Cysteamine Chemisorption at Mercury-Solution Interfaces in the Context of Redox and Microdissociation Equilibria
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38489512
PubMed Central
PMC10976880
DOI
10.1021/acs.langmuir.3c03744
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The redox behavior and chemisorption of cysteamine (CA) at a charged mercury surface are described, with an emphasis on its acid-base properties supported by molecular dynamics and quantum mechanical calculations. It was found that CA forms chemisorbed layers on the surface of the mercury electrode. The formation of Hg-CA complexes is connected to mercury disproportionation, as reflected in peaks SII and SI at potentials higher than the electrode potential of zero charge (p.z.c.). Both the process of chemisorption of CA and its consequent redox transformation are proton-dependent. Also, depending on the protonation of CA, the formation of typical populations of chemisorbed conformers can be observed. In addition, cystamine (CA disulfide dimer) can be reduced on the mercury surface. Between the potentials of this reduction and peak SI, the p.z.c. of the electrode used can be found. Furthermore, CA can serve as an LMW catalyst for hydrogen evolution. The mechanistic insights presented here can be used for follow-up research on CA chemisorption and targeted modification of other metallic surfaces.
Zobrazit více v PubMed
Jeitner T. M.Cofactors and Coenzymes | Cysteamine. In Encyclopedia of Biological Chemistry III, 3rd ed.; Jez J., Ed.; Elsevier, 2021; pp 346–355.
Paul B. D.; Snyder S. H. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Front. Neurol. 2019, 10, 1315.10.3389/fneur.2019.01315. PubMed DOI PMC
Ionescu R. E. Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers-An Overview on the Construction of Biosensors with Different Transductions. Biosensors 2022, 12 (8), 581.10.3390/bios12080581. PubMed DOI PMC
Yap P. L.; Kabiri S.; Tran D. N. H.; Losic D. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS Appl. Mater. Interfaces 2019, 11 (6), 6350–6362. 10.1021/acsami.8b17131. PubMed DOI
Szychowski B.; Leng H.; Pelton M.; Daniel M.-C. Controlled etching and tapering of Au nanorods using cysteamine. Nanoscale 2018, 10 (35), 16830–16838. 10.1039/C8NR05325A. PubMed DOI
Tan S. F.; Anand U.; Mirsaidov U. Interactions and Attachment Pathways between Functionalized Gold Nanorods. ACS Nano 2017, 11 (2), 1633–1640. 10.1021/acsnano.6b07398. PubMed DOI
Liu Z.; Xiong L.; Ouyang G.; Ma L.; Sahi S.; Wang K.; Lin L.; Huang H.; Miao X.; Chen W.; Wen Y. Investigation of Copper Cysteamine Nanoparticles as a New Type of Radiosensitiers for Colorectal Carcinoma Treatment. Sci. Rep. 2017, 7 (1), 9290.10.1038/s41598-017-09375-y. PubMed DOI PMC
Chevalier E. C.; Purdy W. C. The polarographic determination of thioethanolamine and its disulfide in the presence of one another. Anal. Chim. Acta 1960, 23, 574–576. 10.1016/S0003-2670(60)80130-4. DOI
Asthana M.; Kapoor R. C.; Nigam H. L. Polarography of β-mercapto-ethylamine hydrochloride and its disulphide dimer. Electrochim. Acta 1966, 11 (11), 1587–1596. 10.1016/0013-4686(66)80073-7. DOI
Stricks W.; Frischmann J. K.; Mueller R. G. Polarography of Mercaptoalkyl Compounds and Their Disulfides. J. Electrochem. Soc. 1962, 109 (6), 518–521. 10.1149/1.2425460. DOI
Kolthoff I. M.; Mader P. Diffusion controlled polarographic catalytic hydrogen (Brdicka) currents in systems containing cobalt(II), cysteine-like compounds, and alkaline buffers. Anal. Chem. 1970, 42 (14), 1762–1769. 10.1021/ac50160a047. DOI
Kolthoff I. M.; Mader P.; Khalafalla S. E. Kinetic waves in systems containing cobalt(II) and cysteine-like compounds: Prewave of cobalt in borate medium. J. Electroanal. Chem. 1968, 18 (3), 315–327. 10.1016/S0022-0728(68)80262-1. DOI
Mader P.; Kolthoff I. M. Kinetic waves in systems containing cobalt(II) and cysteine-like compounds. Adsorption phenomena in the cystamine-cobalt(II) system in borax medium. Anal. Chem. 1969, 41 (7), 932–935. 10.1021/ac60276a009. DOI
Novák D.; Vrba J.; Zatloukalová M.; Roubalová L.; Stolarczyk K.; Dorčák V.; Vacek J. Cysteamine assay for the evaluation of bioactive electrophiles. Free Radic.Biol. Med. 2021, 164, 381–389. 10.1016/j.freeradbiomed.2021.01.007. PubMed DOI
Dorčák V.; Mader P.; Veselá V.; Fedurco M.; Šestáková I. Oxidizability of cysteine and short cysteine-containing peptides by molecular oxygen. Chem. Anal. 2007, 52 (6), 979–988.
Heyrovský M.; Mader P.; Vavřička S.; Veselá V.; Fedurco M. The anodic reactions at mercury electrodes due to cysteine. J. Electroanal. Chem. 1997, 430 (1), 103–117. 10.1016/S0022-0728(97)00103-4. DOI
Paleček E.; Heyrovský M.; Dorčák V. J. Heyrovský’s Oscillographic Polarography. Roots of Present Chronopotentiometric Analysis of Biomacromolecules. Electroanalysis 2018, 30 (7), 1259–1270. 10.1002/elan.201800109. DOI
Sęk S.; Vacek J.; Dorčák V. Electrochemistry of peptides. Curr. Opin. Electrochem. 2019, 14, 166–172. 10.1016/j.coelec.2019.03.002. DOI
West R. M.; Janata J. Praise of mercury. J. Electroanal. Chem. 2020, 858, 113773.10.1016/j.jelechem.2019.113773. DOI
Mirzahosseini A.; Noszál B. The species- and site-specific acid–base properties of biological thiols and their homodisulfides. J. Pharm. Biomed. Anal. 2014, 95, 184–192. 10.1016/j.jpba.2014.02.023. PubMed DOI
Kroutil O.; Kabeláč M.; Dorčák V.; Vacek J. Structures of Peptidic H-wires at Mercury Surface: Molecular Dynamics Study. Electroanalysis 2019, 31 (10), 2032–2040. 10.1002/elan.201900314. DOI
Bosio L.; Cortes R.; Segaud C. X-ray diffraction study of liquid mercury over temperature range 173 to 473 K. J. Chem. Phys. 1979, 71 (9), 3595–3600. 10.1063/1.438817. DOI
Böcker J.; Nazmutdinov R. R.; Spohr E.; Heinzinger K. Molecular dynamics simulation studies of the mercury-water interface. Surf. Sci. 1995, 335, 372–377. 10.1016/0039-6028(95)00408-4. DOI
Kuss J.; Holzmann J.; Ludwig R. An Elemental Mercury Diffusion Coefficient for Natural Waters Determined by Molecular Dynamics Simulation. Environ. Sci. Technol. 2009, 43 (9), 3183–3186. 10.1021/es8034889. PubMed DOI
Zhang J.; Bilic̅ A.; Reimers J. R.; Hush N. S.; Ulstrup J. Coexistence of Multiple Conformations in Cysteamine Monolayers on Au(111). J. Phys. Chem. B 2005, 109 (32), 15355–15367. 10.1021/jp050797m. PubMed DOI
Hirano Y.; Okimoto N.; Kadohira I.; Suematsu M.; Yasuoka K.; Yasui M. Molecular mechanisms of how mercury inhibits water permeation through aquaporin-1: understanding by molecular dynamics simulation. Biophys. J. 2010, 98 (8), 1512–1519. 10.1016/j.bpj.2009.12.4310. PubMed DOI PMC
Cornell W. D.; Cieplak P.; Bayly C. I.; Kollman P. A. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc. 1993, 115 (21), 9620–9631. 10.1021/ja00074a030. DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. A 1987, 91 (24), 6269–6271. 10.1021/j100308a038. DOI
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112 (30), 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Vemparala S.; Kalia R. K.; Nakano A.; Vashishta P. Electric field induced switching of poly(ethylene glycol) terminated self-assembled monolayers: A parallel molecular dynamics simulation. J. Chem. Phys. 2004, 121 (11), 5427–5433. 10.1063/1.1781120. PubMed DOI
Xie Y.; Liao C.; Zhou J. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Biophys. Chem. 2013, 179, 26–34. 10.1016/j.bpc.2013.05.002. PubMed DOI
Yeh I.-C.; Berkowitz M. L. Ewald summation for systems with slab geometry. J. Chem. Phys. 1999, 111 (7), 3155–3162. 10.1063/1.479595. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Humphrey W.; Dalke A.; Schulten K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14 (1), 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI
Scalmani G.; Frisch M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132 (11), 114110.10.1063/1.3359469. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, revision B.01; Gaussian, Inc.: Wallingford, CT, 2016.
Heyrovský M.; Mader P.; Veselá V.; Fedurco M. The reactions of cystine at mercury electrodes. J. Electroanal. Chem. 1994, 369 (1–2), 53–70. 10.1016/0022-0728(94)87082-9. DOI
Aogaki R.; Kitazawa K.; Fueki K.; Mukaibo T. Theory of polarographic maximum current—I. Conditions for the onset of hydrodynamic instability in a liquid metal electrode system. Electrochim. Acta 1978, 23 (9), 867–874. 10.1016/0013-4686(78)87008-X. DOI
Ginzburg G.; Becker J. Y.; Lederman E. “Inverted” peaks and current oscillations in cyclic voltammetry. Electrochim. Acta 1981, 26 (7), 851–856. 10.1016/0013-4686(81)85045-1. DOI
Islam M. M.; Alam M. T.; Okajima T.; Ohsaka T. Nonlinear Phenomena at Mercury Hg Electrode/Room-Temperature Ionic Liquid (RTIL) Interfaces: Polarographic Streaming Maxima and Current Oscillation. J. Phys. Chem. B 2007, 111 (44), 12849–12856. 10.1021/jp075749b. PubMed DOI
Heyrovský J.; Kůta J.. Principles of Polarography; Elsevier, 1965; pp 429–450.
Havran L.; Vacek J.; Dorčák V. Free and bound histidine in reactions at mercury electrode. J. Electroanal. Chem. 2022, 916, 116336.10.1016/j.jelechem.2022.116336. DOI
Paleček E.; Tkáč J.; Bartošík M.; Bertók T.; Ostatná V.; Paleček J. Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chem. Rev. 2015, 115 (5), 2045–2108. 10.1021/cr500279h. PubMed DOI PMC
Mader P.; Veselá V.; Dorčák V.; Heyrovský M. The ″presodium″ hydrogen evolution at the dropping mercury electrode catalysed by simple cysteine peptides. Collect. Czech. Chem. Commun. 2001, 66 (3), 397–410. 10.1135/cccc20010397. DOI
Paleček E.; Postbieglová I. Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer. J. Electroanal. Chem. Interf. Electrochem. 1986, 214 (1–2), 359–371. 10.1016/0022-0728(86)80108-5. DOI
Bruckner-Lea C.; Kimmel R. J.; Janata J.; Conroy J. F. T.; Caldwell K. Electrochemical studies of octadecanethiol and octanethiol films on variable surface area mercury sessile drops. Electrochim. Acta 1995, 40 (18), 2897–2904. 10.1016/0013-4686(95)00219-5. DOI
Heyrovský M.Catalytic Hydrogen Evolution at Mercury Electrodes from Solutions of Peptides and Proteins. In Perspectives in Bioanalysis; Paleček E.; Scheller F.; Wang J., Eds.; Elsevier, 2005; Vol. 1, pp 657–687.