Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004558
Ministry of Education, Youth, and Sports of the Czech Republic and European Union
PubMed
39861323
PubMed Central
PMC11769405
DOI
10.3390/polym17020251
PII: polym17020251
Knihovny.cz E-zdroje
- Klíčová slova
- UV radiation, antimicrobial activity, chemical grafting, polymer foils, zeta potential,
- Publikační typ
- časopisecké články MeSH
Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces. SEM analysis revealed that UV activation and cysteamine grafting resulted in distinct surface roughness and texturing, which are expected to enhance microbial interactions. Antimicrobial tests showed increased resistance to algal growth (inhibition test) and bacterial colonization (drop plate method), with significant improvement observed for polyethylene terephthalate (PET) and polyetheretherketone (PEEK) foils. The important factors influencing the efficacy included UV exposure time and cysteamine concentration, with longer exposure and higher concentrations leading to bacterial reduction of up to 45.7% for Escherichia coli and 55.6% for Staphylococcus epidermidis. These findings highlight the potential of combining UV activation and cysteamine grafting as an effective method for developing polymeric materials with enhanced antimicrobial function, offering applications in industries such as healthcare and packaging.
Zobrazit více v PubMed
Bačáková L., Švorčík V. Cell Colonization Control by Physical and Chemical Modification of Materials. Nova Science Publishers; Hauppauge, NY, USA: 2009.
Hegemann D., Brunner H., Oehr C. Plasma Treatment of Polymers for Surface and Adhesion Improvement. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003;208:281–286. doi: 10.1016/S0168-583X(03)00644-X. DOI
Kotál V., Švorčík V., Slepička P., Sajdl P., Bláhová O., Šutta P., Hnatowicz V. Gold Coating of Poly(Ethylene Terephthalate) Modified by Argon Plasma. Plasma Process. Polym. 2007;4:69–76. doi: 10.1002/ppap.200600069. DOI
Švorčík V., Kotál V., Slepička P., Bláhová O., Špírková M., Sajdl P., Hnatowicz V. Modification of Surface Properties of Polyethylene by Ar Plasma Discharge. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006;244:365–372. doi: 10.1016/j.nimb.2005.10.003. DOI
Kolská Z., Řezníčková A., Nagyová M., Slepičková Kasálková N., Sajdl P., Slepička P., Švorčík V. Plasma Activated Polymers Grafted with Cysteamine Improving Surfaces Cytocompatibility. Polym. Degrad. Stab. 2014;101:1–9. doi: 10.1016/j.polymdegradstab.2014.01.024. DOI
Guruvenket S., Rao G.M., Komath M., Raichur A.M. Plasma Surface Modification of Polystyrene and Polyethylene. Appl. Surf. Sci. 2004;236:278–284. doi: 10.1016/j.apsusc.2004.04.033. DOI
Kraus E., Orf L., Baudrit B., Heidemeyer P., Bastian M., Bonenberger R., Starostina I., Stoyanov O. Analysis of the Low-Pressure Plasma Pretreated Polymer Surface in Terms of Acid–Base Approach. Appl. Surf. Sci. 2016;371:365–375. doi: 10.1016/j.apsusc.2016.02.247. DOI
Sarra-Bournet C., Turgeon S., Mantovani D., Laroche G. Comparison of Atmospheric-Pressure Plasma versus Low-Pressure RF Plasma for Surface Functionalization of PTFE for Biomedical Applications. Plasma Process. Polym. 2006;3:506–515. doi: 10.1002/ppap.200600012. DOI
Chan C.-M., Ko T.-M., Hiraoka H. Polymer Surface Modification by Plasmas and Photons. Surf. Sci. Rep. 1996;24:1–54. doi: 10.1016/0167-5729(96)80003-3. DOI
Slepička P., Trostová S., Slepičková Kasálková N., Kolská Z., Sajdl P., Švorčík V. Surface Modification of Biopolymers by Argon Plasma and Thermal Treatment: Surface Modification of Biopolymers. Plasma Process. Polym. 2012;9:197–206. doi: 10.1002/ppap.201100126. DOI
Goddard J.M., Hotchkiss J.H. Polymer Surface Modification for the Attachment of Bioactive Compounds. Prog. Polym. Sci. 2007;32:698–725. doi: 10.1016/j.progpolymsci.2007.04.002. DOI
El Yousfi R., Achalhi N., El Ouardi Y., Lamsayah M., El Barkany S., Laatikainen K., El Idrissi A. Enhanced Performance of Novel Hydroxyethyl Cellulose Grafted Amide-Based Microcapsules by Catalyzed Interfacial Polymerization: Synthesis, Characterization, and Theoretical Studies. React. Funct. Polym. 2023;185:105533. doi: 10.1016/j.reactfunctpolym.2023.105533. DOI
Neuhaus S., Padeste C., Spencer N.D. Versatile Wettability Gradients Prepared by Chemical Modification of Polymer Brushes on Polymer Foils. Langmuir. 2011;27:6855–6861. doi: 10.1021/la2005908. PubMed DOI
Hallmann L., Mehl A., Sereno N., Hämmerle C.H.F. The Improvement of Adhesive Properties of PEEK through Different Pre-Treatments. Appl. Surf. Sci. 2012;258:7213–7218. doi: 10.1016/j.apsusc.2012.04.040. DOI
Neubertová V., Slepičková Kasálková N., Vokatá B., Bačáková L., Švorčík V., Kolská Z. Influence of UV Irradiation and Subsequent Chemical Grafting on the Surface Properties of Cellulose. Cellulose. 2022;29:1405–1418. doi: 10.1007/s10570-022-04426-8. DOI
Shin J., Liu X., Chikthimmah N., Lee Y.S. Polymer Surface Modification Using UV Treatment for Attachment of Natamycin and the Potential Applications for Conventional Food Cling Wrap (LDPE) Appl. Surf. Sci. 2016;386:276–284. doi: 10.1016/j.apsusc.2016.05.158. DOI
Razavizadeh M., Jamshidi M. Adhesion of Nitrile Rubber to UV-Assisted Surface Chemical Modified PET Fabric, Part II: Interfacial Characterization of MDI Grafted PET. Appl. Surf. Sci. 2016;379:114–123. doi: 10.1016/j.apsusc.2016.04.051. DOI
Kolska Z., Benkocka M., Knapova T., Slepickova Kasalkova N., Kolarova K., Slepicka P., Svorcik V. Surface Treatment of Materials for Variable Applications and Surface Properties and Characterization. Manuf. Technol. 2016;16:949–955. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/5/949. DOI
Kordoghli B., Khiari R., Mhenni M.F., Sakli F., Belgacem M.N. Sulfonation of Polyester Fabrics by Gaseous Sulfur Oxide Activated by UV Irradiation. Appl. Surf. Sci. 2012;258:9737–9741. doi: 10.1016/j.apsusc.2012.06.021. DOI
Kordoghli B., Khiari R., Dhaouadi H., Belgacem M.N., Mhenni M.F., Sakli F. UV Irradiation-Assisted Grafting of Poly(Ethylene Terephthalate) Fabrics. Colloids Surf. A Physicochem. Eng. Asp. 2014;441:606–613. doi: 10.1016/j.colsurfa.2013.10.032. DOI
Tiznado-Orozco G.E., Reyes-Gasga J., Elefterie F., Beyens C., Maschke U., Brès E.F. Wettability Modification of Human Tooth Surface by Water and UV and Electron-Beam Radiation. Mater. Sci. Eng. C. 2015;57:133–146. doi: 10.1016/j.msec.2015.06.054. PubMed DOI
Neubertová V., Vokatá B., Švorčík V., Kolská Z. Photodegradation and Chemical Grafting of PEEK and PET Foils for Antibacterial Activity. Mater. Lett. 2023;343:134369. doi: 10.1016/j.matlet.2023.134369. DOI
Vesel A., Zaplotnik R., Mozetič M., Recek N. Advanced Method for Efficient Functionalization of Polymers by Intermediate Free-Radical Formation with Vacuum-Ultraviolet Radiation and Producing Superhydrophilic Surfaces. J. Photochem. Photobiol. A Chem. 2023;443:114876. doi: 10.1016/j.jphotochem.2023.114876. DOI
Vatanpour V., Esmaeili M., Safarpour M., Ghadimi A., Adabi J. Synergistic Effect of Carboxylated-MWCNTs on the Performance of Acrylic Acid UV-Grafted Polyamide Nanofiltration Membranes. React. Funct. Polym. 2019;134:74–84. doi: 10.1016/j.reactfunctpolym.2018.11.010. DOI
Irshadeen I.M., Walden S.L., Wegener M., Truong V.X., Frisch H., Blinco J.P., Barner-Kowollik C. Action Plots in Action: In-Depth Insights into Photochemical Reactivity. J. Am. Chem. Soc. 2021;143:21113–21126. doi: 10.1021/jacs.1c09419. PubMed DOI
Aziz S.B., Ahmed H.M., Hussein A.M., Fathulla A.B., Wsw R.M., Hussein R.T. Tuning the Absorption of Ultraviolet Spectra and Optical Parameters of Aluminum Doped PVA Based Solid Polymer Composites. J. Mater. Sci. Mater. Electron. 2015;26:8022–8028. doi: 10.1007/s10854-015-3457-6. DOI
Ul Ahad I., Bartnik A., Fiedorowicz H., Kostecki J., Korczyc B., Ciach T., Brabazon D. Surface Modification of Polymers for Biocompatibility via Exposure to Extreme Ultraviolet Radiation: Surface Modification of Polymers for Biocompatibility. J. Biomed. Mater. Res. 2014;102:3298–3310. doi: 10.1002/jbm.a.34958. PubMed DOI
Deng J., Wang L., Liu L., Yang W. Developments and New Applications of UV-Induced Surface Graft Polymerizations. Prog. Polym. Sci. 2009;34:156–193. doi: 10.1016/j.progpolymsci.2008.06.002. DOI
Hamelmann N.M., Paulusse J.M.J. Single-Chain Polymer Nanoparticles in Biomedical Applications. J. Control. Release. 2023;356:26–42. doi: 10.1016/j.jconrel.2023.02.019. PubMed DOI
Wang S., Wang Z., Li J., Li L., Hu W. Surface-Grafting Polymers: From Chemistry to Organic Electronics. Mater. Chem. Front. 2020;4:692–714. doi: 10.1039/C9QM00450E. DOI
Dorčák V., Kroutil O., Kabeláč M., Janata J., Vacek J. Cysteamine Chemisorption at Mercury–Solution Interfaces in the Context of Redox and Microdissociation Equilibria. Langmuir. 2024;40:6253–6260. doi: 10.1021/acs.langmuir.3c03744. PubMed DOI PMC
Alonzi T., Aiello A., Sali M., Delogu G., Villella V.R., Raia V., Nicastri E., Piacentini M., Goletti D. Multiple antimicrobial and immune-modulating activities of cysteamine in infectious diseases. Biomed. Pharmacother. 2024;178:117153. doi: 10.1016/j.biopha.2024.117153. PubMed DOI
Shekhar S., Shrivastava S., Kabeer Kurukkan A., Sagarika P., Pramanik S., Sahi C., Mukherjee S. Cysteamine Capped Silver Nanoclusters: A Potential Antimicrobial Agent for Antibiotic-Resistant Bacteria. J. Photochem. Photobiol. A Chem. 2023;436:114403. doi: 10.1016/j.jphotochem.2022.114403. DOI
Zheng Y., Miao J., Zhang F., Cai C., Koh A., Simmons T.J., Mousa S.A., Linhardt R.J. Surface Modification of a Polyethylene Film for Anticoagulant and Antimicrobial Catheter. React. Funct. Polym. 2016;100:142–150. doi: 10.1016/j.reactfunctpolym.2016.01.013. PubMed DOI PMC
He S., Hou M., Shan S., Li R., Yu N., Lin Y., Zhang A. Synthesis and Anti-Bacterial/Fungal Activities of Amphiphilic Polysiloxanes Primary Ammonium Salts. React. Funct. Polym. 2023;183:105495. doi: 10.1016/j.reactfunctpolym.2022.105495. DOI
Álvarez-Paino M., Muñoz-Bonilla A., Fernández-García M. Antimicrobial Polymers in the Nano-World. Nanomaterials. 2017;7:48. doi: 10.3390/nano7020048. PubMed DOI PMC
Timofeeva L., Kleshcheva N. Antimicrobial Polymers: Mechanism of Action, Factors of Activity, and Applications. Appl. Microbiol. Biotechnol. 2011;89:475–492. doi: 10.1007/s00253-010-2920-9. PubMed DOI
ElGammal E.A.M.A.E., Mahran A.H., El Ashry S.H., Fahmy S.H. The Cytotoxic Effect of Cysteamine and Its Combinations with Various Endodontic Intracanal Medications on Fibroblast Cells: In Vitro Study. Bull. Natl. Res. Cent. 2023;47:74. doi: 10.1186/s42269-023-01049-2. DOI
Kienberger J., Noormofidi N., Mühlbacher I., Klarholz I., Harms C., Slugovc C. Antimicrobial Equipment of Poly(Isoprene) Applying Thiol-ene Chemistry. J. Polym. Sci. A Polym. Chem. 2012;50:2236–2243. doi: 10.1002/pola.26001. DOI
Palencia M.S., Lerma T.A., Combatt E.M. Hydrogels Based in Cassava Starch with Antibacterial Activity for Controlled Release of Cysteamine-Silver Nanostructured Agents. CCB. 2017;11:28–35. doi: 10.2174/2212796810666161108152319. DOI
Sun J., Ma X., Li R., Lin M., Shu L., Chen X. Antimicrobial Nanostructured Assemblies with Extremely Low Toxicity and Potent Activity to Eradicate Staphylococcus Aureus Biofilms. Small. 2023;19:2204039. doi: 10.1002/smll.202204039. PubMed DOI
Namata F., Sanz Del Olmo N., Molina N., Malkoch M. Synthesis and Characterization of Amino-Functional Polyester Dendrimers Based On Bis-MPA with Enhanced Hydrolytic Stability and Inherent Antibacterial Properties. Biomacromolecules. 2023;24:858–867. doi: 10.1021/acs.biomac.2c01286. PubMed DOI PMC
Stenström P., Hjorth E., Zhang Y., Andrén O.C.J., Guette-Marquet S., Schultzberg M., Malkoch M. Synthesis and In Vitro Evaluation of Monodisperse Amino-Functional Polyester Dendrimers with Rapid Degradability and Antibacterial Properties. Biomacromolecules. 2017;18:4323–4330. doi: 10.1021/acs.biomac.7b01364. PubMed DOI
Ergene C., Palermo E.F. Self-Immolative Polymers with Potent and Selective Antibacterial Activity by Hydrophilic Side Chain Grafting. J. Mater. Chem. B. 2018;6:7217–7229. doi: 10.1039/C8TB01632A. PubMed DOI
Water Quality—Freshwater Algal Growth Inhibition Test with Unicellular Green Algae. ISO; Geneva, Switzerland: 2012.
Vosmanská V., Kolářová K., Rimpelová S., Kolská Z., Švorčík V. Antibacterial Wound Dressing: Plasma Treatment Effect on Chitosan Impregnation and in Situ Synthesis of Silver Chloride on Cellulose Surface. RSC Adv. 2015;5:17690–17699. doi: 10.1039/C4RA16296J. DOI
Slepicka P., Kasalkova N.S., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-Structured and Functionalized Surfaces for Cytocompatibility Improvement and Bactericidal Action. Biotechnol. Adv. 2015;33:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. PubMed DOI
Kolarova K., Vosmanska V., Rimpelova S., Ulbrich P., Svorcik V. Silver Nanoparticles Stabilized Using Chitosan Films: Preparation, Properties and Antibacterial Activity. J. Nanosci. Nanotechnol. 2015;15:10120–10126. doi: 10.1166/jnn.2015.11697. PubMed DOI
Fraser-Pitt D.J., Mercer D.K., Smith D., Kowalczuk A., Robertson J., Lovie E., Perenyi P., Cole M., Doumith M., Hill R.L.R., et al. Cysteamine, an Endogenous Aminothiol, and Cystamine, the Disulfide Product of Oxidation, Increase Pseudomonas Aeruginosa Sensitivity to Reactive Oxygen and Nitrogen Species and Potentiate Therapeutic Antibiotics against Bacterial Infection. Infect. Immun. 2018;86:e00947-17. doi: 10.1128/IAI.00947-17. PubMed DOI PMC
Novák D., Vrba J., Zatloukalová M., Roubalová L., Stolarczyk K., Dorčák V., Vacek J. Cysteamine Assay for the Evaluation of Bioactive Electrophiles. Free Radic. Biol. Med. 2021;164:381–389. doi: 10.1016/j.freeradbiomed.2021.01.007. PubMed DOI
Li W., Ju B., Zhang S. Preparation of Cysteamine-Modified Cellulose Nanocrystal Adsorbent for Removal of Mercury Ions from Aqueous Solutions. Cellulose. 2019;26:4971–4985. doi: 10.1007/s10570-019-02420-1. DOI
Kolská Z., Polanský R., Prosr P., Zemanová M., Ryšánek P., Slepička P., Švorčík V. Properties of Polyamide Nanofibers Treated by UV-A Radiation. Mater. Lett. 2018;214:264–267. doi: 10.1016/j.matlet.2017.12.029. DOI
Ferry L., Vigier G., Bessede J.L. Effect of Ultraviolet Radiation on Polytetrafluoroethylene: Morphology Influence. Polym. Adv. Technol. 1996;7:493–500. doi: 10.1002/(SICI)1099-1581(199605)7:5/6<493::AID-PAT536>3.0.CO;2-D. DOI
Lupínková S., Benkocká M., Ryšánek P., Kolská Z. Enhancing Immobilization of Iron Oxide Particles on Various Polymer Surfaces. Polym. Eng. Sci. 2022;62:1463–1472. doi: 10.1002/pen.25935. DOI
Kolská Z., Řezníčková A., Švorčík V. Surface Characterization of Polymer Foils. e-Polymers. 2012;12:960–972. doi: 10.1515/epoly.2012.12.1.960. DOI
Silovská T., Matoušek J., Fajstavr D., Švorčík V., Kolská Z. Antimicrobial Effect of Polymers Grafted with Cinnamaldehyde. Mater. Lett. 2020;277:128274. doi: 10.1016/j.matlet.2020.128274. DOI
Yousif E., Ahmed D.S., Ahmed A.A., Hameed A.S., Muhamed S.H., Yusop R.M., Redwan A., Mohammed S.A. The Effect of High UV Radiation Exposure Environment on the Novel PVC Polymers. Environ. Sci. Pollut. Res. 2019;26:9945–9954. doi: 10.1007/s11356-019-04323-x. PubMed DOI
Zaplotnik R., Vesel A. Effect of VUV Radiation on Surface Modification of Polystyrene Exposed to Atmospheric Pressure Plasma Jet. Polymers. 2020;12:1136. doi: 10.3390/polym12051136. PubMed DOI PMC
Wu S., Zuber F., Maniura-Weber K., Brugger J., Ren Q. Nanostructured Surface Topographies Have an Effect on Bactericidal Activity. J. Nanobiotechnol. 2018;16:20. doi: 10.1186/s12951-018-0347-0. PubMed DOI PMC
Majhi S., Mishra A. Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth. In: Snigdha S., Thomas S., Radhakrishnan E.K., Kalarikkal N., editors. Engineered Antimicrobial Surfaces. Springer; Singapore: 2020. pp. 109–121. (Materials Horizons: From Nature to Nanomaterials).
Finlay J.A. The Influence of Surface Wettability on the Adhesion Strength of Settled Spores of the Green Alga Enteromorpha and the Diatom Amphora. Integr. Comp. Biol. 2002;42:1116–1122. doi: 10.1093/icb/42.6.1116. PubMed DOI
Wu J., Zhang C., Xu S., Pang X., Cai G., Wang J. Preparation of Zwitterionic Polymer-Functionalized Cotton Fabrics and the Performance of Anti-Biofouling and Long-Term Biofilm Resistance. Colloid Interface Sci. Commun. 2018;24:98–104. doi: 10.1016/j.colcom.2018.02.001. DOI
Ma W., Soroush A., Luong T.V.A., Rahaman M.S. Cysteamine- and Graphene Oxide-Mediated Copper Nanoparticle Decoration on Reverse Osmosis Membrane for Enhanced Anti-Microbial Performance. J. Colloid Interface Sci. 2017;501:330–340. doi: 10.1016/j.jcis.2017.04.069. PubMed DOI
Tsai Y.-C., Tang C.-C., Wu H.-H., Wang Y.-S., Chen Y.-F. Antibacterial Activity of Cysteine-Derived Cationic Dipeptides. Int. J. Pept. Res. Ther. 2020;26:1107–1114. doi: 10.1007/s10989-019-09913-4. DOI