Phosphoribosylformylglycinamidine Synthase (PFAS) Deficiency: Clinical, Genetic and Metabolic Characterisation of a Novel Defect in Purine de Novo Synthesis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, kazuistiky
Grantová podpora
NU23-01-00500
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/23_020/0008540
Ministerstvo Školství, Mládeže a Tělovýchovy
NCLG-LM2023067
Ministerstvo Školství, Mládeže a Tělovýchovy
UNCE 24/MED/022
Univerzita Karlova v Praze
PubMed
40421664
PubMed Central
PMC12107509
DOI
10.1002/jimd.70041
Knihovny.cz E-zdroje
- Klíčová slova
- FGAR, PFAS deficiency, formylglycinamide riboside, metabolic disorder, purine de novo synthesis, purinosome,
- MeSH
- lidé MeSH
- ligasy tvořící vazby C-N s glutaminem jako amidovým donorem * genetika nedostatek metabolismus MeSH
- mladý dospělý MeSH
- mutace MeSH
- poruchy metabolismu purinů a pyrimidinů * genetika MeSH
- předškolní dítě MeSH
- puriny * biosyntéza MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- ligasy tvořící vazby C-N s glutaminem jako amidovým donorem * MeSH
- phosphoribosylformylglycinamidine synthetase MeSH Prohlížeč
- purine MeSH Prohlížeč
- puriny * MeSH
Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.
Department of Clinical Genetics Erasmus MC University Medical Center Rotterdam the Netherlands
Section on Nephrology Wake Forest School of Medicine Winston Salem USA
Zobrazit více v PubMed
An S., Kumar R., Sheets E. D., and Benkovic S. J., “Reversible Compartmentalization of de Novo Purine Biosynthetic Complexes in Living Cells,” Science 320, no. 5872 (2008): 103–106. PubMed
Baresova V., Skopova V., Sikora J., et al., “Mutations of ATIC and ADSL Affect Purinosome Assembly in Cultured Skin Fibroblasts From Patients With AICA‐Ribosiduria and ADSL Deficiency,” Human Molecular Genetics 21, no. 7 (2012): 1534–1543. PubMed
Jaeken J. and Van den Berghe G., “An Infantile Autistic Syndrome Characterised by the Presence of Succinylpurines in Body Fluids,” Lancet 2, no. 8411 (1984): 1058–1061. PubMed
Jurecka A., Zikanova M., Kmoch S., and Tylki‐Szymanska A., “Adenylosuccinate lyase deficiency,” Journal of Inherited Metabolic Disease 38, no. 2 (2015): 231–242. PubMed PMC
Marie S., Heron B., Bitoun P., Timmerman T., Van Den Berghe G., and Vincent M. F., “AICA‐Ribosiduria: A Novel, Neurologically Devastating Inborn Error of Purine Biosynthesis Caused by Mutation of ATIC,” American Journal of Human Genetics 74, no. 6 (2004): 1276–1281. PubMed PMC
Ramond F., Rio M., Heron B., et al., “AICA‐Ribosiduria due to ATIC Deficiency: Delineation of the Phenotype With Three Novel Cases, and Long‐Term Update on the First Case,” Journal of Inherited Metabolic Disease 43, no. 6 (2020): 1254–1264. PubMed
Pelet A., Skopova V., Steuerwald U., et al., “PAICS Deficiency, a New Defect of de Novo Purine Synthesis Resulting in Multiple Congenital Anomalies and Fatal Outcome,” Human Molecular Genetics 28, no. 22 (2019): 3805–3814. PubMed
Weng W. C., Skopova V., Baresova V., et al., “Expanding Clinical Spectrum of PAICS Deficiency: Comprehensive Analysis of Two Sibling Cases,” European Journal of Human Genetics (2024), 10.1038/s41431-024-01752-2. PubMed DOI
Baresova V., Skopova V., Souckova O., Krijt M., Kmoch S., and Zikanova M., “Study of Purinosome Assembly in Cell‐Based Model Systems With de Novo Purine Synthesis and Salvage Pathway Deficiencies,” PLoS One 13, no. 7 (2018): e0201432. PubMed PMC
Madrova L., Krijt M., Baresova V., et al., “Mass Spectrometric Analysis of Purine de Novo Biosynthesis Intermediates,” PLoS One 13, no. 12 (2018): e0208947. PubMed PMC
Krijt M., Souckova O., Baresova V., Skopova V., and Zikanova M., “Metabolic Tools for Identification of New Mutations of Enzymes Engaged in Purine Synthesis Leading to Neurological Impairment,” Folia Biol (Praha) 65 (2019): 152–157. PubMed
Sobreira N., Schiettecatte F., Valle D., and Hamosh A., “GeneMatcher: A Matching Tool for Connecting Investigators With an Interest in the Same Gene,” Human Mutation 36, no. 10 (2015): 928–930. PubMed PMC
Pedley A. M. and Benkovic S. J., “A New View Into the Regulation of Purine Metabolism: The Purinosome,” Trends in Biochemical Sciences 42, no. 2 (2017): 141–154. PubMed PMC
Alexiou M. and Leese H. J., “Purine Utilisation, de Novo Synthesis and Degradation in Mouse Preimplantation Embryos,” Development 114, no. 1 (1992): 185–192. PubMed
Clark D. V., “Molecular and Genetic Analyses of Drosophila Prat, Which Encodes the First Enzyme of de Novo Purine Biosynthesis,” Genetics 136, no. 2 (1994): 547–557. PubMed PMC
Ng A., Uribe R. A., Yieh L., Nuckels R., and Gross J. M., “Zebrafish Mutations in Gart and Paics Identify Crucial Roles for de Novo Purine Synthesis in Vertebrate Pigmentation and Ocular Development,” Development 136, no. 15 (2009): 2601–2611. PubMed PMC
Fritz S., Capitan A., Djari A., et al., “Detection of Haplotypes Associated With Prenatal Death in Dairy Cattle and Identification of Deleterious Mutations in GART, SHBG and SLC37A2,” PLoS One 8, no. 6 (2013): e65550. PubMed PMC
Fenton A. R., Janowitz H. N., Franklin L. P., et al., “A Caenorhabditis elegans Model of Adenylosuccinate Lyase Deficiency Reveals Neuromuscular and Reproductive Phenotypes of Distinct Etiology,” Molecular Genetics and Metabolism 140, no. 3 (2023): 107686. PubMed PMC
Moro C. A., Sony S. A., Franklin L. P., et al., “Adenylosuccinate Lyase Deficiency Affects Neurobehavior via Perturbations to Tyramine Signaling in Caenorhabditis elegans ,” PLoS Genetics 19, no. 9 (2023): e1010974. PubMed PMC
Hoyos‐Manchado R., Villa‐Consuegra S., Berraquero M., Jimenez J., and Tallada V. A., “Mutational Analysis of N‐Ethyl‐N‐Nitrosourea (ENU) in the Fission Yeast Schizosaccharomyces pombe,” G3 (Bethesda) 10, no. 3 (2020): 917–923, 10.1534/g3.119.400936. PubMed DOI PMC
Marsac R., Pinson B., Saint‐Marc C., et al., “Purine Homeostasis Is Necessary for Developmental Timing, Germline Maintenance and Muscle Integrity in Caenorhabditis elegans ,” Genetics 211, no. 4 (2019): 1297–1313, 10.1534/genetics.118.301062. PubMed DOI PMC
Palmer K., Fairfield H., Borgeia S., et al., “Discovery and Characterization of Spontaneous Mouse Models of Craniofacial Dysmorphology,” Developmental Biology 415, no. 2 (2016): 216–227. PubMed PMC
Holland C., Lipsett D. B., and Clark D. V., “A Link Between Impaired Purine Nucleotide Synthesis and Apoptosis in Drosophila melanogaster ,” Genetics 188, no. 2 (2011): 359–367. PubMed PMC
Michot P., Fritz S., Barbat A., et al., “A Missense Mutation in PFAS (Phosphoribosylformylglycinamidine Synthase) is Likely Causal for Embryonic Lethality Associated With the MH1 Haplotype in Montbeliarde Dairy Cattle,” Journal of Dairy Science 100, no. 10 (2007): 8176–8187. PubMed
Baresova V., Krijt M., Skopova V., Souckova O., Kmoch S., and Zikanova M., “CRISPR‐Cas9 Induced Mutations Along de Novo Purine Synthesis in HeLa Cells Result in Accumulation of Individual Enzyme Substrates and Affect Purinosome Formation,” Molecular Genetics and Metabolism 119, no. 3 (2016): 270–277. PubMed
Souckova O., Skopova V., Baresova V., et al., “Metabolites of De Novo Purine Synthesis: Metabolic Regulators and Cytotoxic Compounds,” Metabolites 12, no. 12 (2022): 1210. PubMed PMC
Orriss I. R., “The Role of Purinergic Signalling in the Musculoskeletal System,” Autonomic Neuroscience 191 (2015): 124–134. PubMed
Mizukoshi T., Yamada S., and Sakakibara S. I., “Spatiotemporal Regulation of De Novo and Salvage Purine Synthesis During Brain Development,” eNeuro 10 (2023): ENEURO.0159‐23.2023, https://doi.rg/10.1523/ENEURO.0159‐23.2023. PubMed DOI PMC
Abbracchio M. P., Burnstock G., Verkhratsky A., and Zimmermann H., “Purinergic Signalling in the Nervous System: An Overview,” Trends in Neurosciences 32, no. 1 (2009): 19–29. PubMed
Ferreira C. R., “Prevalence of Adenylosuccinate Lyase Deficiency Based on Aggregated Exome Data,” Molecular Genetics and Metabolism Reports 10 (2017): 81–82. PubMed PMC
Rentzsch P., Schubach M., Shendure J., and Kircher M., “CADD‐Splice‐Improving Genome‐Wide Variant Effect Prediction Using Deep Learning‐Derived Splice Scores,” Genome Medicine 13, no. 1 (2021): 31. PubMed PMC