Phosphoribosylformylglycinamidine Synthase (PFAS) Deficiency: Clinical, Genetic and Metabolic Characterisation of a Novel Defect in Purine de Novo Synthesis

. 2025 May ; 48 (3) : e70041.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, kazuistiky

Perzistentní odkaz   https://www.medvik.cz/link/pmid40421664

Grantová podpora
NU23-01-00500 Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/23_020/0008540 Ministerstvo Školství, Mládeže a Tělovýchovy
NCLG-LM2023067 Ministerstvo Školství, Mládeže a Tělovýchovy
UNCE 24/MED/022 Univerzita Karlova v Praze

Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.

Zobrazit více v PubMed

An S., Kumar R., Sheets E. D., and Benkovic S. J., “Reversible Compartmentalization of de Novo Purine Biosynthetic Complexes in Living Cells,” Science 320, no. 5872 (2008): 103–106. PubMed

Baresova V., Skopova V., Sikora J., et al., “Mutations of ATIC and ADSL Affect Purinosome Assembly in Cultured Skin Fibroblasts From Patients With AICA‐Ribosiduria and ADSL Deficiency,” Human Molecular Genetics 21, no. 7 (2012): 1534–1543. PubMed

Jaeken J. and Van den Berghe G., “An Infantile Autistic Syndrome Characterised by the Presence of Succinylpurines in Body Fluids,” Lancet 2, no. 8411 (1984): 1058–1061. PubMed

Jurecka A., Zikanova M., Kmoch S., and Tylki‐Szymanska A., “Adenylosuccinate lyase deficiency,” Journal of Inherited Metabolic Disease 38, no. 2 (2015): 231–242. PubMed PMC

Marie S., Heron B., Bitoun P., Timmerman T., Van Den Berghe G., and Vincent M. F., “AICA‐Ribosiduria: A Novel, Neurologically Devastating Inborn Error of Purine Biosynthesis Caused by Mutation of ATIC,” American Journal of Human Genetics 74, no. 6 (2004): 1276–1281. PubMed PMC

Ramond F., Rio M., Heron B., et al., “AICA‐Ribosiduria due to ATIC Deficiency: Delineation of the Phenotype With Three Novel Cases, and Long‐Term Update on the First Case,” Journal of Inherited Metabolic Disease 43, no. 6 (2020): 1254–1264. PubMed

Pelet A., Skopova V., Steuerwald U., et al., “PAICS Deficiency, a New Defect of de Novo Purine Synthesis Resulting in Multiple Congenital Anomalies and Fatal Outcome,” Human Molecular Genetics 28, no. 22 (2019): 3805–3814. PubMed

Weng W. C., Skopova V., Baresova V., et al., “Expanding Clinical Spectrum of PAICS Deficiency: Comprehensive Analysis of Two Sibling Cases,” European Journal of Human Genetics (2024), 10.1038/s41431-024-01752-2. PubMed DOI

Baresova V., Skopova V., Souckova O., Krijt M., Kmoch S., and Zikanova M., “Study of Purinosome Assembly in Cell‐Based Model Systems With de Novo Purine Synthesis and Salvage Pathway Deficiencies,” PLoS One 13, no. 7 (2018): e0201432. PubMed PMC

Madrova L., Krijt M., Baresova V., et al., “Mass Spectrometric Analysis of Purine de Novo Biosynthesis Intermediates,” PLoS One 13, no. 12 (2018): e0208947. PubMed PMC

Krijt M., Souckova O., Baresova V., Skopova V., and Zikanova M., “Metabolic Tools for Identification of New Mutations of Enzymes Engaged in Purine Synthesis Leading to Neurological Impairment,” Folia Biol (Praha) 65 (2019): 152–157. PubMed

Sobreira N., Schiettecatte F., Valle D., and Hamosh A., “GeneMatcher: A Matching Tool for Connecting Investigators With an Interest in the Same Gene,” Human Mutation 36, no. 10 (2015): 928–930. PubMed PMC

Pedley A. M. and Benkovic S. J., “A New View Into the Regulation of Purine Metabolism: The Purinosome,” Trends in Biochemical Sciences 42, no. 2 (2017): 141–154. PubMed PMC

Alexiou M. and Leese H. J., “Purine Utilisation, de Novo Synthesis and Degradation in Mouse Preimplantation Embryos,” Development 114, no. 1 (1992): 185–192. PubMed

Clark D. V., “Molecular and Genetic Analyses of Drosophila Prat, Which Encodes the First Enzyme of de Novo Purine Biosynthesis,” Genetics 136, no. 2 (1994): 547–557. PubMed PMC

Ng A., Uribe R. A., Yieh L., Nuckels R., and Gross J. M., “Zebrafish Mutations in Gart and Paics Identify Crucial Roles for de Novo Purine Synthesis in Vertebrate Pigmentation and Ocular Development,” Development 136, no. 15 (2009): 2601–2611. PubMed PMC

Fritz S., Capitan A., Djari A., et al., “Detection of Haplotypes Associated With Prenatal Death in Dairy Cattle and Identification of Deleterious Mutations in GART, SHBG and SLC37A2,” PLoS One 8, no. 6 (2013): e65550. PubMed PMC

Fenton A. R., Janowitz H. N., Franklin L. P., et al., “A Caenorhabditis elegans Model of Adenylosuccinate Lyase Deficiency Reveals Neuromuscular and Reproductive Phenotypes of Distinct Etiology,” Molecular Genetics and Metabolism 140, no. 3 (2023): 107686. PubMed PMC

Moro C. A., Sony S. A., Franklin L. P., et al., “Adenylosuccinate Lyase Deficiency Affects Neurobehavior via Perturbations to Tyramine Signaling in Caenorhabditis elegans ,” PLoS Genetics 19, no. 9 (2023): e1010974. PubMed PMC

Hoyos‐Manchado R., Villa‐Consuegra S., Berraquero M., Jimenez J., and Tallada V. A., “Mutational Analysis of N‐Ethyl‐N‐Nitrosourea (ENU) in the Fission Yeast Schizosaccharomyces pombe,” G3 (Bethesda) 10, no. 3 (2020): 917–923, 10.1534/g3.119.400936. PubMed DOI PMC

Marsac R., Pinson B., Saint‐Marc C., et al., “Purine Homeostasis Is Necessary for Developmental Timing, Germline Maintenance and Muscle Integrity in Caenorhabditis elegans ,” Genetics 211, no. 4 (2019): 1297–1313, 10.1534/genetics.118.301062. PubMed DOI PMC

Palmer K., Fairfield H., Borgeia S., et al., “Discovery and Characterization of Spontaneous Mouse Models of Craniofacial Dysmorphology,” Developmental Biology 415, no. 2 (2016): 216–227. PubMed PMC

Holland C., Lipsett D. B., and Clark D. V., “A Link Between Impaired Purine Nucleotide Synthesis and Apoptosis in Drosophila melanogaster ,” Genetics 188, no. 2 (2011): 359–367. PubMed PMC

Michot P., Fritz S., Barbat A., et al., “A Missense Mutation in PFAS (Phosphoribosylformylglycinamidine Synthase) is Likely Causal for Embryonic Lethality Associated With the MH1 Haplotype in Montbeliarde Dairy Cattle,” Journal of Dairy Science 100, no. 10 (2007): 8176–8187. PubMed

Baresova V., Krijt M., Skopova V., Souckova O., Kmoch S., and Zikanova M., “CRISPR‐Cas9 Induced Mutations Along de Novo Purine Synthesis in HeLa Cells Result in Accumulation of Individual Enzyme Substrates and Affect Purinosome Formation,” Molecular Genetics and Metabolism 119, no. 3 (2016): 270–277. PubMed

Souckova O., Skopova V., Baresova V., et al., “Metabolites of De Novo Purine Synthesis: Metabolic Regulators and Cytotoxic Compounds,” Metabolites 12, no. 12 (2022): 1210. PubMed PMC

Orriss I. R., “The Role of Purinergic Signalling in the Musculoskeletal System,” Autonomic Neuroscience 191 (2015): 124–134. PubMed

Mizukoshi T., Yamada S., and Sakakibara S. I., “Spatiotemporal Regulation of De Novo and Salvage Purine Synthesis During Brain Development,” eNeuro 10 (2023): ENEURO.0159‐23.2023, https://doi.rg/10.1523/ENEURO.0159‐23.2023. PubMed DOI PMC

Abbracchio M. P., Burnstock G., Verkhratsky A., and Zimmermann H., “Purinergic Signalling in the Nervous System: An Overview,” Trends in Neurosciences 32, no. 1 (2009): 19–29. PubMed

Ferreira C. R., “Prevalence of Adenylosuccinate Lyase Deficiency Based on Aggregated Exome Data,” Molecular Genetics and Metabolism Reports 10 (2017): 81–82. PubMed PMC

Rentzsch P., Schubach M., Shendure J., and Kircher M., “CADD‐Splice‐Improving Genome‐Wide Variant Effect Prediction Using Deep Learning‐Derived Splice Scores,” Genome Medicine 13, no. 1 (2021): 31. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...