Combined Targeted and Untargeted Profiling of HeLa Cells Deficient in Purine De Novo Synthesis

. 2022 Mar 13 ; 12 (3) : . [epub] 20220313

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35323684

Grantová podpora
PROGRES Q26/LF1 Charles University
NU20-08-00367 Ministry of Health of the Czech Republic

Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10-7-10 × 10-15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10-7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.

Zobrazit více v PubMed

Curto R., Voit E.O., Sorribas A., Cascante M. Mathematical models of purine metabolism in man. Math. Biosci. 1998;151:1–49. doi: 10.1016/S0025-5564(98)10001-9. PubMed DOI

An S., Kumar R., Sheets E.D., Benkovic S.J. Reversible Compartmentalization of de Novo Purine Biosynthetic Complexes in Living Cells. Science. 2008;320:103–106. doi: 10.1126/science.1152241. PubMed DOI

Kondo M., Yamaoka T., Honda S., Miwa Y., Katashima R., Moritani M., Yoshimoto K., Hayashi Y., Itakura M. The Rate of Cell and Growth Is Regulated by Purine Biosynthesis via ATP Production G, to S Phase Transition. J. Biochem. 2000;128:57–64. doi: 10.1093/oxfordjournals.jbchem.a022730. PubMed DOI

Deng Y., Gam J., French J.B., Zhao H., An S., Benkovic S.J. Mapping Protein-Protein Proximity in the Purinosome. J. Biol. Chem. 2012;287:36201–36207. doi: 10.1074/jbc.M112.407056. PubMed DOI PMC

An S., Deng Y., Tomsho J.W., Kyoung M., Benkovic S.J. Microtubule-assisted mechanism for functional metabolic macromolecular complex formation. Proc. Natl. Acad. Sci. USA. 2010;107:12872–12876. doi: 10.1073/pnas.1008451107. PubMed DOI PMC

French J.B., Jones S.A., Deng H., Pedley A.M., Kim D., Chan C.Y., Hu H., Pugh R.J., Zhao H., Zhang Y., et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science. 2016;351:733–737. doi: 10.1126/science.aac6054. PubMed DOI PMC

Pedley A.M., Benkovic S.J. A New View into the Regulation of Purine Metabolism: The Purinosome. Trends Biochem. Sci. 2017;42:141–154. doi: 10.1016/j.tibs.2016.09.009. PubMed DOI PMC

Pareek V., Tian H., Winograd N., Benkovic S.J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science. 2020;368:283–290. doi: 10.1126/science.aaz6465. PubMed DOI PMC

Yamaoka T., Yano M., Kondo M., Sasaki H., Hino S., Katashima R., Moritani M., Itakura M. Feedback Inhibition of Amidophosphoribosyltransferase Regulates the Rate of Cell Growth via Purine Nucleotide, DNA, and Protein Syntheses. J. Biol. Chem. 2001;276:21285–21291. doi: 10.1074/jbc.M011103200. PubMed DOI

Vergis J.M., Bulock K.G., Fleming K.G., Beardsley G. Human 5-Aminoimidazole-4-carboxamide Ribonucleotide Transformylase/Inosine 5′-Monophosphate Cyclohydrolase. A bifunctional protein requiring dimerization for transformylase activity but not for cyclohydrolase activity. J. Biol. Chem. 2001;276:7727–7733. doi: 10.1074/jbc.M009940200. PubMed DOI

French J.B., Zhao H., An S., Niessen S., Deng Y., Cravatt B.F., Benkovic S.J. Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. Proc. Natl. Acad. Sci. USA. 2013;110:2528–2533. doi: 10.1073/pnas.1300173110. PubMed DOI PMC

An S., Kyoung M., Allen J.J., Shokat K.M., Benkovic S.J. Dynamic Regulation of a Metabolic Multi-enzyme Complex by Protein Kinase CK2. J. Biol. Chem. 2010;285:11093–11099. doi: 10.1074/jbc.M110.101139. PubMed DOI PMC

Wang W., Fridman A., Blackledge W., Connely S., Wilson I.A., Pilz R., Boss G.R. The Phosphatidylinositol 3-Kinase/Akt Cassette Regulates Purine Nucleotide Synthesis. J. Biol. Chem. 2009;284:3521–3528. doi: 10.1074/jbc.M806707200. PubMed DOI PMC

Ben-Sahra I., Hoxhaj G., Ricoult S.J.H., Asara J.M., Manning B.D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351:728–733. doi: 10.1126/science.aad0489. PubMed DOI PMC

Ramond F., Rio M., Héron B., Imbard A., Marie S., Billiemaz K., Denommé-Pichon A., Kuentz P., Ceballos I., Piraud M., et al. AICA -ribosiduria due to ATIC deficiency: Delineation of the phenotype with three novel cases, and long-term update on the first case. J. Inherit. Metab. Dis. 2020;43:1254–1264. doi: 10.1002/jimd.12274. PubMed DOI

Marie S., Heron B., Bitoun P., Timmerman T., Van Den Berghe G., Vincent M.-F. AICA-Ribosiduria: A Novel, Neurologically Devastating Inborn Error of Purine Biosynthesis Caused by Mutation of ATIC. Am. J. Hum. Genet. 2004;74:1276–1281. doi: 10.1086/421475. PubMed DOI PMC

Baresova V., Škopová V., Sikora J., Patterson D., Sovova J., Zikanova M., Kmoch S. Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum. Mol. Genet. 2012;21:1534–1543. doi: 10.1093/hmg/ddr591. PubMed DOI

Jaeken J., Wadman S.K., Duran M., Van Sprang F.J., Beemer F.A., Holl R.A., Theunissen P.M., De Cock P., van den Bergh F., Vincent M.F., et al. Adenylosuccinase deficiency: An inborn error of purine nucleotide synthesis. Eur. J. Pediatr. 1988;148:126–131. doi: 10.1007/BF00445919. PubMed DOI

Jurecka A., Zikanova M., Kmoch S., Tylki-Szymanska A. Adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 2015;38:231–242. doi: 10.1007/s10545-014-9755-y. PubMed DOI PMC

Pelet A., Skopova V., Steuerwald U., Baresova V., Zarhrate M., Plaza J.-M., Hnizda A., Krijt M., Souckova O., Wibrand F., et al. PAICS deficiency, a new defect of of de nvo purine synthesis resulting in multiple congenital anomalies and fatal outcome. Hum. Mol. Genet. 2019;28:3805–3814. doi: 10.1093/hmg/ddz237. PubMed DOI

Jurecka A. Inborn errors of purine and pyrimidine metabolism. J. Inherit. Metab. Dis. 2009;32:247–263. doi: 10.1007/s10545-009-1094-z. PubMed DOI

Balasubramaniam S., Duley J.A., Christodoulou J. Inborn errors of purine metabolism: Clinical update and therapies. J. Inherit. Metab. Dis. 2014;37:669–686. doi: 10.1007/s10545-014-9731-6. PubMed DOI

Mazzarino R.C., Baresova V., Zikánová M., Duval N., Wilkinson T.G., Patterson D., Vacano G.N. The CRISPR-Cas9 crGART HeLa transcriptome: A novel cell model of de novo purine synthesis deficiency. BioRxiv. :2020. doi: 10.1101/2020.06.23.167924. DOI

Mazzarino R.C., Baresova V., Zikánová M., Duval N., Wilkinson T., Patterson D., Vacano G.N. The CRISPR-Cas9 crADSL HeLa transcriptome: A first step in establishing a model for ADSL deficiency and SAICAR accumulation. Mol. Genet. Metab. Rep. 2019;21:100512. doi: 10.1016/j.ymgmr.2019.100512. PubMed DOI PMC

Mazzarino R.C., Baresova V., Zikánová M., Duval N., Wilkinson T.G., Patterson D., Vacano G.N. The CRISPR-Cas9 crATIC HeLa transcriptome: Characterization of a novel cellular model of ATIC deficiency and ZMP accumulation. Mol. Genet. Metab. Rep. 2020;25:100642. doi: 10.1016/j.ymgmr.2020.100642. PubMed DOI PMC

Mádrová L., Krijt M., Barešová V., Václavík J., Friedecký D., Dobešová D., Součková O., Škopová V., Adam T., Zikánová M. Mass spectrometric analysis of purine de novo biosynthesis intermediates. PLoS ONE. 2018;13:e0208947. doi: 10.1371/journal.pone.0208947. PubMed DOI PMC

Kouřil Š., de Sousa J., Václavík J., Friedecký D., Adam T. CROP: Correlation-based reduction of feature multiplicities in untargeted metabolomic data. Bioinformatics. 2020;36:2941–2942. doi: 10.1093/bioinformatics/btaa012. PubMed DOI

Schendel F.J., Cheng Y.S., Otvos J.D., Wehrli S., Stubbe J. Characterization and chemical properties of phosphoribosylamine, an unstable intermediate in the de novo purine biosynthetic pathway. Biochemistry. 1988;27:2614–2623. doi: 10.1021/bi00407a052. PubMed DOI

Baresova V., Krijt M., Skopova V., Součková O., Kmoch S., Zikanova M. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol. Genet. Metab. 2016;119:270–277. doi: 10.1016/j.ymgme.2016.08.004. PubMed DOI

Jurecka A., Zikanova M., Tylki-Szymanska A., Krijt J., Bogdanska A., Gradowska W., Mullerova K., Sykut-Cegielska J., Kmoch S., Pronicka E. Clinical, biochemical and molecular findings in seven Polish patients with adenylosuccinate lyase deficiency. Mol. Genet. Metab. 2008;94:435–442. doi: 10.1016/j.ymgme.2008.04.013. PubMed DOI

Zikanova M., Skopova V., Hnizda A., Krijt J., Kmoch S. Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. Hum. Mutat. 2010;31:445–455. doi: 10.1002/humu.21212. PubMed DOI

Sabina R.L., Holmes E.W., Becker M.A. The Enzymatic Synthesis of 5-Amino-4-Imidazolecarboxamide Riboside Triphosphate (ZTP) Science. 1984;223:1193–1195. doi: 10.1126/science.6199843. PubMed DOI

Daignan-Fornier B., Pinson B. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5’-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects. Metabolites. 2012;2:292–302. doi: 10.3390/metabo2020292. PubMed DOI PMC

Stone T.W., Simmonds H.A. Purines: Basic and Clinical Aspects. Kluwer Academic Publishers; Dordrecht, The Netherlands: 1991. DOI

van den Bergh F., Vincent M.F., Jaeken J., van den Bergh G. Residual adenylosuccinase activities in fibroblasts of adenylosuccinase-deficient children: Parallel deficiency with adenylosuccinate and succinyl-AICAR in profoundly retarded patients and non-parallel deficiency in a mildly retarded girl. J. Inherit. Metab. Dis. 1993;16:415–424. doi: 10.1007/BF00710291. PubMed DOI

Atkinson D.E., Walton G.M. Adenosine Triphosphate Conservation in Metabolic Regulation. J. Biol. Chem. 1967;242:3239–3241. doi: 10.1016/S0021-9258(18)95956-9. PubMed DOI

Shen L., Fall L., Walton G.M., Atkinson D.E. Interaction between energy charge and metabolite modulation in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvate dehydrogenase. Biochemistry. 1968;7:4041–4045. doi: 10.1021/bi00851a035. PubMed DOI

Swedes J.S., Sedo R.J., E Atkinson D. Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli. J. Biol. Chem. 1975;250:6930–6938. doi: 10.1016/S0021-9258(19)41021-1. PubMed DOI

De La Fuente I.M., Cortes J.M., Valero E., Desroches M., Rodrigues S., Malaina I., Martínez L. On the Dynamics of the Adenylate Energy System: Homeorhesis vs. Homeostasis. PLoS ONE. 2014;9:e108676. doi: 10.1371/journal.pone.0108676. PubMed DOI PMC

Boutchueng-Djidjou M., Collard-Simard G., Fortier S., Hébert S., Kelly I., Landry C.R., Faure R.L. The Last Enzyme of the De Novo Purine Synthesis Pathway 5-aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC) Plays a Central Role in Insulin Signaling and the Golgi/Endosomes Protein Network. Mol. Cell. Proteom. 2015;14:1079–1092. doi: 10.1074/mcp.M114.047159. PubMed DOI PMC

Kit S. The biosynthesis of free glycine and serine by tumors. Cancer Res. 1955;15:715–718. PubMed

Tedeschi P.M., Markert E.K., Gounder M., Lin H., Dvorzhinski D., Dolfi S.C., Chan L.L.-Y., Qiu J., DiPaola R.S., Hirshfield K.M., et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 2013;4:e877. doi: 10.1038/cddis.2013.393. PubMed DOI PMC

Locasale J.W., Grassian A.R., Melman T., Lyssiotis C.A., Mattaini K.R., Bass A.J., Heffron G., Metallo C.M., Muranen T., Sharfi H., et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 2011;43:869–874. doi: 10.1038/ng.890. PubMed DOI PMC

Zogg C.K. Phosphoglycerate Dehydrogenase: Potential Therapeutic Target and Putative Metabolic Oncogene. J. Oncol. 2014;2014:524101. doi: 10.1155/2014/524101. PubMed DOI PMC

Martínez-Martín D., Martinez-Martin N., Blas-García A., Morales J.M., Martí-Cabrera M., Monleon D., Apostolova N. Metabolomics of the effect of AMPK activation by AICAR on human umbilical vein endothelial cells. Int. J. Mol. Med. 2012;29:88–94. doi: 10.3892/ijmm.2011.802. PubMed DOI

Li S., Gao D., Jiang Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites. 2019;9:36. doi: 10.3390/metabo9020036. PubMed DOI PMC

Tai E.S., Tan M.L.S., Stevens R.D., Low Y.L., Muehlbauer M.J., Goh D.L.M., Ilkayeva O.R., Wenner B.R., Bain J.R., Lee J.J.M., et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010;53:757–767. doi: 10.1007/s00125-009-1637-8. PubMed DOI PMC

Corton J.M., Gillespie J.G., Hawley S.A., Hardie D.G. 5-Aminoimidazole-4-Carboxamide Ribonucleoside. A Specific Method for Activating AMP-Activated Protein Kinase in Intact Cells? Eur. J. Biochem. 1995;229:558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x. PubMed DOI

Koves T., Ussher J.R., Noland R.C., Slentz D., Mosedale M., Ilkayeva O., Bain J.R., Stevens R., Dyck J.R., Newgard C.B., et al. Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metab. 2008;7:45–56. doi: 10.1016/j.cmet.2007.10.013. PubMed DOI

Donti T.R., Cappuccio G., Hubert L., Neira J., Atwal P.S., Miller M.J., Cardon A.L., Sutton V.R., Porter B.E., Baumer F., et al. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Mol. Genet. Metab. Rep. 2016;8:61–66. doi: 10.1016/j.ymgmr.2016.07.007. PubMed DOI PMC

Subedi A., Muroi M., Futamura Y., Kawamura T., Aono H., Nishi M., Ryo A., Watanabe N., Osada H. A novel inhibitor of tumorspheres reveals the activation of the serine biosynthetic pathway upon mitochondrial inhibition. FEBS Lett. 2019;593:763–776. doi: 10.1002/1873-3468.13361. PubMed DOI

Labuschagne C.F., Van Den Broek N.J.F., Mackay G.M., Vousden K.H., Maddocks O.D.K. Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Rep. 2014;7:1248–1258. doi: 10.1016/j.celrep.2014.04.045. PubMed DOI

Ulrey C.L., Liu L., Andrews L.G., Tollefsbol T.O. The impact of metabolism on DNA methylation. Hum. Mol. Genet. 2005;14:R139–R147. doi: 10.1093/hmg/ddi100. PubMed DOI

Lu S.C. S-Adenosylmethionine. Int. J. Biochem. Cell Biol. 2000;32:391–395. doi: 10.1016/S1357-2725(99)00139-9. PubMed DOI

Kim P.B., Nelson J.W., Breaker R.R. An Ancient Riboswitch Class in Bacteria Regulates Purine Biosynthesis and One-Carbon Metabolism. Mol. Cell. 2015;57:317–328. doi: 10.1016/j.molcel.2015.01.001. PubMed DOI PMC

Ducker G., Rabinowitz J.D. ZMP: A Master Regulator of One-Carbon Metabolism. Mol. Cell. 2015;57:203–204. doi: 10.1016/j.molcel.2015.01.012. PubMed DOI PMC

Wojtowicz P., Zrostlíková J., Veronika Š., Dostálová E., Žídková L., Bruheim P., Adam T. Gas Chromatography. IntechOpen; London, UK: 2008. Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry in Human Metabolomics; pp. 29–50.

Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W.-M., Fiehn O., Goodacre R., Griffin J.L., et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC

Karlíková R., Široká J., Friedecký D., Faber E., Hrdá M., Mičová K., Fikarová I., Gardlo A., Janečková H., Vrobel I., et al. Metabolite Profiling of the Plasma and Leukocytes of Chronic Myeloid Leukemia Patients. J. Proteome Res. 2016;15:3158–3166. doi: 10.1021/acs.jproteome.6b00356. PubMed DOI

Cleveland W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979;74:829–836. doi: 10.1080/01621459.1979.10481038. DOI

Dunn W.B., Broadhurst D., Begley P., Zelena E., Francis-McIntyre S., Anderson N., Brown M., Knowles J.D., Halsall A., Haselden J.N., et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011;6:1060–1083. doi: 10.1038/nprot.2011.335. PubMed DOI

Pawlowsky-Glahn V., Egozcue J.J., Tolosana-Delgado R. Modelling and Analysis of Compositional Data. Wiley; Hoboken, NJ, USA: 2015.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...