The CRISPR-Cas9 crADSL HeLa transcriptome: A first step in establishing a model for ADSL deficiency and SAICAR accumulation

. 2019 Dec ; 21 () : 100512. [epub] 20190904

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31516833

Grantová podpora
P30 CA046934 NCI NIH HHS - United States

Odkazy

PubMed 31516833
PubMed Central PMC6731210
DOI 10.1016/j.ymgmr.2019.100512
PII: S2214-4269(19)30098-9
Knihovny.cz E-zdroje

Adenylosuccinate lyase (ADSL) catalyzes two steps in de novo purine synthesis (DNPS). Mutations in ADSL can result in inborn errors of metabolism characterized by developmental delay and disorder phenotypes, with no effective treatment options. Recently, SAICAR, a metabolic substrate of ADSL, has been found to have alternative roles in the cell, complicating the role of ADSL. crADSL, a CRISPR KO of ADSL in HeLa cells, was constructed to investigate DNPS and ADSL in a human cell line. Here we employ this cell line in an RNA-seq analysis to initially investigate the effect of DNPS and ADSL deficiency on the transcriptome as a first step in establishing a cellular model of ADSL deficiency. We report transcriptome changes in genes relevant to development, vascular development, muscle, and cancer biology, which provide interesting avenues for future research.

Zobrazit více v PubMed

Jurecka A., Zikánová M., Kmoch S., Tylki-Szymańska A. Adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 2015;38:231–242. PubMed PMC

Donti T.R., Cappuccio G., Hubert L., Neira J., Atwal P.S., Miller M.J. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Mol. Genet. Metab. Rep. 2016;8:61–66. PubMed PMC

Zikánová M., Skopova V., Hnízda A., Krijt J., Kmoch S. Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. Hum. Mutat. 2010;31:445–455. PubMed

Caetano-Anollés G., Yafremava L.S., Gee H., Caetano-Anollés D., Kim H.S., Mittenthal J.E. The origin and evolution of modern metabolism. Int. J. Biochem. Cell Biol. 2009;41:285–297. PubMed

Keller K.E.K., Tan I.S.I., Lee Y.-S.Y. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science. 2012;338:1069–1072. PubMed PMC

Yang W., Lu Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle (Georgetown, Tex). 2013;12:3154–3158. PubMed PMC

Keller K.E., Doctor Z.M., Dwyer Z.W., Lee Y.-S. SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol. Cell. 2014;53:700–709. PubMed PMC

Hosios A.M., Fiske B.P., Gui D.Y., Vander Heiden M.G. Lack of evidence for PKM2 protein kinase activity. Mol. Cell. 2015;59:850–857. PubMed PMC

Yan M., Chakravarthy S., Tokuda J.M., Pollack L., Bowman G.D., Lee Y.-S. Succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5’-phosphate (SAICAR) activates pyruvate kinase isoform M2 (PKM2) in its dimeric form. Biochemistry. 2016;55:4731–4736. PubMed PMC

Luo W., Hu H., Chang R., Zhong J., Knabel M., O'Meally R. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–744. PubMed PMC

Baresova V., Krijt M., Skopova V., Souckova O., Kmoch S., Zikánová M. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol. Genet. Metab. 2016;119:270–277. PubMed

Mádrová L., Krijt M., Baresova V., Václavík J., Friedecký D., Dobešová D. Mass spectrometric analysis of purine de novo biosynthesis intermediates. PLoS ONE. 2018;13 PubMed PMC

Kondo M., Yamaoka T., Honda S., Miwa Y., Katashima R., Moritani M. The rate of cell growth is regulated by purine biosynthesis via ATP production and G(1) to S phase transition. J. Biochem. 2000;128:57–64. PubMed

Tu A.S., Patterson D. Characterization of a guanine-sensitive mutant defective in adenylo-succinate synthetase activity. J. Cell. Physiol. 1978;96:123–132. PubMed

Duval N., Luhrs K., Wilkinson T.G., Baresova V., Skopova V., Kmoch S. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders. Mol. Genet. Metab. 2013;108:178–189. PubMed PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC

Trapnell C., Hendrickson D.G., Sauvageau M., Goff L., Rinn J.L., Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 2013;31:46–53. PubMed PMC

Goff L., Trapnell C., Kelley D. 2019. cummeRbund: Analysis, Exploration, Manipulation, and Visualization of Cufflinks High-Throughput Sequencing Data, R Package Version.

Mlecnik B., Galon J., Bindea G. Comprehensive functional analysis of large lists of genes and proteins. J. Proteome. 2018;171:2–10. PubMed

Maere S., Heymans K., Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–3449. PubMed

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000;25:25–29. PubMed PMC

Fabregat A., Jupe S., Matthews L., Sidiropoulos K., Gillespie M., Garapati P. The Reactome pathway knowledgebase. Nucleic Acids Res. 2018;46:D649–D655. PubMed PMC

Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 2009;119:1417–1419. PubMed PMC

Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009;119:1420–1428. PubMed PMC

van den Berghe G., Jaeken J. Adenylosuccinase deficiency. Adv. Exp. Med. Biol. 1986;195(Pt A):27–33. PubMed

Brand L.M., Lowenstein J.M. Effect of diet on adenylosuccinase activity in various organs of rat and chicken. J. Biol. Chem. 1978;253:6872–6878. PubMed

Liberti M.V., Locasale J.W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 2016;41:211–218. PubMed PMC

Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35:2871–2882. PubMed PMC

Iommarini L., Ghelli A., Gasparre G., Porcelli A.M. Mitochondrial metabolism and energy sensing in tumor progression. Biochim. Biophys. Acta Bioenerg. 2017;1858:582–590. PubMed

Krzywinska E., Stockmann C. Hypoxia, metabolism and immune cell function. Biomedicines. 2018;6:56. PubMed PMC

Arjonen A., Kaukonen R., Ivaska J. Filopodia and adhesion in cancer cell motility. Cell Adhes. Migr. 2011;5:421–430. PubMed PMC

Park H., Ohshima K., Nojima S., Tahara S., Kurashige M., Hori Y. Vol. 98. 2018. Adenylosuccinate Lyase Enhances Aggressiveness of Endometrial Cancer by Increasing Killer Cell Lectin-Like Receptor C3 Expression by Fumarate; pp. 449–461. PubMed

Vatin M., Bouvier S., Bellazi L., Montagutelli X., Laissue P., Ziyyat A. Polymorphisms of human placental alkaline phosphatase are associated with in vitro fertilization success and recurrent pregnancy loss. Am. J. Pathol. 2014;184:362–368. PubMed

Fishman W.H. Clinical and biological significance of an isozyme tumor marker--PLAP. Clin. Biochem. 1987;20:387–392. PubMed

FISHMAN W.H., INGLIS N.R., GREEN S., ANSTISS C.L., GOSH N.K., REIF A.E. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature. 1968;219:697–699. PubMed

Qin Q., Xu Y., He T., Qin C., Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22:90–106. PubMed PMC

Yu X., Zhai C., Fan Y., Zhang J., Liang N., Liu F. TUSC3: a novel tumour suppressor gene and its functional implications. J. Cell. Mol. Med. 2017;21:1711–1718. PubMed PMC

Xie Y., Yan J., Cutz J.-C., Rybak A.P., He L., Wei F. IQGAP2, a candidate tumour suppressor of prostate tumorigenesis. Biochim. Biophys. Acta. 2012;1822:875–884. PubMed

Alabed Y.Z., Pool M., Ong Tone S., Fournier A.E. Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J. Neurosci. 2007;27:1702–1711. PubMed PMC

Matsunuma R., Chan D.W., Kim B.-J., Singh P., Han A., Saltzman A.B. DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc. Natl. Acad. Sci. 2018;115 PubMed PMC

Chou J., Provot S., Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J. Cell. Physiol. 2010;222:42–49. PubMed PMC

Choi U.Y., Kang J.-S., Hwang Y.S., Kim Y.-J. Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp. Mol. Med. 2015;47 e144–e144. PubMed PMC

Thapa N., Lee B.-H., Kim I.-S. TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int. J. Biochem. Cell Biol. 2007;39:2183–2194. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace