The CRISPR-Cas9 crATIC HeLa transcriptome: Characterization of a novel cellular model of ATIC deficiency and ZMP accumulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P30 CA046934
NCI NIH HHS - United States
PubMed
32939338
PubMed Central
PMC7479443
DOI
10.1016/j.ymgmr.2020.100642
PII: S2214-4269(20)30088-4
Knihovny.cz E-zdroje
- Klíčová slova
- 5-aminoimidazole-4-carboxamide ribonucleoside, (AICAr), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase, (ATIC), 5-aminoimidazole-4-carboxamide ribonucleotide, (ZMP), 5-formamido-4-imidazolecarboxamide ribonucleotide, (FAICAR), AICA-ribosiduria, AMP-activated protein kinase, (AMPK), Alzheimer's disease, Development, Purine synthesis, RNA-seq, Tuberous Sclerosis Complex 1 and 2, (TSC1 and TSC2), adenine phosphoribosyltransferase, (APRT), adenosine monophosphate, (AMP), adenosine triphosphate, (ATP), adenylosuccinate lyase, (ADSL), arachidonic acid, (AA), cyclooxygenase, (COX), cytochrome, P450 (CYP), cytosolic phospholipase A2, (cPLA2), de novo purine synthesis, (DNPS), differentially expressed gene, (DEG), false discovery rate, (FDR), fatty acid amide hydrolase, (FAAH), fetal calf macroserum, (FCM), fetal calf serum, (FCS), fragments per kilobase of exon per million reads mapped, (FPKM), gene ontology, (GO), guanosine monophosphate, (GMP), inosine monophosphate, (IMP), interferon, (INF), lipoxygenase, (LOX), mammalian Target of Rapamycin, (mTOR), minus adenine crATIC to minus adenine WT comparison, (MM), phospholipase, (PLA), phosphoribosyl pyrophosphate, (PRPP), phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase, (PAICS), plus adenine crATIC to plus adenine WT comparison, (PP), xanthine monophosphate, (XMP),
- Publikační typ
- časopisecké články MeSH
In de novo purine biosynthesis (DNPS), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (EC 2.1.2.3)/inosine monophosphate cyclohydrolase (EC 3.5.4.10) (ATIC) catalyzes the last two reactions of the pathway: conversion of 5-aminoimidazole-4-carboxamide ribonucleotide [aka Z-nucleotide monophosphate (ZMP)] to 5-formamido-4-imidazolecarboxamide ribonucleotide (FAICAR) then to inosine monophosphate (IMP). Mutations in ATIC cause an untreatable and devastating inborn error of metabolism in humans. ZMP is an adenosine monophosphate (AMP) mimetic and a known activator of AMP-activated protein kinase (AMPK). Recently, a HeLa cell line null mutant for ATIC was constructed via CRISPR-Cas9 mutagenesis. This mutant, crATIC, accumulates ZMP during purine starvation. Given that the mutant can accumulate ZMP in the absence of treatment with exogenous compounds, crATIC is likely an important cellular model of DNPS inactivation and ZMP accumulation. In the current study, we characterize the crATIC transcriptome versus the HeLa transcriptome in purine-supplemented and purine-depleted growth conditions. We report and discuss transcriptome changes with particular relevance to Alzheimer's disease and in genes relevant to lipid and fatty acid synthesis, neurodevelopment, embryogenesis, cell cycle maintenance and progression, extracellular matrix, immune function, TGFβ and other cellular processes.
Department of Biological Sciences University of Denver Denver CO 80210 USA
Eleanor Roosevelt Institute University of Denver Denver CO 80210 USA
Knoebel Institute for Healthy Aging University of Denver 2155 E Wesley Avenue Denver CO 80210 USA
Molecular and Cellular Biophysics Program University of Denver Denver CO 80210 USA
Zobrazit více v PubMed
Saxton R.A., Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–976. doi: 10.1016/j.cell.2017.02.004. PubMed DOI PMC
Jeon S.-M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 2016;48:e245. doi: 10.1038/emm.2016.81. PubMed DOI PMC
Meares G.P., Qin H., Liu Y., Holdbrooks A.T., Benveniste E.N. AMP-activated protein kinase restricts IFN-γ signaling. J. Immunol. 2013;190:372–380. doi: 10.4049/jimmunol.1202390. PubMed DOI PMC
Garcia D., Shaw R.J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell. 2017;66:789–800. doi: 10.1016/j.molcel.2017.05.032. PubMed DOI PMC
Hardie D.G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895–1908. doi: 10.1101/gad.17420111. PubMed DOI PMC
Cantó C., Jiang L.Q., Deshmukh A.S., Mataki C., Coste A., Lagouge M. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010;11:213–219. doi: 10.1016/j.cmet.2010.02.006. PubMed DOI PMC
Hawley S.A., Selbert M.A., Goldstein E.G., Edelman A.M., Carling D., Hardie D.G. 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 1995;270:27186–27191. doi: 10.1074/jbc.270.45.27186. PubMed DOI
Davies S.P., Helps N.R., Cohen P.T., Hardie D.G. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 1995;377:421–425. doi: 10.1016/0014-5793(95)01368-7. PubMed DOI
Corton J.M., Gillespie J.G., Hawley S.A., Hardie D.G. 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 1995;229:558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x. PubMed DOI
Douillet D.C., Pinson B., Ceschin J., Hürlimann H.C., Saint-Marc C., Laporte D. Metabolomics and proteomics identify the toxic form and the associated cellular binding targets of the anti-proliferative drug AICAR. J. Biol. Chem. 2018;294 doi: 10.1074/jbc.RA118.004964. jbc.RA118.004964–815. PubMed DOI PMC
Kirchner J., Brüne B., Namgaladze D. AICAR inhibits NFκB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages. Sci. Rep. 2018;8:7801. doi: 10.1038/s41598-018-26102-3. PubMed DOI PMC
Guigas B., Bertrand L., Taleux N., Foretz M., Wiernsperger N., Vertommen D. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase–independent effect on glucokinase translocation. Diabetes. 2006;55:865–874. doi: 10.2337/diabetes.55.04.06.db05-1178. PubMed DOI
Spurr I.B., Birts C.N., Cuda F., Benkovic S.J., Blaydes J.P., Tavassoli A. Targeting tumour proliferation with a small-molecule inhibitor of AICAR transformylase homodimerization. Chembiochem. 2012;13:1628–1634. doi: 10.1002/cbic.201200279. PubMed DOI PMC
Asby D.J., Cuda F., Beyaert M., Houghton F.D., Cagampang F.R., Tavassoli A. AMPK activation via modulation of de novo purine biosynthesis with an inhibitor of ATIC Homodimerization. Chem. Biol. 2015;22:838–848. doi: 10.1016/j.chembiol.2015.06.008. PubMed DOI
Marie S., Heron B., Bitoun P., Timmerman T., Van Den Berghe G., Vincent M.-F. AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. Am. J. Hum. Genet. 2004;74:1276–1281. doi: 10.1086/421475. PubMed DOI PMC
Baresova V., Krijt M., Skopova V., Souckova O., Kmoch S., Zikánová M. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol. Genet. Metab. 2016;119:270–277. doi: 10.1016/j.ymgme.2016.08.004. PubMed DOI
Holmes E.W., McDonald J.A., McCord J.M., Wyngaarden J.B., Kelley W.N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties. J. Biol. Chem. 1973;248:144–150. PubMed
Tu A.S., Patterson D. Characterization of a guanine-sensitive mutant defective in adenylo-succinate synthetase activity. J. Cell. Physiol. 1978;96:123–132. doi: 10.1002/jcp.1040960115. PubMed DOI
Mazzarino R.C., Baresova V., Zikánová M., Duval N., Wilkinson T.G., Patterson D. The CRISPR-Cas9 crADSL HeLa transcriptome: a first step in establishing a model for ADSL deficiency and SAICAR accumulation. Mol. Genet. Metab. Rep. 2019;21:100512. doi: 10.1016/j.ymgmr.2019.100512. PubMed DOI PMC
Mlecnik B., Galon J., Bindea G. Comprehensive functional analysis of large lists of genes and proteins. J. Proteome. 2018;171:2–10. doi: 10.1016/j.jprot.2017.03.016. PubMed DOI
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Fabregat A., Jupe S., Matthews L., Sidiropoulos K., Gillespie M., Garapati P. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46:D649–D655. doi: 10.1093/nar/gkx1132. PubMed DOI PMC
Maere S., Heymans K., Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–3449. doi: 10.1093/bioinformatics/bti551. PubMed DOI
Silva C.H.T.P., Silva M., Iulek J., Thiemann O.H. Structural complexes of human adenine phosphoribosyltransferase reveal novel features of the APRT catalytic mechanism. J. Biomol. Struct. Dyn. 2008;25:589–597. doi: 10.1080/07391102.2008.10507205. PubMed DOI
Watts R.W. Molecular variation in relation to purine metabolism. J. Clin. Pathol. Suppl. (R Coll Pathol.) 1974;8:48–63. PubMed PMC
Reznick R.M., Zong H., Li J., Morino K., Moore I.K., Yu H.J. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5:151–156. doi: 10.1016/j.cmet.2007.01.008. PubMed DOI PMC
Vingtdeux V., Davies P., Dickson D.W., Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol. 2010;121:337–349. doi: 10.1007/s00401-010-0759-x. PubMed DOI PMC
Erol A. An integrated and unifying hypothesis for the metabolic basis of sporadic Alzheimer’s disease. J. Alzheimers Dis. 2008;13:241–253. doi: 10.3233/jad-2008-13302. PubMed DOI
Cai Z., Yan L.-J., Li K., Quazi S.H., Zhao B. Roles of AMP-activated protein kinase in Alzheimer’s disease. NeuroMolecular Med. 2012;14:1–14. doi: 10.1007/s12017-012-8173-2. PubMed DOI
Caberlotto L., Lauria M., Nguyen T.-P., Scotti M. The central role of AMP-kinase and energy homeostasis impairment in Alzheimer’s disease: a multifactor network analysis. PLoS One. 2013;8 doi: 10.1371/journal.pone.0078919. PubMed DOI PMC
Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lamb B.T. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N. Y.) 2018;4:575–590. doi: 10.1016/j.trci.2018.06.014. PubMed DOI PMC
Thomas M.H., Pelleieux S., Vitale N., Olivier J.L. Arachidonic acid in Alzheimer's disease. J. Neurol. Neuromed. 2016;1:1–6.
Wang X., Zhu M., Hjorth E., Cortés-Toro V., Eyjolfsdottir H., Graff C. Resolution of inflammation is altered in Alzheimer's disease. Alzheimers Dement. 2015;11:40–50. doi: 10.1016/j.jalz.2013.12.024. e1–2. PubMed DOI PMC
Whittington R.A., Planel E., Terrando N. Impaired resolution of inflammation in Alzheimer’s disease: a review. Front. Immunol. 2017;8:1464. doi: 10.3389/fimmu.2017.01464. PubMed DOI PMC
Serhan C.N., Chiang N., Dalli J., Levy B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 2014;7:a016311. doi: 10.1101/cshperspect.a016311. PubMed DOI PMC
Di Scala C., Fantini J., Yahi N., Barrantes F.J., Chahinian H. Anandamide revisited: how cholesterol and ceramides control receptor-dependent and receptor-independent signal transmission pathways of a lipid neurotransmitter. Biomolecules. 2018;8 doi: 10.3390/biom8020031. PubMed DOI PMC
Ritter J.K., Li G., Xia M., Boini K. Anandamide and its metabolites: what are their roles in the kidney? Front. Biosci. (Schol. Ed.) 2016;8:264–277. doi: 10.2741/s461. PubMed DOI PMC
Hanna V.S., Hafez E.A.A. Synopsis of arachidonic acid metabolism: a review. J. Adv. Res. 2018;11:23–32. doi: 10.1016/j.jare.2018.03.005. PubMed DOI PMC
Stephenson D.T., Lemere C.A., Selkoe D.J., Clemens J.A. Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol. Dis. 1996;3:51–63. doi: 10.1006/nbdi.1996.0005. PubMed DOI
Ho L., Purohit D., Haroutunian V., Luterman J.D., Willis F., Naslund J. Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch. Neurol. 2001;58:487–492. doi: 10.1001/archneur.58.3.487. PubMed DOI
Cui J.-G., Kuroda H., Chandrasekharan N.V., Pelaez R.P., Simmons D.L., Bazan N.G. Cyclooxygenase-3 gene expression in Alzheimer hippocampus and in stressed human neural cells. Neurochem. Res. 2004;29:1731–1737. doi: 10.1023/b:nere.0000035809.70905.8a. PubMed DOI
Mohri I., Kadoyama K., Kanekiyo T., Sato Y., Kagitani-Shimono K., Saito Y. Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 2007;66:469–480. doi: 10.1097/01.jnen.0000240472.43038.27. PubMed DOI
McGeer P.L., McGeer E.G. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol. Aging. 2007;28:639–647. doi: 10.1016/j.neurobiolaging.2006.03.013. PubMed DOI
Wu Y., Zhai H., Wang Y., Li L., Wu J., Wang F. Aspirin-triggered Lipoxin A4 attenuates lipopolysaccharide-induced intracellular ROS in BV2 microglia cells by inhibiting the function of NADPH oxidase. Neurochem. Res. 2012;37:1690–1696. doi: 10.1007/s11064-012-0776-3. PubMed DOI
Decker Y., McBean G., Godson C. Lipoxin A4 inhibits IL-1beta-induced IL-8 and ICAM-1 expression in 1321N1 human astrocytoma cells. Am. J. Phys. Cell Physiol. 2009;296 doi: 10.1152/ajpcell.00380.2008. C1420–7. PubMed DOI
Medeiros R., Kitazawa M., Passos G.F., Baglietto-Vargas D., Cheng D., Cribbs D.H. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am. J. Pathol. 2013;182:1780–1789. doi: 10.1016/j.ajpath.2013.01.051. PubMed DOI PMC
Zhu M., Wang X., Hjorth E., Colas R.A., Schroeder L., Granholm A.-C. Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis. Mol. Neurobiol. 2016;53:2733–2749. doi: 10.1007/s12035-015-9544-0. PubMed DOI PMC
Kettenmann H., Hanisch U.-K., Noda M., Verkhratsky A. Physiology of microglia. Physiol. Rev. 2011;91:461–553. doi: 10.1152/physrev.00011.2010. PubMed DOI
Carniglia L., Ramírez D., Durand D., Saba J., Turati J., Caruso C. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediat. Inflamm. 2017;2017:1–23. doi: 10.1155/2017/5048616. PubMed DOI PMC
Koellhoffer E.C., McCullough L.D., Ritzel R.M. Old maids: aging and its impact on microglia function. Int. J. Mol. Sci. 2017;18 doi: 10.3390/ijms18040769. PubMed DOI PMC
Paglinawan R., Malipiero U., Schlapbach R., Frei K., Reith W., Fontana A. TGFbeta directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes. Glia. 2003;44:219–231. doi: 10.1002/glia.10286. PubMed DOI
Lieb K., Engels S., Fiebich B.L. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem. Int. 2003;42:131–137. doi: 10.1016/s0197-0186(02)00076-1. PubMed DOI
Wyss-Coray T., Lin C., Yan F., Yu G.Q., Rohde M., McConlogue L. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat. Med. 2001;7:612–618. doi: 10.1038/87945. PubMed DOI
Ritzel R.M., Patel A.R., Pan S., Crapser J., Hammond M., Jellison E. Age- and location-related changes in microglial function. Neurobiol. Aging. 2015;36:2153–2163. doi: 10.1016/j.neurobiolaging.2015.02.016. PubMed DOI
Ramírez G., Rey S., von Bernhardi R. Proinflammatory stimuli are needed for induction of microglial cell-mediated AbetaPP_{244-C} and Abeta-neurotoxicity in hippocampal cultures. J. Alzheimers Dis. 2008;15:45–59. doi: 10.3233/jad-2008-15104. PubMed DOI
von Bernhardi R., Ramírez G., Toro R., Eugenín J. Pro-inflammatory conditions promote neuronal damage mediated by amyloid precursor protein and decrease its phagocytosis and degradation by microglial cells in culture. Neurobiol. Dis. 2007;26:153–164. doi: 10.1016/j.nbd.2006.12.006. PubMed DOI
Colangelo V., Schurr J., Ball M.J., Pelaez R.P., Bazan N.G., Lukiw W.J. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 2002;70:462–473. doi: 10.1002/jnr.10351. PubMed DOI
Tichauer J.E., Flores B., Soler B., Eugenín-von Bernhardi L., Ramírez G., von Bernhardi R. Age-dependent changes on TGFβ1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav. Immun. 2014;37:187–196. doi: 10.1016/j.bbi.2013.12.018. PubMed DOI PMC
Derynck R., Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–584. doi: 10.1038/nature02006. PubMed DOI
Flores B., von Bernhardi R. Transforming growth factor beta 1 modulates amyloid beta-induced glial activation through the Smad3-dependent induction of MAPK phosphatase-1. J. Alzheimers Dis. 2012;32:417–429. PubMed
Massé K., Dale N. Purines as potential morphogens during embryonic development. Purinergic Signal. 2012;8:503–521. doi: 10.1007/s11302-012-9290-y. PubMed DOI PMC
Zimmermann H. Purinergic signaling in neural development. Semin. Cell Dev. Biol. 2011;22:194–204. doi: 10.1016/j.semcdb.2011.02.007. PubMed DOI
Fumagalli M., Lecca D., Abbracchio M.P., Ceruti S. Pathophysiological role of purines and pyrimidines in neurodevelopment: unveiling new pharmacological approaches to congenital brain diseases. Front. Pharmacol. 2017;8:941. doi: 10.3389/fphar.2017.00941. PubMed DOI PMC
Rodrigues R.J., Marques J.M., Cunha R.A. Purinergic signalling and brain development. Semin. Cell Dev. Biol. 2019;95:34–41. doi: 10.1016/j.semcdb.2018.12.001. PubMed DOI
Chan C.Y., Zhao H., Pugh R.J., Pedley A.M., French J., Jones S.A. Purinosome formation as a function of the cell cycle. Proc. Natl. Acad. Sci. 2015 doi: 10.1073/pnas.1423009112. PubMed DOI PMC
Zhao H., Chiaro C.R., Zhang L., Smith P.B., Chan C.Y., Pedley A.M. Quantitative analysis of purine nucleotides indicates purinosomes increase de novo purine biosynthesis. J. Biol. Chem. 2015 doi: 10.1074/jbc.M114.628701. PubMed DOI PMC