Cysteamine Chemisorption at Mercury-Solution Interfaces in the Context of Redox and Microdissociation Equilibria

. 2024 Mar 26 ; 40 (12) : 6253-6260. [epub] 20240315

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38489512

The redox behavior and chemisorption of cysteamine (CA) at a charged mercury surface are described, with an emphasis on its acid-base properties supported by molecular dynamics and quantum mechanical calculations. It was found that CA forms chemisorbed layers on the surface of the mercury electrode. The formation of Hg-CA complexes is connected to mercury disproportionation, as reflected in peaks SII and SI at potentials higher than the electrode potential of zero charge (p.z.c.). Both the process of chemisorption of CA and its consequent redox transformation are proton-dependent. Also, depending on the protonation of CA, the formation of typical populations of chemisorbed conformers can be observed. In addition, cystamine (CA disulfide dimer) can be reduced on the mercury surface. Between the potentials of this reduction and peak SI, the p.z.c. of the electrode used can be found. Furthermore, CA can serve as an LMW catalyst for hydrogen evolution. The mechanistic insights presented here can be used for follow-up research on CA chemisorption and targeted modification of other metallic surfaces.

Zobrazit více v PubMed

Jeitner T. M.Cofactors and Coenzymes | Cysteamine. In Encyclopedia of Biological Chemistry III, 3rd ed.; Jez J., Ed.; Elsevier, 2021; pp 346–355.

Paul B. D.; Snyder S. H. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Front. Neurol. 2019, 10, 1315.10.3389/fneur.2019.01315. PubMed DOI PMC

Ionescu R. E. Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers-An Overview on the Construction of Biosensors with Different Transductions. Biosensors 2022, 12 (8), 581.10.3390/bios12080581. PubMed DOI PMC

Yap P. L.; Kabiri S.; Tran D. N. H.; Losic D. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS Appl. Mater. Interfaces 2019, 11 (6), 6350–6362. 10.1021/acsami.8b17131. PubMed DOI

Szychowski B.; Leng H.; Pelton M.; Daniel M.-C. Controlled etching and tapering of Au nanorods using cysteamine. Nanoscale 2018, 10 (35), 16830–16838. 10.1039/C8NR05325A. PubMed DOI

Tan S. F.; Anand U.; Mirsaidov U. Interactions and Attachment Pathways between Functionalized Gold Nanorods. ACS Nano 2017, 11 (2), 1633–1640. 10.1021/acsnano.6b07398. PubMed DOI

Liu Z.; Xiong L.; Ouyang G.; Ma L.; Sahi S.; Wang K.; Lin L.; Huang H.; Miao X.; Chen W.; Wen Y. Investigation of Copper Cysteamine Nanoparticles as a New Type of Radiosensitiers for Colorectal Carcinoma Treatment. Sci. Rep. 2017, 7 (1), 9290.10.1038/s41598-017-09375-y. PubMed DOI PMC

Chevalier E. C.; Purdy W. C. The polarographic determination of thioethanolamine and its disulfide in the presence of one another. Anal. Chim. Acta 1960, 23, 574–576. 10.1016/S0003-2670(60)80130-4. DOI

Asthana M.; Kapoor R. C.; Nigam H. L. Polarography of β-mercapto-ethylamine hydrochloride and its disulphide dimer. Electrochim. Acta 1966, 11 (11), 1587–1596. 10.1016/0013-4686(66)80073-7. DOI

Stricks W.; Frischmann J. K.; Mueller R. G. Polarography of Mercaptoalkyl Compounds and Their Disulfides. J. Electrochem. Soc. 1962, 109 (6), 518–521. 10.1149/1.2425460. DOI

Kolthoff I. M.; Mader P. Diffusion controlled polarographic catalytic hydrogen (Brdicka) currents in systems containing cobalt(II), cysteine-like compounds, and alkaline buffers. Anal. Chem. 1970, 42 (14), 1762–1769. 10.1021/ac50160a047. DOI

Kolthoff I. M.; Mader P.; Khalafalla S. E. Kinetic waves in systems containing cobalt(II) and cysteine-like compounds: Prewave of cobalt in borate medium. J. Electroanal. Chem. 1968, 18 (3), 315–327. 10.1016/S0022-0728(68)80262-1. DOI

Mader P.; Kolthoff I. M. Kinetic waves in systems containing cobalt(II) and cysteine-like compounds. Adsorption phenomena in the cystamine-cobalt(II) system in borax medium. Anal. Chem. 1969, 41 (7), 932–935. 10.1021/ac60276a009. DOI

Novák D.; Vrba J.; Zatloukalová M.; Roubalová L.; Stolarczyk K.; Dorčák V.; Vacek J. Cysteamine assay for the evaluation of bioactive electrophiles. Free Radic.Biol. Med. 2021, 164, 381–389. 10.1016/j.freeradbiomed.2021.01.007. PubMed DOI

Dorčák V.; Mader P.; Veselá V.; Fedurco M.; Šestáková I. Oxidizability of cysteine and short cysteine-containing peptides by molecular oxygen. Chem. Anal. 2007, 52 (6), 979–988.

Heyrovský M.; Mader P.; Vavřička S.; Veselá V.; Fedurco M. The anodic reactions at mercury electrodes due to cysteine. J. Electroanal. Chem. 1997, 430 (1), 103–117. 10.1016/S0022-0728(97)00103-4. DOI

Paleček E.; Heyrovský M.; Dorčák V. J. Heyrovský’s Oscillographic Polarography. Roots of Present Chronopotentiometric Analysis of Biomacromolecules. Electroanalysis 2018, 30 (7), 1259–1270. 10.1002/elan.201800109. DOI

Sęk S.; Vacek J.; Dorčák V. Electrochemistry of peptides. Curr. Opin. Electrochem. 2019, 14, 166–172. 10.1016/j.coelec.2019.03.002. DOI

West R. M.; Janata J. Praise of mercury. J. Electroanal. Chem. 2020, 858, 113773.10.1016/j.jelechem.2019.113773. DOI

Mirzahosseini A.; Noszál B. The species- and site-specific acid–base properties of biological thiols and their homodisulfides. J. Pharm. Biomed. Anal. 2014, 95, 184–192. 10.1016/j.jpba.2014.02.023. PubMed DOI

Kroutil O.; Kabeláč M.; Dorčák V.; Vacek J. Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study. Electroanalysis 2019, 31 (10), 2032–2040. 10.1002/elan.201900314. DOI

Bosio L.; Cortes R.; Segaud C. X-ray diffraction study of liquid mercury over temperature range 173 to 473 K. J. Chem. Phys. 1979, 71 (9), 3595–3600. 10.1063/1.438817. DOI

Böcker J.; Nazmutdinov R. R.; Spohr E.; Heinzinger K. Molecular dynamics simulation studies of the mercury-water interface. Surf. Sci. 1995, 335, 372–377. 10.1016/0039-6028(95)00408-4. DOI

Kuss J.; Holzmann J.; Ludwig R. An Elemental Mercury Diffusion Coefficient for Natural Waters Determined by Molecular Dynamics Simulation. Environ. Sci. Technol. 2009, 43 (9), 3183–3186. 10.1021/es8034889. PubMed DOI

Zhang J.; Bilic̅ A.; Reimers J. R.; Hush N. S.; Ulstrup J. Coexistence of Multiple Conformations in Cysteamine Monolayers on Au(111). J. Phys. Chem. B 2005, 109 (32), 15355–15367. 10.1021/jp050797m. PubMed DOI

Hirano Y.; Okimoto N.; Kadohira I.; Suematsu M.; Yasuoka K.; Yasui M. Molecular mechanisms of how mercury inhibits water permeation through aquaporin-1: understanding by molecular dynamics simulation. Biophys. J. 2010, 98 (8), 1512–1519. 10.1016/j.bpj.2009.12.4310. PubMed DOI PMC

Cornell W. D.; Cieplak P.; Bayly C. I.; Kollman P. A. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc. 1993, 115 (21), 9620–9631. 10.1021/ja00074a030. DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. A 1987, 91 (24), 6269–6271. 10.1021/j100308a038. DOI

Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112 (30), 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Vemparala S.; Kalia R. K.; Nakano A.; Vashishta P. Electric field induced switching of poly(ethylene glycol) terminated self-assembled monolayers: A parallel molecular dynamics simulation. J. Chem. Phys. 2004, 121 (11), 5427–5433. 10.1063/1.1781120. PubMed DOI

Xie Y.; Liao C.; Zhou J. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Biophys. Chem. 2013, 179, 26–34. 10.1016/j.bpc.2013.05.002. PubMed DOI

Yeh I.-C.; Berkowitz M. L. Ewald summation for systems with slab geometry. J. Chem. Phys. 1999, 111 (7), 3155–3162. 10.1063/1.479595. DOI

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Humphrey W.; Dalke A.; Schulten K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14 (1), 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI

Scalmani G.; Frisch M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132 (11), 114110.10.1063/1.3359469. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, revision B.01; Gaussian, Inc.: Wallingford, CT, 2016.

Heyrovský M.; Mader P.; Veselá V.; Fedurco M. The reactions of cystine at mercury electrodes. J. Electroanal. Chem. 1994, 369 (1–2), 53–70. 10.1016/0022-0728(94)87082-9. DOI

Aogaki R.; Kitazawa K.; Fueki K.; Mukaibo T. Theory of polarographic maximum current—I. Conditions for the onset of hydrodynamic instability in a liquid metal electrode system. Electrochim. Acta 1978, 23 (9), 867–874. 10.1016/0013-4686(78)87008-X. DOI

Ginzburg G.; Becker J. Y.; Lederman E. “Inverted” peaks and current oscillations in cyclic voltammetry. Electrochim. Acta 1981, 26 (7), 851–856. 10.1016/0013-4686(81)85045-1. DOI

Islam M. M.; Alam M. T.; Okajima T.; Ohsaka T. Nonlinear Phenomena at Mercury Hg Electrode/Room-Temperature Ionic Liquid (RTIL) Interfaces: Polarographic Streaming Maxima and Current Oscillation. J. Phys. Chem. B 2007, 111 (44), 12849–12856. 10.1021/jp075749b. PubMed DOI

Heyrovský J.; Kůta J.. Principles of Polarography; Elsevier, 1965; pp 429–450.

Havran L.; Vacek J.; Dorčák V. Free and bound histidine in reactions at mercury electrode. J. Electroanal. Chem. 2022, 916, 116336.10.1016/j.jelechem.2022.116336. DOI

Paleček E.; Tkáč J.; Bartošík M.; Bertók T.; Ostatná V.; Paleček J. Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chem. Rev. 2015, 115 (5), 2045–2108. 10.1021/cr500279h. PubMed DOI PMC

Mader P.; Veselá V.; Dorčák V.; Heyrovský M. The ″presodium″ hydrogen evolution at the dropping mercury electrode catalysed by simple cysteine peptides. Collect. Czech. Chem. Commun. 2001, 66 (3), 397–410. 10.1135/cccc20010397. DOI

Paleček E.; Postbieglová I. Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer. J. Electroanal. Chem. Interf. Electrochem. 1986, 214 (1–2), 359–371. 10.1016/0022-0728(86)80108-5. DOI

Bruckner-Lea C.; Kimmel R. J.; Janata J.; Conroy J. F. T.; Caldwell K. Electrochemical studies of octadecanethiol and octanethiol films on variable surface area mercury sessile drops. Electrochim. Acta 1995, 40 (18), 2897–2904. 10.1016/0013-4686(95)00219-5. DOI

Heyrovský M.Catalytic Hydrogen Evolution at Mercury Electrodes from Solutions of Peptides and Proteins. In Perspectives in Bioanalysis; Paleček E.; Scheller F.; Wang J., Eds.; Elsevier, 2005; Vol. 1, pp 657–687.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae

. 2025 Jan 20 ; 17 (2) : . [epub] 20250120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...