The CRISPR-Cas9 crADSL HeLa transcriptome: A first step in establishing a model for ADSL deficiency and SAICAR accumulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P30 CA046934
NCI NIH HHS - United States
PubMed
31516833
PubMed Central
PMC6731210
DOI
10.1016/j.ymgmr.2019.100512
PII: S2214-4269(19)30098-9
Knihovny.cz E-zdroje
- Klíčová slova
- Adenylosuccinate lyase, Purine synthesis, RNA-seq, Transcriptome, adenosine monophosphate, (AMP), adenylosuccinate lyase, (ADSL), aminoimidazole carboxamide ribonucleotide, (AICAR), de novo purine synthesis, (DNPS), differentially expressed gene, (DEG), false discovery rate, (FDR), fetal calf macroserum, (FCM), fragments per kilobase of exon per million reads mapped, (FPKM), gene ontology, (GO), guanosine monophosphate, (GMP), minus adenine crADSL to minus adenine WT comparison, (MM), phosphoribosyl pyrophosphate, (PRPP), phosphoribosylaminoimidazolesuccinocarboxamide, (SAICAR), plus adenine crADSL to plus adenine WT comparison, (PP), succinyladenosine monophosphate, (SAMP),
- Publikační typ
- časopisecké články MeSH
Adenylosuccinate lyase (ADSL) catalyzes two steps in de novo purine synthesis (DNPS). Mutations in ADSL can result in inborn errors of metabolism characterized by developmental delay and disorder phenotypes, with no effective treatment options. Recently, SAICAR, a metabolic substrate of ADSL, has been found to have alternative roles in the cell, complicating the role of ADSL. crADSL, a CRISPR KO of ADSL in HeLa cells, was constructed to investigate DNPS and ADSL in a human cell line. Here we employ this cell line in an RNA-seq analysis to initially investigate the effect of DNPS and ADSL deficiency on the transcriptome as a first step in establishing a cellular model of ADSL deficiency. We report transcriptome changes in genes relevant to development, vascular development, muscle, and cancer biology, which provide interesting avenues for future research.
Department of Biological Sciences University of Denver Denver CO 80210 USA
Eleanor Roosevelt Institute University of Denver Denver CO 80210 USA
Knoebel Institute for Healthy Aging University of Denver 2155 E Wesley Avenue Denver CO 80210 USA
Molecular and Cellular Biophysics Program University of Denver Denver CO 80210 USA
Zobrazit více v PubMed
Jurecka A., Zikánová M., Kmoch S., Tylki-Szymańska A. Adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 2015;38:231–242. PubMed PMC
Donti T.R., Cappuccio G., Hubert L., Neira J., Atwal P.S., Miller M.J. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Mol. Genet. Metab. Rep. 2016;8:61–66. PubMed PMC
Zikánová M., Skopova V., Hnízda A., Krijt J., Kmoch S. Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. Hum. Mutat. 2010;31:445–455. PubMed
Caetano-Anollés G., Yafremava L.S., Gee H., Caetano-Anollés D., Kim H.S., Mittenthal J.E. The origin and evolution of modern metabolism. Int. J. Biochem. Cell Biol. 2009;41:285–297. PubMed
Keller K.E.K., Tan I.S.I., Lee Y.-S.Y. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science. 2012;338:1069–1072. PubMed PMC
Yang W., Lu Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle (Georgetown, Tex). 2013;12:3154–3158. PubMed PMC
Keller K.E., Doctor Z.M., Dwyer Z.W., Lee Y.-S. SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol. Cell. 2014;53:700–709. PubMed PMC
Hosios A.M., Fiske B.P., Gui D.Y., Vander Heiden M.G. Lack of evidence for PKM2 protein kinase activity. Mol. Cell. 2015;59:850–857. PubMed PMC
Yan M., Chakravarthy S., Tokuda J.M., Pollack L., Bowman G.D., Lee Y.-S. Succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5’-phosphate (SAICAR) activates pyruvate kinase isoform M2 (PKM2) in its dimeric form. Biochemistry. 2016;55:4731–4736. PubMed PMC
Luo W., Hu H., Chang R., Zhong J., Knabel M., O'Meally R. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–744. PubMed PMC
Baresova V., Krijt M., Skopova V., Souckova O., Kmoch S., Zikánová M. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol. Genet. Metab. 2016;119:270–277. PubMed
Mádrová L., Krijt M., Baresova V., Václavík J., Friedecký D., Dobešová D. Mass spectrometric analysis of purine de novo biosynthesis intermediates. PLoS ONE. 2018;13 PubMed PMC
Kondo M., Yamaoka T., Honda S., Miwa Y., Katashima R., Moritani M. The rate of cell growth is regulated by purine biosynthesis via ATP production and G(1) to S phase transition. J. Biochem. 2000;128:57–64. PubMed
Tu A.S., Patterson D. Characterization of a guanine-sensitive mutant defective in adenylo-succinate synthetase activity. J. Cell. Physiol. 1978;96:123–132. PubMed
Duval N., Luhrs K., Wilkinson T.G., Baresova V., Skopova V., Kmoch S. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders. Mol. Genet. Metab. 2013;108:178–189. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Trapnell C., Hendrickson D.G., Sauvageau M., Goff L., Rinn J.L., Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 2013;31:46–53. PubMed PMC
Goff L., Trapnell C., Kelley D. 2019. cummeRbund: Analysis, Exploration, Manipulation, and Visualization of Cufflinks High-Throughput Sequencing Data, R Package Version.
Mlecnik B., Galon J., Bindea G. Comprehensive functional analysis of large lists of genes and proteins. J. Proteome. 2018;171:2–10. PubMed
Maere S., Heymans K., Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–3449. PubMed
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000;25:25–29. PubMed PMC
Fabregat A., Jupe S., Matthews L., Sidiropoulos K., Gillespie M., Garapati P. The Reactome pathway knowledgebase. Nucleic Acids Res. 2018;46:D649–D655. PubMed PMC
Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 2009;119:1417–1419. PubMed PMC
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009;119:1420–1428. PubMed PMC
van den Berghe G., Jaeken J. Adenylosuccinase deficiency. Adv. Exp. Med. Biol. 1986;195(Pt A):27–33. PubMed
Brand L.M., Lowenstein J.M. Effect of diet on adenylosuccinase activity in various organs of rat and chicken. J. Biol. Chem. 1978;253:6872–6878. PubMed
Liberti M.V., Locasale J.W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 2016;41:211–218. PubMed PMC
Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35:2871–2882. PubMed PMC
Iommarini L., Ghelli A., Gasparre G., Porcelli A.M. Mitochondrial metabolism and energy sensing in tumor progression. Biochim. Biophys. Acta Bioenerg. 2017;1858:582–590. PubMed
Krzywinska E., Stockmann C. Hypoxia, metabolism and immune cell function. Biomedicines. 2018;6:56. PubMed PMC
Arjonen A., Kaukonen R., Ivaska J. Filopodia and adhesion in cancer cell motility. Cell Adhes. Migr. 2011;5:421–430. PubMed PMC
Park H., Ohshima K., Nojima S., Tahara S., Kurashige M., Hori Y. Vol. 98. 2018. Adenylosuccinate Lyase Enhances Aggressiveness of Endometrial Cancer by Increasing Killer Cell Lectin-Like Receptor C3 Expression by Fumarate; pp. 449–461. PubMed
Vatin M., Bouvier S., Bellazi L., Montagutelli X., Laissue P., Ziyyat A. Polymorphisms of human placental alkaline phosphatase are associated with in vitro fertilization success and recurrent pregnancy loss. Am. J. Pathol. 2014;184:362–368. PubMed
Fishman W.H. Clinical and biological significance of an isozyme tumor marker--PLAP. Clin. Biochem. 1987;20:387–392. PubMed
FISHMAN W.H., INGLIS N.R., GREEN S., ANSTISS C.L., GOSH N.K., REIF A.E. Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature. 1968;219:697–699. PubMed
Qin Q., Xu Y., He T., Qin C., Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22:90–106. PubMed PMC
Yu X., Zhai C., Fan Y., Zhang J., Liang N., Liu F. TUSC3: a novel tumour suppressor gene and its functional implications. J. Cell. Mol. Med. 2017;21:1711–1718. PubMed PMC
Xie Y., Yan J., Cutz J.-C., Rybak A.P., He L., Wei F. IQGAP2, a candidate tumour suppressor of prostate tumorigenesis. Biochim. Biophys. Acta. 2012;1822:875–884. PubMed
Alabed Y.Z., Pool M., Ong Tone S., Fournier A.E. Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J. Neurosci. 2007;27:1702–1711. PubMed PMC
Matsunuma R., Chan D.W., Kim B.-J., Singh P., Han A., Saltzman A.B. DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc. Natl. Acad. Sci. 2018;115 PubMed PMC
Chou J., Provot S., Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J. Cell. Physiol. 2010;222:42–49. PubMed PMC
Choi U.Y., Kang J.-S., Hwang Y.S., Kim Y.-J. Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp. Mol. Med. 2015;47 e144–e144. PubMed PMC
Thapa N., Lee B.-H., Kim I.-S. TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int. J. Biochem. Cell Biol. 2007;39:2183–2194. PubMed
Combined Targeted and Untargeted Profiling of HeLa Cells Deficient in Purine De Novo Synthesis