coperative study. Cancer Chemother. Rep. 18, 83–95 (1962). PubMed
Hensley C. T., Wasti A. T., DeBerardinis R. J., Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013). PubMed PMC
Calithera, Calithera Biosciences announces decision to discontinue KEAPSAKE clinical trial (2021).
Wyatt C., Baeten J. M., Tenofovir alafenamide for HIV infection: Is less more? Lancet 385, 2559–2560 (2015). PubMed
Nedelcovych M. T., Tenora L., Kim B.-H., Kelschenbach J., Chao W., Hadas E., Jancarik A., Prchalova E., Zimmermann S. C., Dash R. P., Gadiano A. J., Garrett C., Furtmuller G., Oh B., Brandacher G., Alt J., Majer P., Volsky D. J., Rais R., Slusher B. S., N-(Pivaloyloxy)alkoxy-carbonyl prodrugs of the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) as a potential treatment for HIV associated nseurocognitive disorders. J. Med. Chem. 60, 7186–7198 (2017). PubMed PMC
Rais R., Jančařík A., Tenora L., Nedelcovych M., Alt J., Englert J., Rojas C., Le A., Elgogary A., Tan J., Monincová L., Pate K., Adams R., Ferraris D., Powell J., Majer P., Slusher B. S., Discovery of 6-diazo-5-oxo-l-norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: A potential treatment for glioblastoma. J. Med. Chem. 59, 8621–8633 (2016). PubMed
Choi K. Y., Swierczewska M., Lee S., Chen X., Protease-activated drug development. Theranostics 2, 156–178 (2012). PubMed PMC
Ueki N., Lee S., Sampson N. S., Hayman M. J., Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease. Nat. Commun. 4, 2735 (2013). PubMed
Carl P. L., Chakravarty P. K., Katzenellenbogen J. A., Weber M. J., Protease-activated "prodrugs" for cancer chemotherapy. Proc. Natl. Acad. Sci. U.S.A. 77, 2224–2228 (1980). PubMed PMC
Thomas A. G., Rojas C., Tanega C., Shen M., Simeonov A., Boxer M. B., Auld D. S., Ferraris D. V., Tsukamoto T., Slusher B. S., Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem. Biophys. Res. Commun. 438, 243–248 (2013). PubMed PMC
Li B., Sedlacek M., Manoharan I., Boopathy R., Duysen E. G., Masson P., Lockridge O., Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol. 70, 1673–1684 (2005). PubMed
Duysen E. G., Koentgen F., Williams G. R., Timperley C. M., Schopfer L. M., Cerasoli D. M., Lockridge O., Production of ES1 plasma carboxylesterase knockout mice for toxicity studies. Chem. Res. Toxicol. 24, 1891–1898 (2011). PubMed PMC
Lemberg K. M., Zhao L., Wu Y., Veeravalli V., Alt J., Aguilar J. M. H., Dash R. P., Lam J., Tenora L., Rodriguez C., Nedelcovych M. T., Brayton C., Majer P., Blakeley J. O., Rais R., Slusher B. S., The novel glutamine antagonist prodrug JHU395 has antitumor activity in malignant peripheral nerve sheath tumor. Mol. Cancer Ther. 19, 397–408 (2020). PubMed PMC
Alt J., Gori S. S., Lemberg K. M., Pal A., Veeravalli V., Wu Y., Aguilar J. M. H., Dash R. P., Tenora L., Majer P., Sun Q., Slusher B. S., Rais R., Glutamine antagonist GA-607 causes a dramatic accumulation of FGAR which can be used to monitor target engagement. Curr. Drug Metab. 22, 735–745 (2021). PubMed PMC
Le A., Lane A. N., Hamaker M., Bose S., Gouw A., Barbi J., Tsukamoto T., Rojas C. J., Slusher B. S., Zhang H., Zimmerman L. J., Liebler D. C., Slebos R. J., Lorkiewicz P. K., Higashi R. M., Fan T. W., Dang C. V., Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012). PubMed PMC
DeBerardinis R. J., Cheng T., Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010). PubMed PMC
Tennant D. A., Durán R. V., Gottlieb E., Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010). PubMed
Lemberg K. M., Vornov J. J., Rais R., Slusher B. S., We’re not “DON” yet: Optimal dosing and prodrug delivery of 6-diazo-5-oxo-l-norleucine. Mol. Cancer Ther. 17, 1824–1832 (2018). PubMed PMC
Kratz F., Abu Ajaj K., Warnecke A., Anticancer carrier-linked prodrugs in clinical trials. Expert Opin. Investig. Drugs 16, 1037–1058 (2007). PubMed
Souza C., Pellosi D. S., Tedesco A. C., Prodrugs for targeted cancer therapy. Expert Rev. Anticancer Ther. 19, 483–502 (2019). PubMed
Mahato R., Tai W., Cheng K., Prodrugs for improving tumor targetability and efficiency. Adv. Drug Deliv. Rev. 63, 659–670 (2011). PubMed PMC
He H., Sun L., Ye J., Liu E., Chen S., Liang Q., Shin M. C., Yang V. C., Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J. Control. Release 240, 67–76 (2016). PubMed
Zhong Y. J., Shao L. H., Li Y., Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int. J. Oncol. 42, 373–383 (2013). PubMed PMC
Shao L.-H., Liu S.-P., Hou J.-X., Zhang Y.-H., Peng C.-W., Zhong Y.-J., Liu X., Liu X.-L., Hong Y.-P., Firestone R. A., Li Y., Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: An experimental study. Cancer 118, 2986–2996 (2012). PubMed
Rautio J., Meanwell N. A., Di L., Hageman M. J., The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018). PubMed
Najjar A., Najjar A., Karaman R., Newly developed prodrugs and prodrugs in development; an insight of the recent years. Molecules 25, 884 (2020). PubMed PMC
Kramer M. D., Robinson P., Vlodavsky I., Barz D., Friberger P., Fuks Z., Schirrmacher V., Characterization of an extracellular matrix-degrading protease derived from a highly metastatic tumor cell line. Eur. J. Cancer Clin. Oncol. 21, 307–316 (1985). PubMed
DiStefano J. F., Beck G., Lane B., Zucker S., Role of tumor cell membrane-bound serine proteases in tumor-induced target cytolysis. Cancer Res. 42, 207–218 (1982). PubMed
Joyce J. A., Hanahan D., Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3, 1516–1519 (2004). PubMed
Sanghani S. P., Quinney S. K., Fredenburg T. B., Sun Z. J., Davis W. I., Murry D. J., Cummings O. W., Seitz D. E., Bosron W. F., Carboxylesterases expressed in human colon tumor tissue and their role in CPT-11 hydrolysis. Clin. Cancer Res. 9, 4983–4991 (2003). PubMed
Senter P. D., Beam K. S., Mixan B., Wahl A. F., Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjug. Chem. 12, 1074–1080 (2001). PubMed
Reigner B., Blesch K., Weidekamm E., Clinical pharmacokinetics of capecitabine. Clin. Pharmacokinet. 40, 85–104 (2001). PubMed
Bissery M. C., Vrignaud P., Lavelle F., Chabot G. G., Experimental antitumor activity and pharmacokinetics of the camptothecin analog irinotecan (CPT-11) in mice. Anticancer Drugs 7, 437–460 (1996). PubMed
Kirwan I. G., Loadman P. M., Swaine D. J., Anthoney D. A., Pettit G. R., Lippert J. W. 3rd, Shnyder S. D., Cooper P. A., Bibby M. C., Comparative preclinical pharmacokinetic and metabolic studies of the combretastatin prodrugs combretastatin A4 phosphate and A1 phosphate. Clin. Cancer Res. 10, 1446–1453 (2004). PubMed
Shan L., Zhuo X., Zhang F., Dai Y., Zhu G., Yung B. C., Fan W., Zhai K., Jacobson O., Kiesewetter D. O., Ma Y., Gao G., Chen X., A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy. Theranostics 8, 2018–2030 (2018). PubMed PMC
Thomas A. G., O’Driscoll C. M., Bressler J., Kaufmann W., Rojas C. J., Slusher B. S., Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochem. Biophys. Res. Commun. 443, 32–36 (2014). PubMed PMC
Liederer B. M., Borchardt R. T., Enzymes involved in the bioconversion of ester-based prodrugs. J. Pharm. Sci. 95, 1177–1195 (2006). PubMed
Huttunen K. M., Raunio H., Rautio J., Prodrugs—From serendipity to rational design. Pharmacol. Rev. 63, 750–771 (2011). PubMed
Mathijssen R. H., van Alphen R. J., Verweij J., Loos W. J., Nooter K., Stoter G., Sparreboom A., Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 7, 2182–2194 (2001). PubMed
Oh M.-H., Sun I.-H., Zhao L., Leone R. D., Sun I.-M., Xu W., Collins S. L., Tam A. J., Blosser R. L., Patel C. H., Englert J. M., Arwood M. L., Wen J., Chan-Li Y., Tenora L., Majer P., Rais R., Slusher B. S., Horton M. R., Powell J. D., Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020). PubMed PMC
Sharma N. S., Gupta V. K., Garrido V. T., Hadad R., Durden B. C., Kesh K., Giri B., Ferrantella A., Dudeja V., Saluja A., Banerjee S., Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J. Clin. Invest. 130, 451–465 (2020). PubMed PMC
Zimmermann S. C., Tichý T., Vávra J., Dash R. P., Slusher C. E., Gadiano A. J., Wu Y., Jančařík A., Tenora L., Monincová L., Prchalová E., Riggins G. J., Majer P., Slusher B. S., Rais R., N-substituted prodrugs of mebendazole provide improved aqueous solubility and oral bioavailability in mice and dogs. J. Med. Chem. 61, 3918–3929 (2018). PubMed
Tenora L., Alt J., Dash R. P., Gadiano A. J., Novotna K., Veeravalli V., Lam J., Kirkpatrick Q. R., Lemberg K. M., Majer P., Rais R., Slusher B. S., Tumor-targeted delivery of 6-diazo-5-oxo-l-norleucine (DON) using substituted acetylated lysine prodrugs. J. Med. Chem. 62, 3524–3538 (2019). PubMed PMC
Erben U., Loddenkemper C., Doerfel K., Spieckermann S., Haller D., Heimesaat M. M., Zeitz M., Siegmund B., Kühl A. A., A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 7, 4557–4576 (2014). PubMed PMC
Evans A. M., Br B., Liu Q., Mitchell M. W., Rj R., Dai H., Sj S., DeHaven C. D., Lad M., High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4, 1–3 (2014).
Dehaven C. D., Evans A. M., Dai H., Lawton K. A., Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2, 9 (2010). PubMed PMC
Xia J., Wishart D. S., Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinformatics 55, 14.10.11–14.10.91 (2016). PubMed
Hollinger K. R., Zhu X., Khoury E. S., Thomas A. G., Liaw K., Tallon C., Wu Y., Prchalova E., Kamiya A., Rojas C., Kannan S., Slusher B. S., Glutamine antagonist JHU-083 normalizes aberrant hippocampal glutaminase activity and improves cognition in APOE4 mice. J. Alzheimers Dis. 77, 437–447 (2020). PubMed PMC