Mass spectrometric analysis of purine de novo biosynthesis intermediates
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30532129
PubMed Central
PMC6287904
DOI
10.1371/journal.pone.0208947
PII: PONE-D-18-27487
Knihovny.cz E-zdroje
- MeSH
- chromatografie kapalinová MeSH
- CRISPR-Cas systémy MeSH
- DNA biosyntéza chemie MeSH
- editace genu MeSH
- HeLa buňky MeSH
- lidé MeSH
- puriny biosyntéza chemie MeSH
- RNA biosyntéza chemie MeSH
- tandemová hmotnostní spektrometrie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- purine MeSH Prohlížeč
- puriny MeSH
- RNA MeSH
Purines are essential molecules for all forms of life. In addition to constituting a backbone of DNA and RNA, purines play roles in many metabolic pathways, such as energy utilization, regulation of enzyme activity, and cell signaling. The supply of purines is provided by two pathways: the salvage pathway and de novo synthesis. Although purine de novo synthesis (PDNS) activity varies during the cell cycle, this pathway represents an important source of purines, especially for rapidly dividing cells. A method for the detailed study of PDNS is lacking for analytical reasons (sensitivity) and because of the commercial unavailability of the compounds. The aim was to fully describe the mass spectrometric fragmentation behavior of newly synthesized PDNS-related metabolites and develop an analytical method. Except for four initial ribotide PDNS intermediates that preferentially lost water or phosphate or cleaved the forming base of the purine ring, all the other metabolites studied cleaved the glycosidic bond in the first fragmentation stage. Fragmentation was possible in the third to sixth stages. A liquid chromatography-high-resolution mass spectrometric method was developed and applied in the analysis of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual enzymatic steps of PDNS and the salvage pathway. The identities of the newly synthesized intermediates of PDNS were confirmed by comparing the fragmentation patterns of the synthesized metabolites with those produced by cells (formed under pathological conditions of known and theoretically possible defects of PDNS). The use of stable isotope incorporation allowed the confirmation of fragmentation mechanisms and provided data for future fluxomic experiments. This method may find uses in the diagnosis of PDNS disorders, the investigation of purinosome formation, cancer research, enzyme inhibition studies, and other applications.
Zobrazit více v PubMed
An S, Kumar R, Sheets ED, Benkovic SJ. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science. 2008; 320(5872):103–6. 10.1126/science.1152241 PubMed DOI
Stone TW, Simmonds HA. Purines: basic and clinical aspects Dordrecht; London: Kluwer Academic Publishers; 1991.
Baresova V, Skopova V, Sikora J, Patterson D, Sovova J, Zikanova M, et al. Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum Mol Genet. 2012; 21(7):1534–43. 10.1093/hmg/ddr591 PubMed DOI
Zhao H, Chiaro CR, Zhang L, Smith PB, Chan CY, Pedley AM, et al. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J Biol Chem. 2015; 290(11):6705–13. 10.1074/jbc.M114.628701 PubMed DOI PMC
Sant ME, Poiner A, Harsanyi MC, Lyons SD, Christopherson RI. Chromatographic analysis of purine precursors in mouse L1210 leukemia. Anal Biochem. 1989; 182(1):121–8. PubMed
Jurecka A, Zikanova M, Kmoch S, Tylki-Szymanska A. Adenylosuccinate lyase deficiency. J Inherit Metab Dis. 2015; 38(2):231–42. 10.1007/s10545-014-9755-y PubMed DOI PMC
Marie S, Heron B, Bitoun P, Timmerman T, Van Den Berghe G, Vincent MF. AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. Am J Hum Genet. 2004; 74(6):1276–81. 10.1086/421475 PubMed DOI PMC
Duval N, Luhrs K, Wilkinson TG 2nd, Baresova V, Skopova V, Kmoch S, et al. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders. Mol Genet Metab. 2013; 108(3):178–89. 10.1016/j.ymgme.2013.01.002 PubMed DOI PMC
Hornik P, Vyskocilova P, Friedecky D, Adam T. Diagnosing AICA-ribosiduria by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 843(1):15–9. 10.1016/j.jchromb.2006.05.020 PubMed DOI
Zidkova L, Krijt J, Sladkova J, Hlobilkova A, Magner M, Zikanova M, et al. Oligodendroglia from ADSL-deficient patient produce SAICAribotide and SAMP. Mol Genet Metab. 2010; 101(2–3):286–8. 10.1016/j.ymgme.2010.06.014 PubMed DOI
Baresova V, Krijt M, Skopova V, Souckova O, Kmoch S, Zikanova M. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol Genet Metab. 2016; 119(3):270–7. 10.1016/j.ymgme.2016.08.004 PubMed DOI
Chakravarthi BV, Goswami MT, Pathi SS, Dodson M, Chandrashekar DS, Agarwal S, et al. Expression and Role of PAICS, a De Novo Purine Biosynthetic Gene in Prostate Cancer. Prostate. 2017; 77(1):10–21. 10.1002/pros.23243 PubMed DOI
Goswami MT, Chen G, Chakravarthi BV, Pathi SS, Anand SK, Carskadon SL, et al. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer. Oncotarget. 2015; 6(27):23445–61. doi: 10.18632/oncotarget.4352 PubMed DOI PMC
Zikanova M, Krijt J, Hartmannova H, Kmoch S. Preparation of 5-amino-4-imidazole-N-succinocarboxamide ribotide, 5-amino-4-imidazole-N-succinocarboxamide riboside and succinyladenosine, compounds usable in diagnosis and research of adenylosuccinate lyase deficiency. J Inherit Metab Dis. 2005; 28(4):493–9. 10.1007/s10545-005-0493-z PubMed DOI
Rudolph J, Stubbe J. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Biochemistry. 1995; 34(7):2241–50. PubMed
Schendel FJ, Cheng YS, Otvos JD, Wehrli S, Stubbe J. Characterization and chemical properties of phosphoribosylamine, an unstable intermediate in the de novo purine biosynthetic pathway. Biochemistry. 1988; 27(7):2614–23. PubMed
Kmoch S, Hartmannova H, Stiburkova B, Krijt J, Zikanova M, Sebesta I. Human adenylosuccinate lyase (ADSL), cloning and characterization of full-length cDNA and its isoform, gene structure and molecular basis for ADSL deficiency in six patients. Hum Mol Genet. 2000; 9(10):1501–13. PubMed
Lukens L, Flaks J. Intermediates in Purine Nucleotide Synthesis. Method Enzymol. 1963; 6:671–702.
Baresova V, Skopova V, Souckova O, Krijt M, Kmoch S, Zikanova M. Study of purinosome assembly in cell-based model systems with de novo purine synthesis and salvage pathway deficiencies. PLoS One. 2018; 13(7):e0201432 10.1371/journal.pone.0201432 PubMed DOI PMC
Wojtowicz P, Zrostlíková J, Šťastná V, Dostálová E, Žídková L, Bruheim P, et al. Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry in Human Metabolomics Salih B, editor: InTech; 2012.
Kasper PT, Rojas-Cherto M, Mistrik R, Reijmers T, Hankemeier T, Vreeken RJ. Fragmentation trees for the structural characterisation of metabolites. Rapid Commun Mass Spectrom. 2012; 26(19):2275–86. 10.1002/rcm.6340 PubMed DOI PMC
Ridder L, van der Hooft JJ, Verhoeven S, de Vos RC, van Schaik R, Vervoort J. Substructure-based annotation of high-resolution multistage MS(n) spectral trees. Rapid Commun Mass Spectrom. 2012; 26(20):2461–71. 10.1002/rcm.6364 PubMed DOI
Sheldon MT, Mistrik R, Croley TR. Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J Am Soc Mass Spectrom. 2009; 20(3):370–6. 10.1016/j.jasms.2008.10.017 PubMed DOI
METLIN database [database on the Internet] [cited 22 May 2018]. Available from: https://metlin.scripps.edu.
Bulock KG, Beardsley GP, Anderson KS. The kinetic mechanism of the human bifunctional enzyme ATIC (5-amino-4-imidazolecarboxamide ribonucleotide transformylase/inosine 5'-monophosphate cyclohydrolase). A surprising lack of substrate channeling. J Biol Chem. 2002; 277(25):22168–74. 10.1074/jbc.M111964200 PubMed DOI
Becker MA, Kim M. Regulation of purine synthesis de novo in human fibroblasts by purine nucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1987; 262(30):14531–7. PubMed
Curto R, Voit EO, Sorribas A, Cascante M. Mathematical models of purine metabolism in man. Math Biosci. 1998; 151(1):1–49. PubMed
Hartman SC, Buchanan JM. Biosynthesis of the purines. XXI. 5-Phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1958; 233(2):451–5. PubMed
Thomas A, Vogel M, Piper T, Krug O, Beuck S, Schanzer W, et al. Quantification of AICAR-ribotide concentrations in red blood cells by means of LC-MS/MS. Anal Bioanal Chem. 2013; 405(30):9703–9. 10.1007/s00216-013-7162-0 PubMed DOI
Zikanova M, Krijt J, Skopova V, Krijt M, Baresova V, Kmoch S. Screening for adenylosuccinate lyase deficiency using tandem mass spectrometry analysis of succinylpurines in neonatal dried blood spots. Clin Biochem. 2015; 48(1–2):2–7. 10.1016/j.clinbiochem.2014.10.004 PubMed DOI
Hommes FA. Techniques in diagnostic human biochemical genetics: a laboratory manual New York, NY: Wiley-Liss; 1991.
Zikanova M, Skopova V, Hnizda A, Krijt J, Kmoch S. Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. Hum Mutat. 2010; 31(4):445–55. 10.1002/humu.21212 PubMed DOI
Huang W, Zeng X, Shi Y, Liu M. Functional characterization of human equilibrative nucleoside transporter 1. Protein Cell. 2017; 8(4):284–95. 10.1007/s13238-016-0350-x PubMed DOI PMC
Jaeken J, Van den Berghe G. An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet. 1984; 2(8411):1058–61. PubMed
Sidi Y, Mitchell BS. Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J Clin Invest. 1985; 76(6):2416–9. 10.1172/JCI112255 PubMed DOI PMC
Newcombe DS. The urinary excretion of aminoimidazolecarboxamide in the Lesch-Nyhan syndrome. Pediatrics. 1970; 46(4):508–12. PubMed
Jinnah HA, Page T, Friedmann T. Brain purines in a genetic mouse model of Lesch-Nyhan disease. J Neurochem. 1993; 60(6):2036–45. PubMed
Tschirner SK, Bahre H, Kaever A, Schneider EH, Seifert R, Kaever V. Non-targeted metabolomics by high resolution mass spectrometry in HPRT knockout mice. Life Sci. 2016; 156:68–73. 10.1016/j.lfs.2016.05.031 PubMed DOI
Lopez JM. Is ZMP the toxic metabolite in Lesch-Nyhan disease? Med Hypotheses. 2008; 71(5):657–63. 10.1016/j.mehy.2008.06.033 PubMed DOI
Neychev VK, Mitev VI. The biochemical basis of the neurobehavioral abnormalities in the Lesch-Nyhan syndrome: a hypothesis. Med Hypotheses. 2004; 63(1):131–4. 10.1016/j.mehy.2004.01.019 PubMed DOI
Metabolites of De Novo Purine Synthesis: Metabolic Regulators and Cytotoxic Compounds
Combined Targeted and Untargeted Profiling of HeLa Cells Deficient in Purine De Novo Synthesis
Pathway-specific effects of ADSL deficiency on neurodevelopment