• This record comes from PubMed

Potential of Smoke-Water and One of Its Active Compounds (karrikinolide, KAR1) on the Phytochemical and Antioxidant Activity of Eucomis autumnalis

. 2019 Dec 03 ; 8 (12) : . [epub] 20191203

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
UID 109508 National Research Foundation South Africa
UID 106493 National Research Foundation South Africa
No. CZ.02.1.01/0.0/0.0/16_019/0000827 Ministry of Education, Youth and Sport of the Czech Republic, ERDF project

Eucomis autumnalis (Mill.) Chitt. subspecies autumnalis is a popular African plant that is susceptible to population decline because the bulbs are widely utilized for diverse medicinal purposes. As a result, approaches to ensure the sustainability of the plants are essential. In the current study, the influence of smoke-water (SW) and karrikinolide (KAR1 isolated from SW extract) on the phytochemicals and antioxidant activity of in vitro and greenhouse-acclimatized Eucomis autumnalis subspecies autumnalis were evaluated. Leaf explants were cultured on Murashige and Skoog (MS) media supplemented with SW (1:500, 1:1000 and 1:1500 v/v dilutions) or KAR1 (10-7, 10-8 and 10-9 M) and grown for ten weeks. In vitro regenerants were subsequently acclimatized in the greenhouse for four months. Bioactive phytochemicals in different treatments were analyzed using ultra-high performance liquid chromatography (UHPLC-MS/MS), while antioxidant potential was evaluated using two chemical tests namely: DPPH and the β-carotene model. Smoke-water and KAR1 generally influenced the quantity and types of phytochemicals in in vitro regenerants and acclimatized plants. In addition to eucomic acid, 15 phenolic acids and flavonoids were quantified; however, some were specific to either the in vitro regenerants or greenhouse-acclimatized plants. The majority of the phenolic acids and flavonoids were generally higher in in vitro regenerants than in acclimatized plants. Evidence from the chemical tests indicated an increase in antioxidant activity of SW and KAR1-treated regenerants and acclimatized plants. Overall, these findings unravel the value of SW and KAR1 as potential elicitors for bioactive phytochemicals with therapeutic activity in plants facilitated via in vitro culture systems. In addition, it affords an efficient means to ensure the sustainability of the investigated plant. Nevertheless, further studies focusing on the use of other types of antioxidant test systems (including in vivo model) and the carry-over effect of the application of SW and KAR1 for a longer duration will be pertinent. In addition, the safety of the resultant plant extracts and their pharmacological efficacy in clinical relevance systems is required.

See more in PubMed

De Lange J.H., Brown N.A.C., Van Staden J. Perspectives on the contributions by South African researchers in igniting global research on smoke-stimulated seed germination. S. Afr. J. Bot. 2018;115:219–222. doi: 10.1016/j.sajb.2017.12.015. DOI

Flematti G.R., Dixon K.W., Smith S.M. What are karrikins and how were they ‘discovered’ by plants? BMC Biol. 2015;13:108. doi: 10.1186/s12915-015-0219-0. PubMed DOI PMC

Kulkarni M.G., Light M.E., Van Staden J. Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. S. Afr. J. Bot. 2011;77:972–979. doi: 10.1016/j.sajb.2011.08.006. DOI

Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengove R.D. A compound from smoke that promotes seed germination. Science. 2004;305:977. doi: 10.1126/science.1099944. PubMed DOI

Van Staden J., Jäger A.K., Light M.E., Burger B.V. Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 2004;70:654–659. doi: 10.1016/S0254-6299(15)30206-4. DOI

Hrdlička J., Gucký T., Novák O., Kulkarni M., Gupta S., van Staden J., Doležal K. Quantification of karrikins in smoke water using ultra-high performance liquid chromatography–tandem mass spectrometry. Plant Methods. 2019;15:81. doi: 10.1186/s13007-019-0467-z. PubMed DOI PMC

Light M.E., Daws M.I., Van Staden J. Smoke-derived butenolide: Towards understanding its biological effects. S. Afr. J. Bot. 2009;75:1–7. doi: 10.1016/j.sajb.2008.10.004. DOI

Chiwocha S.D.S., Dixon K.W., Flematti G.R., Ghisalberti E.L., Merritt D.J., Nelson D.C., Riseborough J.-A.M., Smith S.M., Stevens J.C. Karrikins: A new family of plant growth regulators in smoke. Plant Sci. 2009;177:252–256. doi: 10.1016/j.plantsci.2009.06.007. DOI

Jain N., Stirk W.A., Van Staden J. Cytokinin-and auxin-like activity of a butenolide isolated from plant-derived smoke. S. Afr. J. Bot. 2008;74:327–331. doi: 10.1016/j.sajb.2007.10.008. DOI

Moyo M., Amoo S.O., Aremu A.O., Gruz J., Šubrtová M., Doležal K., Van Staden J. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures. Plant Sci. 2014;227:157–164. doi: 10.1016/j.plantsci.2014.08.003. PubMed DOI

Masondo N.A., Aremu A.O., Finnie J.F., Van Staden J. Plant growth regulator induced phytochemical and antioxidant variations in micropropagated and acclimatized Eucomis autumnalis subspecies autumnalis (Asparagaceae) Acta Physiol. Plant. 2014;36:2467–2479. doi: 10.1007/s11738-014-1619-4. DOI

Amoo S.O., Aremu A.O., Van Staden J. Shoot proliferation and rooting treatments influence secondary metabolite production and antioxidant activity in tissue culture-derived Aloe arborescens grown ex vitro. Plant Growth Regul. 2013;70:115–122. doi: 10.1007/s10725-013-9783-x. DOI

Aremu A.O., Bairu M.W., Finnie J.F., Van Staden J. Stimulatory role of smoke-water and karrikinolide on the photosynthetic pigment and phenolic contents of micropropagated ‘Williams’ bananas. Plant Growth Regul. 2012;67:271–279. doi: 10.1007/s10725-012-9685-3. DOI

Soós V., Sebestyén E., Juhász A., Szalai G., Tandori J., Light M.E., Kohout L., Van Staden J., Balázs E. Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR1. BMC Plant Biol. 2010;10:236. doi: 10.1186/1471-2229-10-236. PubMed DOI PMC

Fraser C.M., Chapple C. The phenylpropanoid pathway in Arabidopsis. Arab. Book. 2011;9:e0152. doi: 10.1199/tab.0152. PubMed DOI PMC

Dai J., Mumper R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC

Moyo M., Aremu A.O., Van Staden J. Medicinal plants: An invaluable, dwindling resource in sub-Saharan Africa. J. Ethnopharmacol. 2015;174:595–606. doi: 10.1016/j.jep.2015.04.034. PubMed DOI

Masondo N.A., Finnie J.F., Van Staden J. Pharmacological potential and conservation prospect of the genus Eucomis (Hyacinthaceae) endemic to southern Africa. J. Ethnopharmacol. 2014;151:44–53. doi: 10.1016/j.jep.2013.11.002. PubMed DOI

Hutchings A., Scott A.H., Lewis G., Cunningham A. Zulu Medicinal Plants: An Inventory. University of Natal Press; Pietermaritzburg, South Africa: 1996.

Moyo M., Bairu M.W., Amoo S.O., Van Staden J. Plant biotechnology in South Africa: Micropropagation research endeavours, prospects and challenges. S. Afr. J. Bot. 2011;77:996–1011. doi: 10.1016/j.sajb.2011.06.003. DOI

Canter P.H., Thomas H., Ernst E. Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends Biotechnol. 2005;23:180–185. doi: 10.1016/j.tibtech.2005.02.002. PubMed DOI

Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.-M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC

Matkowski A. Plant in vitro culture for the production of antioxidants—A review. Biotechnol. Adv. 2008;26:548–560. doi: 10.1016/j.biotechadv.2008.07.001. PubMed DOI

Baxter B.J.M., Van Staden J., Granger J.E., Brown N.A.C. Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra. Environ. Exp. Bot. 1994;34:217–223. doi: 10.1016/0098-8472(94)90042-6. DOI

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Masondo N.A., Aremu A.O., Finnie J.F., Van Staden J. Growth and phytochemical levels in micropropagated Eucomis autumnalis subspecies autumnalis using different gelling agents, explant source, and plant growth regulators. In Vitro Cell. Dev. Biol. Plant. 2015;51:102–110. doi: 10.1007/s11627-014-9646-9. DOI

Gruz J., Novák O., Strnad M. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008;111:789–794. doi: 10.1016/j.foodchem.2008.05.014. DOI

Aremu A.O., Masondo N.A., Rengasamy K.R.R., Amoo S.O., Gruz J., Bíba O., Šubrtová M., Pěnčík A., Novák O., Doležal K., et al. Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta. 2015;241:1313–1324. doi: 10.1007/s00425-015-2256-x. PubMed DOI

Aremu A.O., Amoo S.O., Ndhlala A.R., Finnie J.F., Van Staden J. Antioxidant activity, acetylcholinesterase inhibition, iridoid content and mutagenic evaluation of Leucosidea sericea. Food Chem. Toxicol. 2011;49:1122–1128. doi: 10.1016/j.fct.2011.02.003. PubMed DOI

Heleno S.A., Martins A., Queiroz M.J.R.P., Ferreira I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015;173:501–513. doi: 10.1016/j.foodchem.2014.10.057. PubMed DOI

Koorbanally C., Crouch N.R., Mulholland D.A. The phytochemistry and ethnobotany of the southern African genus Eucomis (Hyacinthaceae: Hyacinthoideae) In: Imperato F., editor. Phytochemistry: Advances in Research. Research Signpost; Trivandrum, India: 2006. pp. 69–85.

Karuppusamy S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 2009;3:1222–1239.

Narayani M., Srivastava S. Elicitation: A stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem. Rev. 2017;16:1227–1252. doi: 10.1007/s11101-017-9534-0. DOI

Aremu A.O., Masondo N.A., Van Staden J. Smoke–water stimulates secondary metabolites during in vitro seedling development in Tulbaghia species. S. Afr. J. Bot. 2014;91:49–52. doi: 10.1016/j.sajb.2013.12.001. DOI

Zhou J., Van Staden J., Guo L.P., Huang L.Q. Smoke-water improves shoot growth and indigo accumulation in shoots of Isatis indigotica seedlings. S. Afr. J. Bot. 2011;77:787–789. doi: 10.1016/j.sajb.2011.02.004. DOI

Kulkarni M.G., Amoo S.O., Kandari L.S., Van Staden J. Seed germination and phytochemical evaluation in seedlings of Aloe arborescens Mill. Plant Biosyst. 2014;148:460–466. doi: 10.1080/11263504.2013.782901. DOI

Gülçin İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012;86:345–391. doi: 10.1007/s00204-011-0774-2. PubMed DOI

Kumar N., Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014;4:86–93. doi: 10.1016/j.btre.2014.09.002. PubMed DOI PMC

Malik S., Sharma N., Sharma U.K., Singh N.P., Bhushan S., Sharma M., Sinha A.K., Ahuja P.S. Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi Wall. plants. J. Plant Physiol. 2010;167:749–756. doi: 10.1016/j.jplph.2009.12.007. PubMed DOI

Aremu A.O., Gruz J., Šubrtová M., Szüčová L., Doležal K., Bairu M.W., Finnie J.F., Van Staden J. Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J. Plant Physiol. 2013;170:1303–1308. doi: 10.1016/j.jplph.2013.04.008. PubMed DOI

Liu C.Z., Murch S.J., El-Demerdash M., Saxena P.K. Artemisia judaica L.: Micropropagation and antioxidant activity. J. Biotechnol. 2004;110:63–71. doi: 10.1016/j.jbiotec.2004.01.011. PubMed DOI

Aremu A.O., Plačková L., Gruz J., Bíba O., Novák O., Stirk W.A., Doležal K., Van Staden J. Seaweed-derived biostimulant (Kelpak) influences endogenous cytokinins and bioactive compounds in hydroponically grown Eucomis autumnalis. J. Plant Growth Regul. 2016;35:151–162. doi: 10.1007/s00344-015-9515-8. DOI

Aruwa C.E., Amoo S.O., Kudanga T. Extractable and macromolecular antioxidants of Opuntia ficus-indica cladodes: Phytochemical profiling, antioxidant and antibacterial activities. S. Afr. J. Bot. 2019;125:402–410. doi: 10.1016/j.sajb.2019.08.007. DOI

Moyo M., Aremu A.O., Chukwujekwu J.C., Gruz J., Skorepa J., Doležal K., Katsvanga C.A.T., Van Staden J. Phytochemical characterization, antibacterial, acetylcholinesterase inhibitory and cytotoxic properties of Cryptostephanus vansonii, an endemic amaryllid. Phytother. Res. 2017;31:713–720. doi: 10.1002/ptr.5788. PubMed DOI

Okada M., Park S., Koshizawa T., Ueda M. (R)-Eucomic acid, a leaf-opening factor of the model organism, Lotus japonicus. Tetrahedron. 2009;65:2136–2141. doi: 10.1016/j.tet.2008.11.097. DOI

Ishii M., Uemoto S., Fujieda K., Nonaka M., Shoyama Y., Miyahara Y., Nishioka I. A new biologically active phenolic from Cattleya trianaei. Phytochemistry. 1979;18:1211–1213. doi: 10.1016/0031-9422(79)80137-5. DOI

Granato D., Shahidi F., Wrolstad R., Kilmartin P., Melton L.D., Hidalgo F.J., Miyashita K., Camp J.V., Alasalvar C., Ismail A.B., et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018;264:471–475. doi: 10.1016/j.foodchem.2018.04.012. PubMed DOI

Harnly J. Antioxidant methods. J. Food Compos. Anal. 2017;64:145–146. doi: 10.1016/j.jfca.2017.08.011. DOI

Amoo S.O., Aremu A.O., Van Staden J. In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult. 2012;111:345–358. doi: 10.1007/s11240-012-0200-3. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...