Pro-905, a Novel Purine Antimetabolite, Combines with Glutamine Amidotransferase Inhibition to Suppress Growth of Malignant Peripheral Nerve Sheath Tumor
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
T32 CA060441
NCI NIH HHS - United States
R01 CA229451
NCI NIH HHS - United States
T32 OD011089
NIH HHS - United States
R01 GM135587
NIGMS NIH HHS - United States
T32 OD011089
ODCDC CDC HHS - United States
R01 NS103927
NINDS NIH HHS - United States
R01 GM143334
NIGMS NIH HHS - United States
PubMed
37616542
PubMed Central
PMC10690047
DOI
10.1158/1535-7163.mct-23-0258
PII: 728641
Knihovny.cz E-zdroje
- MeSH
- antimetabolity terapeutické užití MeSH
- glutamin MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory nervové pochvy * farmakoterapie MeSH
- neurofibrosarkom * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimetabolity MeSH
- glutamin MeSH
- JHU395 MeSH Prohlížeč
Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.
Department of Neurology School of Medicine Johns Hopkins University Baltimore Maryland
Department of Oncology School of Medicine Johns Hopkins University Baltimore Maryland
Zobrazit více v PubMed
Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer 2018;6:57. PubMed PMC
Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023Mar 24: S0962-8924(23)00044–2. PubMed PMC
Graves LM, Guy HI, Kozlowski P, Huang M, Lazarowski E, Pope RM, et al. . Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 2000;403:328–32. PubMed
Ali ES, Sahu U, Villa E, O'Hara BP, Gao P, Beaudet C, et al. . ERK2 phosphorylates PFAS to mediate posttranslational control of De Novo purine synthesis. Mol Cell 2020;78:1178–91. PubMed PMC
Santana-Codina N, Roeth AA, Zhang Y, Yang A, Mashadova O, Asara JM, et al. . Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun 2018;9:4945. PubMed PMC
Lemberg KM, Zhao L, Wu Y, Veeravalli V, Alt J, Aguilar JMH, et al. . The novel glutamine antagonist prodrug JHU395 has antitumor activity in malignant peripheral nerve sheath tumor. Mol Cancer Ther 2020;19:397–408. PubMed PMC
Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 2008;8:24–36. PubMed
Hartford C, Vasquez E, Schwab M, Edick MJ, Rehg JE, Grosveld G, et al. . Differential effects of targeted disruption of thiopurine methyltransferase on mercaptopurine and thioguanine pharmacodynamics. Cancer Res 2007;67:4965–72. PubMed
Sullivan MP, Beatty EC Jr, Hyman CB, Murphy ML, Pierce MI, Severo NC. A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in treatment of the acute leukemias of childhood: results of a coperative study. Cancer Chemother Rep 1962;18:83–95. PubMed
Sullivan MP, Beatty EC Jr, Hyman CP, Murphy ML, Pherce MI, Severo NC. A comparison of the effectiveness of standard dose 6-mercaptopurine, combination 6-mercaptopurine and DON, and high-loading 6-mercaptopurine therapies in the treatment of acute leukemia in children: results of cooperative study. Cancer Chemother Rep 1962;16:161–4. PubMed
Adamson PC, Zimm S, Ragab AH, Steinberg SM, Balis F, Kamen BA, et al. . A phase II trial of continuous-infusion 6-mercaptopurine for childhood solid tumors. Cancer Chemother Pharmacol 1990;26:343–4. PubMed
Mehellou Y, Rattan HS, Balzarini J. The protide prodrug technology: from the concept to the clinic. J Med Chem 2018;61:2211–26. PubMed PMC
Sofia MJ, Bao D, Chang W, Du J, Nagarathnam D, Rachakonda S, et al. . Discovery of a beta-D-2 '-Deoxy-2 '-alpha-fluoro-2 '-beta-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J Med Chem 2010;53:7202–18. PubMed
Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, et al. . Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020;6:672–83. PubMed PMC
Ray AS, Fordyce MW, Hitchcock MJ. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Res 2016;125:63–70. PubMed
Schwenzer H, De Zan E, Elshani M, van Stiphout R, Kudsy M, Morris J, et al. . The novel nucleoside analogue protide NUC-7738 overcomes cancer resistance mechanisms in vitro and in a first-in-human phase I clinical trial. Clin Cancer Res 2021;27:6500–13. PubMed PMC
Nygaard U, Toft N, Schmiegelow K. Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin Pharmacol Ther 2004;75:274–81. PubMed
Melachuri S, Gandrud L, Bostrom B. The association between fasting hypoglycemia and methylated mercaptopurine metabolites in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2014;61:1003–6. PubMed
Wang J, Pollard K, Calizo A, Pratilas CA. Activation of receptor tyrosine kinases mediates acquired resistance to MEK inhibition in malignant peripheral nerve sheath tumors. Cancer Res 2021;81:747–62. PubMed PMC
Dehner C, Moon CI, Zhang X, Zhou Z, Miller C, Xu H, et al. . Chromosome 8 gain is associated with high-grade transformation in MPNST. JCI Insight 2021;6:e146351. PubMed PMC
Pollard K, Banerjee J, Doan X, Wang J, Guo X, Allaway R, et al. . A clinically and genomically annotated nerve sheath tumor biospecimen repository. Sci Data 2020;7:184. PubMed PMC
Nedelcovych MT, Tenora L, Kim B-H, Kelschenbach J, Chao W, Hadas E, et al. . N-(Pivaloyloxy)alkoxy-carbonyl prodrugs of the glutamine antagonist 6-Diazo-5-oxo-l-norleucine (DON) as a potential treatment for HIV associated neurocognitive disorders. J Med Chem 2017;60:7186–98. PubMed PMC
Guzmán C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 2014;9:e92444. PubMed PMC
Yuan M, Kremer DM, Huang H, Breitkopf SB, Ben-Sahra I, Manning BD, et al. . Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nat Protoc 2019;14:313–30. PubMed PMC
Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, et al. . Mouse models of tumor development in neurofibromatosis type 1. Science 1999;286:2172–6. PubMed
Foitzik RC, Devine SM, Hausler NE, Scammells PJ. Linear and convergent approaches to 2-substituted adenosine-5 '-N-alkylcarboxamides. Tetrahedron 2009;65:8851–7.
Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 2016;55:14 10 1–14 10 91. PubMed
Lemberg KM, Vornov JJ, Rais R, Slusher BS. We're not "DON" yet: optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther 2018;17:1824–32. PubMed PMC
Hartman SC. The interaction of 6-Diazo-5-Oxo-L-norleucine with phosphoribosyl pyrophosphate amidotransferase. J Biol Chem 1963;238:3036–47. PubMed
Levenberg B, Melnick I, Buchanan JM. Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J Biol Chem 1957;225:163–76. PubMed
Kaufman ER. Isolation and characterization of a mutant Chinese hamster cell line resistant to the glutamine analog 6-diazo-5-oxo-l-norleucine. Somatic Cell Mol Genet 1985;11:1–10. PubMed
Alt J, Gori SS, Lemberg KM, Pal A, Veeravalli V, Wu Y, et al. . Glutamine antagonist GA-607 causes a dramatic accumulation of FGAR which can be used to monitor target engagement. Curr Drug Metab 2021;22:735–45. PubMed PMC
Pemov A, Hansen NF, Sindiri S, Patidar R, Higham CS, Dombi E, et al. . Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, define pre-malignant neurofibromatosis type 1-associated atypical neurofibromas. Neuro Oncol 2019;21:981–92. PubMed PMC
Lemberg KM, Wang J, Pratilas CA. From genes to -omics: the evolving molecular landscape of malignant peripheral nerve sheath tumor. Genes (Basel) 2020;11:691. PubMed PMC
Cortes-Ciriano I, Steele CD, Piculell K, Al-Ibraheemi A, Eulo V, Bui MM, et al. . Genomic patterns of malignant peripheral nerve sheath tumor (MPNST) evolution correlate with clinical outcome and are detectable in cell-free DNA. Cancer Discov 2023;13:654–71. PubMed PMC
Wang J, Pollard K, Allen AN, Tomar T, Pijnenburg D, Yao Z, et al. . Combined inhibition of SHP2 and MEK is effective in models of NF1-deficient malignant peripheral nerve sheath tumors. Cancer Res 2020;80:5367–79. PubMed PMC
Malone CF, Fromm JA, Maertens O, DeRaedt T, Ingraham R, Cichowski K. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discov 2014;4:1062–73. PubMed PMC
De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF, et al. . Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 2011;20:400–13. PubMed PMC
De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, et al. . PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 2014;514:247–51. PubMed
Lennard L, Rees C, Lilleyman J, Maddocks J. Childhood leukaemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. Br J Clin Pharmacol 1983;16:359–63. PubMed PMC
Conneely SE, Cooper SL, Rau RE. Use of allopurinol to mitigate 6-mercaptopurine associated gastrointestinal toxicity in acute lymphoblastic leukemia. Front Oncol 2020;10:1129. PubMed PMC
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008;22:659–61. PubMed
Nishii R, Moriyama T, Janke LJ, Yang W, Suiter CC, Lin T-N, et al. . Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood 2018;131:2466–74. PubMed PMC
Cohen G, Cooper S, Sison EA, Annesley C, Bhuiyan M, Brown P. Allopurinol use during pediatric acute lymphoblastic leukemia maintenance therapy safely corrects skewed 6-mercaptopurine metabolism, improving inadequate myelosuppression and reducing gastrointestinal toxicity. Pediatr Blood Cancer 2020;67:e28360. PubMed PMC
Rais R, Lemberg KM, Tenora L, Arwood ML, Pal A, Alt J, et al. . Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. Sci Adv 2022;8:eabq5925. PubMed PMC
Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, et al. . Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest 2020;130:451–65. PubMed PMC
Pham K, Maxwell MJ, Sweeney H, Alt J, Rais R, Eberhart CG, et al. . Novel glutamine antagonist JHU395 suppresses MYC-driven medulloblastoma growth and induces apoptosis. J Neuropathol Exp Neurol 2021;80:336–44. PubMed PMC
Kaushik AK, Tarangelo A, Boroughs LK, Ragavan M, Zhang Y, Wu C-Y, et al. . In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. Sci Adv 2022;8:eabp8293. PubMed PMC
Krečmerová M, Majer P, Rais R, Slusher BS. Phosphonates and phosphonate prodrugs in medicinal chemistry: past successes and future prospects. Front Chem 2022;10:889737. PubMed PMC
Slusarczyk M, Serpi M, Ghazaly E, Kariuki BM, McGuigan C, Pepper C. Single diastereomers of the clinical anticancer protide agents NUC-1031 and NUC-3373 preferentially target cancer stem cells in vitro. J Med Chem 2021;64:8179–93. PubMed
Karran P. Thiopurines, DNA damage, DNA repair and therapy-related cancer. Br Med Bull 2006;79–80:153–70. PubMed
Masgras I, Ciscato F, Brunati AM, Tibaldi E, Indraccolo S, Curtarello M, et al. . Absence of neurofibromin induces an oncogenic metabolic switch via mitochondrial ERK-mediated phosphorylation of the chaperone TRAP1. Cell Rep 2017;18:659–72. PubMed
Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, et al. . PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 2014;46:1227–32. PubMed PMC
Tarangelo A, Rodencal J, Kim JT, Magtanong L, Long JZ, Dixon SJ. Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Sci Alliance 2022;5:e202101157. PubMed PMC
Wang SZ, Poore B, Alt J, Price A, Allen SJ, Hanaford A, et al. . Unbiased metabolic profiling predicts sensitivity of high MYC-expressing atypical teratoid/rhabdoid tumors to glutamine inhibition with 6-diazo-5-oxo-L-norleucine. Clin Cancer Res 2019;25:5925–36. PubMed PMC