Is the oxidative potential of components of fine particulate matter surface-mediated?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36550248
PubMed Central
PMC9908692
DOI
10.1007/s11356-022-24897-3
PII: 10.1007/s11356-022-24897-3
Knihovny.cz E-zdroje
- Klíčová slova
- Acellular assay, Aerosol, Alveolar surfactant, Inhalation, Toxic quinones,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- pevné částice * analýza MeSH
- reaktivní formy kyslíku MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice * MeSH
- reaktivní formy kyslíku MeSH
Redox-active substances in fine particulate matter (PM) contribute to inhalation health risks through their potential to generate reactive oxygen species in epithelial lung lining fluid (ELF). The ELF's air-liquid interface (ALI) can play an important role in the phase transfer and multi-phase reactions of redox-active PM constituents. We investigated the influence of interfacial processes and properties by scrubbing of coated nano-particles with simulated ELF in a nebulizing mist chamber. Weakly water-soluble redox-active organics abundant in ambient fine PM were reproducibly loaded into ELF via ALI mixing. The resulting oxidative potential (OP) of selected quinones and other PAH derivatives were found to exceed the OP resulting from bulk mixing of the same amounts of redox-active substances and ELF. Our results indicate that the OP of PM components depends not only on the PM substance properties but also on the ELF interface properties and uptake mechanisms. OP measurements based on bulk mixing of phases may not represent the effective OP in the human lung.
Air Quality Processes Research Section Environment and Climate Change Canada Toronto Canada
Chemistry Department Trent University Peterborough Canada
Department of Environmental Sciences and Engineering University of North Carolina Chapel Hill USA
Institute of Surface Science Helmholtz Zentrum Hereon Geesthacht Germany
Multiphase Chemistry Department Max Planck Institute for Chemistry Mainz Germany
Research Centre for Toxic Compounds in the Environment Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo JL. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys - part 1: concentrations, sources and gas/particle partitioning. Atmos Environ. 2008;42:43–54.
Albinet A, Nalin F, Tomaz S, Beaumont J, Lestremau F. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC–NICIMS. Anal Bioanal Chem. 2014;406:3131–3148. PubMed
Andersson H, Piras E, Demma J, Hellman B, Brittebo E. Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicol. 2009;262:57–64. PubMed
Atkinson R, Arey J. Atmospheric chemistry of polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environ Health Persp. 1994;102:117–126. PubMed PMC
Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, Marano F, Maynard RL, Mudway I, Nel A, Sioutas C, Smith S, Baeza-Squiban A, Cho A, Duggan S, Froines J. Evaluating the toxicity of airborne particulate matter and nano-particles by measuring oxidative stress potential - a workshop report and consensus statement. Inhal Toxicol. 2008;20:75–99. PubMed
Boisa N, Elom N, Dean JR, Deary ME, Bird G, Entwistle JA. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ Internat. 2014;70:132–142. PubMed
Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Role of quinones in toxicology. Chem Res Toxicol. 2000;13:135–160. PubMed
Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11. PubMed PMC
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, Apte JS, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim SS, Kan H, Walker KD, Thurston GD, Hayes RB, Lim CC, Turner MC, Jerrett M, Krewski D, Gapstur SM, Diver WR, Ostro B, Goldberg D, Crouse DL, Martin RV, Peters P, Pinault L, Tjepkema M, van Donkelaar A, Villeneuve PJ, Miller AB, Yin P, Zhou M, Wang L, Janssen NAH, Marra M, Atkinson RW, Tsang H, Quoc Thach T, Cannon JB, Allen RT, Hart JE, Laden F, Cesaroni G, Forastiere F, Weinmayr G, Jaensch A, Nagel G, Concin H, Spadaro JV. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA. 2018;115:9592–9597. PubMed PMC
Calas A, Uzu G, Kelly FJ, Houdier S, Martins JMF, Thomas F, Molton F, Charron A, Dunster C, Oliete A, Jacob V, Besombes JL, Chevrier F, Jaffrezo JL. Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France) Atmos Chem Phys. 2018;18:7863–7875.
Charrier JG, Anastasio C. Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid. Atmos Environ. 2011;45:7555–7562. PubMed PMC
Cofer WR, Collins VG, Talbot RW. Improved aqueous scrubber for collection of soluble atmospheric trace gases. Environ Sci Technol. 1985;19:557–560. PubMed
COMEAP . Committee on the medical effects of air pollutants: associations of long-term average concentrations of nitrogen dioxide with mortality. London: Public Health England; 2018. p. 152.
Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Squiban AB. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ Poll. 2017;230:125–133. PubMed
Daellenbach KR, Uzu G, Jiang J, Cassagnes LE, Leni Z, Vlachou A, Stefenelli G, Canonaco F, Weber S, Segers A, Kuenen JJP, Schaap M, Favez O, Albinet A, Aksoyoglu S, Dommen J, Baltensperger U, Geiser M, el Haddad I, Jaffrezo JL, Prévôt ASH. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature. 2020;587:414–419. PubMed
Endes C, Schmid O, Kinnear C, Mueller S, Camarero-Espinosa S, Vanhecke D, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticle. Part Fibre Toxicol. 2014;11:40. PubMed PMC
Gallo A, Musskopf NH, Liu XL, Yang ZQ, Petry J, Zhang P, Thoroddsen S, Im H, Mishra H. On the formation of hydrogen peroxide in water microdroplets. Chem Sci. 2022;13:2574. PubMed PMC
Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Persp. 2005;113:1555–1560. PubMed PMC
Guo L, Jim L, Huang S. Effect of PM characterization on PM oxidative potential by acellular assays: a review. Rev Environ Health. 2020;35:461–470. PubMed
Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland A, Fleury-Feith J, Moisan F, Pairon JC, Marano F. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260:142–149. PubMed
Kelly RA, Leedale J, Calleja D, Enoch SJ, Harrell A, Chadwick AE, Webb S. Modelling changes in glutathione homeostasis as a function of quinone redox metabolism. Sci Rep. 2019;9:6333. PubMed PMC
Kovacic P, Somanathan R. Nitro-aromatic compounds: environmental toxicology, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol. 2014;34:810–824. PubMed
Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect. 2017;125:97–103. PubMed PMC
Lakey PSJ, Berkemeier T, Tong H, Arangio AM, Lucas K, Pöschl U, Shiraiwa M. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep. 2016;6:32916. PubMed PMC
Lammel G. Polycyclic aromatic compounds in the atmosphere – a review identifying research needs. Polycyclic Aromat Compd. 2015;35:316–329.
Lammel G, Mulder MD, Shahpoury P, Kukučka P, Lišková H, Příbylová P, Prokeš R, Wotawa G. Nitro-polycyclic aromatic hydrocarbons – gas–particle partitioning, mass size distribution, and formation along transport in marine and continental background air. Atmos Chem Phys. 2017;17:6257–6270.
Lammel G, Kitanovski Z, Kukučka P, Novák J, Arangio A, Codling GP, Filippi A, Hovorka J, Kuta J, Leoni C, Příbylová P, Prokeš R, Sáňka O, Shahpoury P, Tong HJ, Wietzoreck M. Levels, phase partitioning, mass size distributions and bioaccessibility of oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air. Environ Sci Technol. 2020;54:2615–2625. PubMed PMC
Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res. 2020;116:1910–1917. PubMed PMC
Lelieveld S, Wilson J, Dovrou E, Mishra A, Lakey PSJ, Shiraiwa M, Pöschl U, Berkemeier T. Hydroxyl radical production by air pollutants in epithelial lining fluid governed by interconversion and scavenging of reactive oxygen species. Environ Sci Technol. 2021;55:14069–14079. PubMed PMC
Li XY, Hao L, Liu YH, Chen CY, Pai VJ, Kang JX. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids. Biochim Biophys Acta. 2017;1861:577–584. PubMed
Lieberherr G, Auderset K, Calpini B, Clot B, Crouzy B, Gysel-Beer M, Konzelmann T, Manzano J, Mihajlovic A, Moallemi A, O'Connor D, Sikoparija B, Sauvageat E, Tummon F, Vasilatou K. Assessment of real-time bioaerosol particle counters using reference chamber experiments. Atmos Meas Tech. 2021;14:7693–7706.
Liu XL, Ji R, Shi Y, Wang F, Che W. Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: implications for bioavailability and risks of airborne aromatics. Sci Total Environ. 2019;655:1159–1168. PubMed
Nachtman JP. Superoxide generation by 1-nitropyrene in rat lung microsomes. Res Commun Chem Path Pharmacol. 1986;51:73–80. PubMed
Nežiková B, Degrendele C, Bandowe BAM, Holubová Smejkalová A, Kukučka P, Martiník J, Mayer L, Prokeš R, Přibylová P, Klánová J, Lammel G. Three years of atmospheric concentrations of nitrated and oxygenated polycyclic aromatic hydrocarbons and oxygen heterocycles at a central European background site. Chemosphere. 2021;269:128738. PubMed
Orsini DA, Ma Y, Sullivan A, Sierau B, Baumann K, Weber RJ. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmos Environ. 2003;37:1243–1259.
Park EJ, Park K. Induction of pro-inflammatory signals by 1-nitropyrene in cultured BEAS-2B cells. Toxicol Lett. 2009;184:126–133. PubMed
Paur HR, Cassee FR, Teeguarden J, Fissan H, Diabate S, Aufderheide M, Kreyling W, Hänninen O, Kasper G, Riediker M, Rothen-Rutishauser B, Schmid O. In-vitro cell exposure studies for the assessment of nano-particle toxicity in the lung—a dialog between aerosol science and biology. J Aerosol Sci. 2011;42:668–690.
Ray D, Malongwe JK, Klán P. Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air−ice interface at low temperatures, Environ. Sci Technol. 2013;44:6773–6780. PubMed
Roginsky VA, Barsukova TK, Stegmann HB. Kinetics of redox interaction between substituted quinones and ascorbate under aerobic conditions. Chem Biol Interact. 1999;121:177–197. PubMed
Sarnat JA, Marmur A, Klein M, Kim E, Russell AG, Sarnat SE, Mulholland JA, Hopke PK, Tolbert PE. Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect. 2008;116:459–466. PubMed PMC
Shahpoury P, Kitanovski Z, Lammel G. Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic. Atmos Chem Phys. 2018;18:13495–13510.
Shahpoury P, Harner T, Lammel G, Leliveld S, Tong H, Wilson J. Development of an antioxidant assay to study oxidative potential of airborne particulate matter. Atmos Meas Techn. 2019;12:6529–6539.
Shahpoury P, Zhang ZW, Filippi A, Hildmann S, Lelieveld S, Mashtakov B, Patel BR, Traub A, Umbrio D, Wietzoreck M, Wilson J, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Evans G, Harner T, Kerman K, Lammel G, Noorozifar M, Pöschl U, Tong H (2022) Inter-comparison of oxidative potential metrics for airborne particles identifies differences between acellular chemical assays. Atmos Pollut Res 13:101596
Shen GF, Chen YC, Du W, Lin N, Wang XL, Cheng HF, Liu JF, Xue CY, Liu GQ, Zeng EY, Xing BS. Exposure and size distribution of nitrated and oxygenated PAHs among the population using different household fuels. Environ Pollut. 2016;216:935–942. PubMed
Sigma-Aldrich (2014) Fluorimetric hydrogen peroxide assay kit MAK165, Sigma Aldrich Tech. Bulletin. p 3. https://www.sigmaaldrich.cn/deepweb/assets/sigmaaldrich/product/documents/187/223/mak165bul.pdf. Accessed 21 Dec 2022
Song Y, Buettner GR. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide, Free Rad. Biol Med. 2010;49:919–962. PubMed PMC
USEPA (2011) Exposure factors handbook, Chapter 6: Inhalation rates, US Environmental Protection Agency. p 96. https://www.epa.gov/expobox/exposure-factors-handbook-chapter-6 . Accessed 1 Apr 2022
USEPA (2019) Integrated science assessment for particulate matter. Report No. EPA600/R-19/188, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, USA, p 1986
Verma V, Wang Y, el Afifi R, Fang T, Rowland J, Russell AG, Weber RJ. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity - assessing the importance of quinones and atmospheric aging. Atmos Environ. 2015;120:351–359.
Weibel ER. Morphometry of the human lung. Berlin: Springer; 1963. p. 164.
Wietzoreck M, Kyprianou M, Bandowe BAM, Celik S, Crowley JN, Drewnick F, Eger P, Fischer H, Friedrich N, Iakovides M, Kukučka P, Kuta J, Nežiková B, Pokorná P, Pribylová P, Prokeš R, Rohloff R, Tadic I, Tauer S, Wilson J, Harder H, Lelieveld J, Pöschl U, Stephanou E, Lammel G. Polycyclic aromatic hydrocarbons (PAHs) and their alkylated-, nitro- and oxy-derivatives in the atmosphere over the Mediterranean and Middle East seas. Atmos Chem Phys. 2022;22:8739–8766.
Xie SY, Lao JY, Wu CC, Bao LJ, Zeng EY. In vitro inhalation bioaccessibility for particle-bound hydrophobic organic chemicals: method development, effects of particle size and hydrophobicity, and risk assessment. Environ Int. 2018;120:295–303. PubMed
Zhuo S, Du W, Shen G, Li B, Liu J, Cheng H, Xing B, Tao S. Estimating relative contributions of primary and secondary sources of ambient nitrated and oxygenated polycyclic aromatic hydrocarbons. Atmos Environ. 2017;159:126–134.