Transcriptome and metabolome analysis of crGART, a novel cell model of de novo purine synthesis deficiency: Alterations in CD36 expression and activity
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P30 CA046934
NCI NIH HHS - United States
PubMed
34283828
PubMed Central
PMC8291708
DOI
10.1371/journal.pone.0247227
PII: PONE-D-21-05902
Knihovny.cz E-zdroje
- MeSH
- GAR-transformylasa metabolismus genetika MeSH
- HeLa buňky MeSH
- lidé MeSH
- metabolom * MeSH
- puriny * metabolismus biosyntéza MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GAR-transformylasa MeSH
- purine MeSH Prohlížeč
- puriny * MeSH
In humans, GART [phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) / phosphoribosylglycinamide synthetase (EC 6.3.4.13) / phosphoribosylaminoimidazole synthetase (EC 6.3.3.1)] is a trifunctional protein which catalyzes the second, third, and fifth reactions of the ten step de novo purine synthesis (DNPS) pathway. The second step of DNPS is conversion of phosphoribosylamine (5-PRA) to glycineamide ribonucleotide (GAR). 5-PRA is extremely unstable under physiological conditions and is unlikely to accumulate in the absence of GART activity. Recently, a HeLa cell line null mutant for GART was constructed via CRISPR-Cas9 mutagenesis. This cell line, crGART, is an important cellular model of DNPS inactivation that does not accumulate DNPS pathway intermediates. In the current study, we characterized the crGART versus HeLa transcriptomes in purine-supplemented and purine-depleted growth conditions. We observed multiple transcriptome changes and discuss pathways and ontologies particularly relevant to Alzheimer disease and Down syndrome. We selected the Cluster of Differentiation (CD36) gene for initial analysis based on its elevated expression in crGART versus HeLa as well as its high basal expression, high log2 value, and minimal P-value.
Department of Biological Sciences University of Denver Denver Colorado United States of America
Eleanor Roosevelt Institute University of Denver Denver Colorado United States of America
Knoebel Institute for Healthy Aging University of Denver Denver Colorado United States of America
Zobrazit více v PubMed
Caetano-Anollés G., Yafremava L.S., Gee H., Caetano-Anollés D., Kim H.S., Mittenthal J.E., The origin and evolution of modern metabolism, Int. J. Biochem. Cell Biol. 41 (2009) 285–297. doi: 10.1016/j.biocel.2008.08.022 PubMed DOI
Fridman A., Saha A., Chan A., Casteel D.E., Pilz R.B., Boss G.R., Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate, Biochem J. 454 (2013) 91–99. doi: 10.1042/BJ20130153 PubMed DOI
Chan C.Y., Zhao H., Pugh R.J., Pedley A.M., French J., Jones S.A., et al.., Purinosome formation as a function of the cell cycle, Proceedings of the National Academy of Sciences. (2015). doi: 10.1073/pnas.1423009112 PubMed DOI PMC
Zhao H., Chiaro C.R., Zhang L., Smith P.B., Chan C.Y., Pedley A.M., et al.., Quantitative Analysis of Purine Nucleotides Indicates Purinosomes Increase de Novo Purine Biosynthesis, Journal of Biological Chemistry. (2015). doi: 10.1074/jbc.M114.628701 PubMed DOI PMC
Brodsky G., Barnes T., Bleskan J., Becker L., Cox M., Patterson D., The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome, Hum Mol Genet. 6 (1997) 2043–2050. doi: 10.1093/hmg/6.12.2043 PubMed DOI
Desmoulin S.K., Wang Y., Wu J., Stout M., Hou Z., Fulterer A., et al.., Targeting the proton-coupled folate transporter for selective delivery of 6-substituted pyrrolo[2,3-d]pyrimidine antifolate inhibitors of de novo purine biosynthesis in the chemotherapy of solid tumors, Mol. Pharmacol. 78 (2010) 577–587. doi: 10.1124/mol.110.065896 PubMed DOI PMC
Cong X., Lu C., Huang X., Yang D., Cui X., Cai J., et al.., Increased expression of glycinamide ribonucleotide transformylase is associated with a poor prognosis in hepatocellular carcinoma, and it promotes liver cancer cell proliferation, Hum. Pathol. 45 (2014) 1370–1378. doi: 10.1016/j.humpath.2013.11.021 PubMed DOI
Fumagalli M., Lecca D., Abbracchio M.P., Ceruti S., Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases, Front. Pharmacol. 8 (2017) 941. doi: 10.3389/fphar.2017.00941 PubMed DOI PMC
Göttle M., Burhenne H., Sutcliffe D., Jinnah H.A., Purine metabolism during neuronal differentiation: the relevance of purine synthesis and recycling, J Neurochem. 127 (2013) 805–818. doi: 10.1111/jnc.12366 PubMed DOI PMC
Ramond F., Rio M., Heron B., Imbard A., Marie S., Billemaz K., et al.., AICA-ribosiduria due to ATIC deficiency: delineation of the phenotype with three novel cases, and long-term update on the first case, J Inherit Metab Dis. (2020). doi: 10.1002/jimd.12274 PubMed DOI
Pelet A., Skopova V., Steuerwald U., Baresova V., Zarhrate M., Plaza J.-M., et al.., PAICS deficiency, a new defect of de novo purine synthesis resulting in multiple congenital anomalies and fatal outcome, (2019) 1–30. doi: 10.1093/hmg/ddz237/5584440 PubMed DOI
Van Den Berghe G., Jaeken J., Adenylosuccinase deficiency, Adv. Exp. Med. Biol. 195 Pt A (1986) 27–33. doi: 10.1007/978-1-4684-5104-7_4 PubMed DOI
Baresova V., Krijt M., Skopova V., Souckova O., Kmoch S., Zikánová M., CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation, Mol Genet Metab. 119 (2016) 270–277. doi: 10.1016/j.ymgme.2016.08.004 PubMed DOI
Mazzarino R.C., Baresova V., Zikánová M., Duval N., Wilkinson T.G., Patterson D., et al.., The CRISPR-Cas9 crADSL HeLa transcriptome: A first step in establishing a model for ADSL deficiency and SAICAR accumulation, Mol Genet Metab Rep. 21 (2019) 100512. doi: 10.1016/j.ymgmr.2019.100512 PubMed DOI PMC
Mazzarino R.C., Baresova V., Zikánová M., Duval N., Wilkinson T.G., Patterson D., et al.., The CRISPR-Cas9 crATIC HeLa transcriptome: Characterization of a novel cellular model of ATIC deficiency and ZMP accumulation, Mol Genet Metab Rep. 25 (2020) 100642. doi: 10.1016/j.ymgmr.2020.100642 PubMed DOI PMC
Rudolph J., Stubbe J., Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase, Biochemistry. 34 (1995) 2241–2250. doi: 10.1021/bi00007a019 PubMed DOI
Tu A.S., Patterson D., Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism. VI. Enzymatic studies of two mutants unable to convert inosinic acid to adenylic acid, Biochem. Genet. 15 (1977) 195–210. doi: 10.1007/BF00484561 PubMed DOI
Duval N., Luhrs K., Wilkinson T.G., Baresova V., Skopova V., Kmoch S., et al.., Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders, Mol Genet Metab. 108 (2013) 178–189. doi: 10.1016/j.ymgme.2013.01.002 PubMed DOI PMC
Yates A.D., Achuthan P., Akanni W., Allen J., Allen J., Alvarez-Jarreta J., et al.., Ensembl 2020, Nucleic Acids Res. 48 (2020) D682–D688. doi: 10.1093/nar/gkz966 PubMed DOI PMC
Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C., Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods. 14 (2017) 417–419. doi: 10.1038/nmeth.4197 PubMed DOI PMC
Love M.I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Ignatiadis N., Klaus B., Zaugg J.B., Huber W., Data-driven hypothesis weighting increases detection power in genome-scale multiple testing, Nat. Methods. 13 (2016) 577–580. doi: 10.1038/nmeth.3885 PubMed DOI PMC
Zhu A., Ibrahim J.G., Love M.I., Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences, Bioinformatics. 35 (2019) 2084–2092. doi: 10.1093/bioinformatics/bty895 PubMed DOI PMC
R Core Team, R: A language and environment for statistical computing, Vienna, Austria, 2020. https://www.R-project.org/.
Mlecnik B., Galon J., Bindea G., Comprehensive functional analysis of large lists of genes and proteins, Journal of Proteomics. 171 (2018) 2–10. doi: 10.1016/j.jprot.2017.03.016 PubMed DOI
Knox A.J., Graham C., Bleskan J., Brodsky G., Patterson D., Mutations in the Chinese hamster ovary cell GART gene of de novo purine synthesis, Gene. 429 (2009) 23–30. doi: 10.1016/j.gene.2008.10.007 PubMed DOI PMC
Mádrová L., Krijt M., Baresova V., Václavík J., Friedecký D., Dobešová D., et al.., Mass spectrometric analysis of purine de novo biosynthesis intermediates, PLoS ONE. 13 (2018) e0208947. doi: 10.1371/journal.pone.0208947 PubMed DOI PMC
Maréchal L., Laviolette M., Rodrigue-Way A., Sow B., Brochu M., Caron V., et al.., The CD36-PPARγ Pathway in Metabolic Disorders, Int J Mol Sci. 19 (2018). doi: 10.3390/ijms19051529 PubMed DOI PMC
Pepino M.Y., Kuda O., Samovski D., Abumrad N.A., Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism, Annu. Rev. Nutr. 34 (2014) 281–303. doi: 10.1146/annurev-nutr-071812-161220 PubMed DOI PMC
Holmes E.W., McDonald J.A., McCord J.M., Wyngaarden J.B., Kelley W.N., Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties, J Biol Chem. 248 (1973) 144–150. PubMed
Tu A.S., Patterson D., Characterization of a guanine-sensitive mutant defective in adenylo-succinate synthetase activity, J. Cell. Physiol. 96 (1978) 123–132. doi: 10.1002/jcp.1040960115 PubMed DOI
Silva C.H.T.P., Silva M., Iulek J., Thiemann O.H., Structural complexes of human adenine phosphoribosyltransferase reveal novel features of the APRT catalytic mechanism, J. Biomol. Struct. Dyn. 25 (2008) 589–597. doi: 10.1080/07391102.2008.10507205 PubMed DOI
Watts R.W., Molecular variation in relation to purine metabolism, J Clin Pathol Suppl (R Coll Pathol). 8 (1974) 48–63. PubMed PMC
Keller K.E., Doctor Z.M., Dwyer Z.W., Lee Y.-S., SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells, Mol Cell. 53 (2014) 700–709. doi: 10.1016/j.molcel.2014.02.015 PubMed DOI PMC
Corton J.M., Gillespie J.G., Hawley S.A., Hardie D.G., 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229 (1995) 558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x PubMed DOI
Meares G.P., Qin H., Liu Y., Holdbrooks A.T., Benveniste E.N., AMP-activated protein kinase restricts IFN-γ signaling, J Immunol. 190 (2013) 372–380. doi: 10.4049/jimmunol.1202390 PubMed DOI PMC
Kuda O., Jenkins C.M., Skinner J.R., Moon S.H., Su X., Gross R.W., et al.., CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2, Journal of Biological Chemistry. 286 (2011) 17785–17795. doi: 10.1074/jbc.M111.232975 PubMed DOI PMC
Silverstein R.L., Febbraio M., CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior, Sci Signal. 2 (2009) re3–re3. doi: 10.1126/scisignal.272re3 PubMed DOI PMC
Sullivan K.D., Lewis H.C., Hill A.A., Pandey A., Jackson L.P., Cabral J.M., et al.., Trisomy 21 consistently activates the interferon response, Elife. 5 (2016) e16220. doi: 10.7554/eLife.16220 PubMed DOI PMC
Kroker A.J., Bruning J.B., Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism, PPAR Res. 2015 (2015) 816856. doi: 10.1155/2015/816856 PubMed DOI PMC
Rodrigues R.J., Marques J.M., Cunha R.A., Purinergic signalling and brain development, Seminars in Cell & Developmental Biology. 95 (2019) 34–41. doi: 10.1016/j.semcdb.2018.12.001 PubMed DOI
Patterson D., Molecular genetic analysis of Down syndrome, Hum Genet. 126 (2009) 195–214. doi: 10.1007/s00439-009-0696-8 PubMed DOI
Lott I.T., Neurological phenotypes for Down syndrome across the life span, Prog. Brain Res. 197 (2012) 101–121. doi: 10.1016/B978-0-444-54299-1.00006-6 PubMed DOI PMC
Alexander M., Petri H., Ding Y., Wandel C., Khwaja O., Foskett N., Morbidity and medication in a large population of individuals with Down syndrome compared to the general population, 58 (2016) 246–254. doi: 10.1111/dmcn.12868 PubMed DOI
Contestabile A., Magara S., Cancedda L., The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome, Front Cell Neurosci. 11 (2017) 54. doi: 10.3389/fncel.2017.00054 PubMed DOI PMC
Jinnah H.A., Sabina R.L., Van Den Berghe G., Metabolic disorders of purine metabolism affecting the nervous system, Handb Clin Neurol. 113 (2013) 1827–1836. doi: 10.1016/B978-0-444-59565-2.00052-6 PubMed DOI PMC
Sebastián-Serrano Á., de Diego-García L., Martínez-Frailes C., Avila J., Zimmermann H., Millán J.L., et al.., Tissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease, Comput Struct Biotechnol J. 13 (2015) 95–100. doi: 10.1016/j.csbj.2014.12.004 PubMed DOI PMC
Narisawa S., Hasegawa H., Watanabe K., Millán J.L., Stage-specific expression of alkaline phosphatase during neural development in the mouse, Dev Dyn. 201 (1994) 227–235. doi: 10.1002/aja.1002010306 PubMed DOI
Langer D., Ikehara Y., Takebayashi H., Hawkes R., Zimmermann H., The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones, Neuroscience. 150 (2007) 863–879. doi: 10.1016/j.neuroscience.2007.07.064 PubMed DOI
Fonta C., Negyessy L., Renaud L., Barone P., Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex, J. Comp. Neurol. 486 (2005) 179–196. doi: 10.1002/cne.20524 PubMed DOI
Díez-Zaera M., Díaz-Hernández J.I., Hernández-Álvarez E., Zimmermann H., Díaz-Hernández M., Miras-Portugal M.T., Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons, Mol. Biol. Cell. 22 (2011) 1014–1024. doi: 10.1091/mbc.E10-09-0740 PubMed DOI PMC
Zimmermann H., Zebisch M., Sträter N., Cellular function and molecular structure of ecto-nucleotidases, Purinergic Signal. 8 (2012) 437–502. doi: 10.1007/s11302-012-9309-4 PubMed DOI PMC
Striedinger K., Meda P., Scemes E., Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration, Glia. 55 (2007) 652–662. doi: 10.1002/glia.20494 PubMed DOI PMC
Amadasi A., Bertoldi M., Contestabile R., Bettati S., Cellini B., di Salvo M.L., et al.., Pyridoxal 5’-phosphate enzymes as targets for therapeutic agents, Curr. Med. Chem. 14 (2007) 1291–1324. doi: 10.2174/092986707780597899 PubMed DOI
Deidda G., Bozarth I.F., Cancedda L., Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives, Front Cell Neurosci. 8 (2014) 119. doi: 10.3389/fncel.2014.00119 PubMed DOI PMC
Huo H.-Q., Qu Z.-Y., Yuan F., Ma L., Yao L., Xu M., et al.., Modeling Down Syndrome with Patient iPSCs Reveals Cellular and Migration Deficits of GABAergic Neurons, Stem Cell Reports. 10 (2018) 1251–1266. doi: 10.1016/j.stemcr.2018.02.001 PubMed DOI PMC
Lott I.T., Dierssen M., Cognitive deficits and associated neurological complications in individuals with Down’s syndrome, Lancet Neurol. 9 (2010) 623–633. doi: 10.1016/S1474-4422(10)70112-5 PubMed DOI
Carter M., McCaughey E., Annaz D., Hill C.M., Sleep problems in a Down syndrome population, Arch. Dis. Child. 94 (2009) 308–310. doi: 10.1136/adc.2008.146845 PubMed DOI
Pueschel S.M., Bernier J.C., Pezzullo J.C., Behavioural observations in children with Down’s syndrome, Journal of Intellectual Disability Research. 35 (2008) 502–511. doi: 10.1111/j.1365-2788.1991.tb00447.x PubMed DOI
Begenisic T., Baroncelli L., Sansevero G., Milanese M., Bonifacino T., Bonanno G., et al.., Fluoxetine in adulthood normalizes GABA release and rescues hippocampal synaptic plasticity and spatial memory in a mouse model of Down syndrome, Neurobiol Dis. 63 (2014) 12–19. doi: 10.1016/j.nbd.2013.11.010 PubMed DOI
Costa A.C.S., Grybko M.J., Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: a model of Down syndrome, Neurosci Lett. 382 (2005) 317–322. doi: 10.1016/j.neulet.2005.03.031 PubMed DOI
Kleschevnikov A.M., Belichenko P.V., Villar A.J., Epstein C.J., Malenka R.C., Mobley W.C., Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome, Journal of Neuroscience. 24 (2004) 8153–8160. doi: 10.1523/JNEUROSCI.1766-04.2004 PubMed DOI PMC
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., et al.., Inflammatory responses and inflammation-associated diseases in organs, Oncotarget. 9 (2018) 7204–7218. doi: 10.18632/oncotarget.23208 PubMed DOI PMC
Sugimoto M.A., Sousa L.P., Pinho V., Perretti M., Teixeira M.M., Resolution of Inflammation: What Controls Its Onset? Front Immunol. 7 (2016) 160. doi: 10.3389/fimmu.2016.00160 PubMed DOI PMC
Serhan C.N., Chiang N., Dalli J., Levy B.D., Lipid mediators in the resolution of inflammation, Cold Spring Harbor Perspectives in Biology. 7 (2014) a016311. doi: 10.1101/cshperspect.a016311 PubMed DOI PMC
Hanna V.S., Hafez E.A.A., Synopsis of arachidonic acid metabolism: A review, 11 (2018) 23–32. doi: 10.1016/j.jare.2018.03.005 PubMed DOI PMC
Kominsky D.J., Campbell E.L., Colgan S.P., Metabolic shifts in immunity and inflammation, J Immunol. 184 (2010) 4062–4068. doi: 10.4049/jimmunol.0903002 PubMed DOI PMC