Pro-905, a Novel Purine Antimetabolite, Combines with Glutamine Amidotransferase Inhibition to Suppress Growth of Malignant Peripheral Nerve Sheath Tumor

. 2023 Dec 01 ; 22 (12) : 1390-1403.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37616542

Grantová podpora
T32 CA060441 NCI NIH HHS - United States
R01 CA229451 NCI NIH HHS - United States
T32 OD011089 NIH HHS - United States
R01 GM135587 NIGMS NIH HHS - United States
T32 OD011089 ODCDC CDC HHS - United States
R01 NS103927 NINDS NIH HHS - United States
R01 GM143334 NIGMS NIH HHS - United States

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.

Zobrazit více v PubMed

Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer 2018;6:57. PubMed PMC

Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023Mar 24: S0962-8924(23)00044–2. PubMed PMC

Graves LM, Guy HI, Kozlowski P, Huang M, Lazarowski E, Pope RM, et al. . Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 2000;403:328–32. PubMed

Ali ES, Sahu U, Villa E, O'Hara BP, Gao P, Beaudet C, et al. . ERK2 phosphorylates PFAS to mediate posttranslational control of De Novo purine synthesis. Mol Cell 2020;78:1178–91. PubMed PMC

Santana-Codina N, Roeth AA, Zhang Y, Yang A, Mashadova O, Asara JM, et al. . Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun 2018;9:4945. PubMed PMC

Lemberg KM, Zhao L, Wu Y, Veeravalli V, Alt J, Aguilar JMH, et al. . The novel glutamine antagonist prodrug JHU395 has antitumor activity in malignant peripheral nerve sheath tumor. Mol Cancer Ther 2020;19:397–408. PubMed PMC

Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 2008;8:24–36. PubMed

Hartford C, Vasquez E, Schwab M, Edick MJ, Rehg JE, Grosveld G, et al. . Differential effects of targeted disruption of thiopurine methyltransferase on mercaptopurine and thioguanine pharmacodynamics. Cancer Res 2007;67:4965–72. PubMed

Sullivan MP, Beatty EC Jr, Hyman CB, Murphy ML, Pierce MI, Severo NC. A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in treatment of the acute leukemias of childhood: results of a coperative study. Cancer Chemother Rep 1962;18:83–95. PubMed

Sullivan MP, Beatty EC Jr, Hyman CP, Murphy ML, Pherce MI, Severo NC. A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in the treatment of acute leukemia in children: results of cooperative study. Cancer Chemother Rep 1962;16:161–4. PubMed

Adamson PC, Zimm S, Ragab AH, Steinberg SM, Balis F, Kamen BA, et al. . A phase II trial of continuous-infusion 6-mercaptopurine for childhood solid tumors. Cancer Chemother Pharmacol 1990;26:343–4. PubMed

Mehellou Y, Rattan HS, Balzarini J. The protide prodrug technology: from the concept to the clinic. J Med Chem 2018;61:2211–26. PubMed PMC

Sofia MJ, Bao D, Chang W, Du J, Nagarathnam D, Rachakonda S, et al. . Discovery of a beta-D-2 '-Deoxy-2 '-alpha-fluoro-2 '-beta-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J Med Chem 2010;53:7202–18. PubMed

Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, et al. . Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020;6:672–83. PubMed PMC

Ray AS, Fordyce MW, Hitchcock MJ. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Res 2016;125:63–70. PubMed

Schwenzer H, De Zan E, Elshani M, van Stiphout R, Kudsy M, Morris J, et al. . The novel nucleoside analogue protide NUC-7738 overcomes cancer resistance mechanisms in vitro and in a first-in-human phase I clinical trial. Clin Cancer Res 2021;27:6500–13. PubMed PMC

Nygaard U, Toft N, Schmiegelow K. Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin Pharmacol Ther 2004;75:274–81. PubMed

Melachuri S, Gandrud L, Bostrom B. The association between fasting hypoglycemia and methylated mercaptopurine metabolites in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2014;61:1003–6. PubMed

Wang J, Pollard K, Calizo A, Pratilas CA. Activation of receptor tyrosine kinases mediates acquired resistance to MEK inhibition in malignant peripheral nerve sheath tumors. Cancer Res 2021;81:747–62. PubMed PMC

Dehner C, Moon CI, Zhang X, Zhou Z, Miller C, Xu H, et al. . Chromosome 8 gain is associated with high-grade transformation in MPNST. JCI Insight 2021;6:e146351. PubMed PMC

Pollard K, Banerjee J, Doan X, Wang J, Guo X, Allaway R, et al. . A clinically and genomically annotated nerve sheath tumor biospecimen repository. Sci Data 2020;7:184. PubMed PMC

Nedelcovych MT, Tenora L, Kim B-H, Kelschenbach J, Chao W, Hadas E, et al. . N-(Pivaloyloxy)alkoxy-carbonyl prodrugs of the glutamine antagonist 6-Diazo-5-oxo-l-norleucine (DON) as a potential treatment for HIV associated neurocognitive disorders. J Med Chem 2017;60:7186–98. PubMed PMC

Guzmán C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014;9:e92444. PubMed PMC

Yuan M, Kremer DM, Huang H, Breitkopf SB, Ben-Sahra I, Manning BD, et al. . Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nat Protoc 2019;14:313–30. PubMed PMC

Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, et al. . Mouse models of tumor development in neurofibromatosis type 1. Science 1999;286:2172–6. PubMed

Foitzik RC, Devine SM, Hausler NE, Scammells PJ. Linear and convergent approaches to 2-substituted adenosine-5 '-N-alkylcarboxamides. Tetrahedron 2009;65:8851–7.

Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 2016;55:14 10 1–14 10 91. PubMed

Lemberg KM, Vornov JJ, Rais R, Slusher BS. We're not "DON" yet: optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther 2018;17:1824–32. PubMed PMC

Hartman SC. The interaction of 6-Diazo-5-Oxo-L-norleucine with phosphoribosyl pyrophosphate amidotransferase. J Biol Chem 1963;238:3036–47. PubMed

Levenberg B, Melnick I, Buchanan JM. Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J Biol Chem 1957;225:163–76. PubMed

Kaufman ER. Isolation and characterization of a mutant Chinese hamster cell line resistant to the glutamine analog 6-diazo-5-oxo-l-norleucine. Somatic Cell Mol Genet 1985;11:1–10. PubMed

Alt J, Gori SS, Lemberg KM, Pal A, Veeravalli V, Wu Y, et al. . Glutamine antagonist GA-607 causes a dramatic accumulation of FGAR which can be used to monitor target engagement. Curr Drug Metab 2021;22:735–45. PubMed PMC

Pemov A, Hansen NF, Sindiri S, Patidar R, Higham CS, Dombi E, et al. . Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, define pre-malignant neurofibromatosis type 1-associated atypical neurofibromas. Neuro Oncol 2019;21:981–92. PubMed PMC

Lemberg KM, Wang J, Pratilas CA. From genes to -omics: the evolving molecular landscape of malignant peripheral nerve sheath tumor. Genes (Basel) 2020;11:691. PubMed PMC

Cortes-Ciriano I, Steele CD, Piculell K, Al-Ibraheemi A, Eulo V, Bui MM, et al. . Genomic patterns of malignant peripheral nerve sheath tumor (MPNST) evolution correlate with clinical outcome and are detectable in cell-free DNA. Cancer Discov 2023;13:654–71. PubMed PMC

Wang J, Pollard K, Allen AN, Tomar T, Pijnenburg D, Yao Z, et al. . Combined inhibition of SHP2 and MEK is effective in models of NF1-deficient malignant peripheral nerve sheath tumors. Cancer Res 2020;80:5367–79. PubMed PMC

Malone CF, Fromm JA, Maertens O, DeRaedt T, Ingraham R, Cichowski K. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discov 2014;4:1062–73. PubMed PMC

De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, et al. . Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 2011;20:400–13. PubMed PMC

De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, et al. . PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 2014;514:247–51. PubMed

Lennard L, Rees C, Lilleyman J, Maddocks J. Childhood leukaemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. Br J Clin Pharmacol 1983;16:359–63. PubMed PMC

Conneely SE, Cooper SL, Rau RE. Use of allopurinol to mitigate 6-mercaptopurine associated gastrointestinal toxicity in acute lymphoblastic leukemia. Front Oncol 2020;10:1129. PubMed PMC

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008;22:659–61. PubMed

Nishii R, Moriyama T, Janke LJ, Yang W, Suiter CC, Lin T-N, et al. . Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood 2018;131:2466–74. PubMed PMC

Cohen G, Cooper S, Sison EA, Annesley C, Bhuiyan M, Brown P. Allopurinol use during pediatric acute lymphoblastic leukemia maintenance therapy safely corrects skewed 6-mercaptopurine metabolism, improving inadequate myelosuppression and reducing gastrointestinal toxicity. Pediatr Blood Cancer 2020;67:e28360. PubMed PMC

Rais R, Lemberg KM, Tenora L, Arwood ML, Pal A, Alt J, et al. . Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. Sci Adv 2022;8:eabq5925. PubMed PMC

Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, et al. . Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest 2020;130:451–65. PubMed PMC

Pham K, Maxwell MJ, Sweeney H, Alt J, Rais R, Eberhart CG, et al. . Novel glutamine antagonist JHU395 suppresses MYC-driven medulloblastoma growth and induces apoptosis. J Neuropathol Exp Neurol 2021;80:336–44. PubMed PMC

Kaushik AK, Tarangelo A, Boroughs LK, Ragavan M, Zhang Y, Wu C-Y, et al. . In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. Sci Adv 2022;8:eabp8293. PubMed PMC

Krečmerová M, Majer P, Rais R, Slusher BS. Phosphonates and phosphonate prodrugs in medicinal chemistry: past successes and future prospects. Front Chem 2022;10:889737. PubMed PMC

Slusarczyk M, Serpi M, Ghazaly E, Kariuki BM, McGuigan C, Pepper C. Single diastereomers of the clinical anticancer protide agents NUC-1031 and NUC-3373 preferentially target cancer stem cells in vitro. J Med Chem 2021;64:8179–93. PubMed

Karran P. Thiopurines, DNA damage, DNA repair and therapy-related cancer. Br Med Bull 2006;79–80:153–70. PubMed

Masgras I, Ciscato F, Brunati AM, Tibaldi E, Indraccolo S, Curtarello M, et al. . Absence of neurofibromin induces an oncogenic metabolic switch via mitochondrial ERK-mediated phosphorylation of the chaperone TRAP1. Cell Rep 2017;18:659–72. PubMed

Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, et al. . PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 2014;46:1227–32. PubMed PMC

Tarangelo A, Rodencal J, Kim JT, Magtanong L, Long JZ, Dixon SJ. Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Sci Alliance 2022;5:e202101157. PubMed PMC

Wang SZ, Poore B, Alt J, Price A, Allen SJ, Hanaford A, et al. . Unbiased metabolic profiling predicts sensitivity of high MYC-expressing atypical teratoid/rhabdoid tumors to glutamine inhibition with 6-diazo-5-oxo-L-norleucine. Clin Cancer Res 2019;25:5925–36. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...